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The fine structure (sulfation position and density) of the HS side chains of perlecan is an important regulatory determinant

in the differentiation of pluripotent stem cells in the niche environment in neural tissues. Interaction of HS with growth

factors (FGF-2) and morphogens (Wnt, SHh) is also essential for the long-term viability of recycling stem cells and the

proliferation and differentiation of stem cells that have escaped from quiescent recycling and along with interactions with

niche ECM components regulates the development of stem cell lineages that attain migratory properties facilitating their

participation in neural repair processes. The expression of HS biosynthetic enzymes in the niche and tissue environments

also have important roles in determining the fine structure of HS and how it exerts these effects spatially and temporally in

tissue development and neural repair processes and also has roles in the determination of synaptic specificity, axonal

guidance, synapse development and synapse function.
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1. Introduction

Hyaluronan (HA) is a major space-filling component of the CNS/PNS providing tissue hydration and a matrix for cell

attachment and an environment conducive to cellular survival and cellular migration during CNS/PNS development .

HA also ensures specific niche environments, and ionic gradients are maintained in the 3D brain architecture to ensure

optimal conditions for cellular activity. The brain extracellular matrix (ECM) is unusual in that it is dominated by

glycosaminoglycans (GAGs), particularly HA, and it is one of the softest tissues in the human body. The immobilization of

HA in the CNS ECM is critical to the optimal functional properties of the brain; however, HA is a soluble polymer, and it

relies on interactions with proteoglycans (PGs), HA receptors and HA interactive glycoproteins for its immobilization in the

CNS/PNS ECM . HA is a component of both diffuse and condensed brain ECM structures known as perineuronal nets

(PNNs), which protect neurons and are essential for the maintenance of optimal neural cellular activity . HA is the only

non-sulfated GAG and has a relatively simple repeat N-acetyl-glucosamine-D-glucuronic acid disaccharide structure. HA

is highly interactive with the lectican PGs and HA-receptors and also influences cell migration in developing tissues .

High molecular weight HA is anti-inflammatory and mops up free radicals generated by inflammatory cells; thus, it

counters the development of neuro-inflammation. The formation of HA-lectican aggregates (particularly HA-aggrecan

aggregates) is critical to tissue hydration, brain volume, maintenance of cellular organization and micro-

compartmentalization in the brain ECM. This provides niche and metabolite gradient environments that promote optimal

cellular activities in the brain 3D environment. The importance of HA’s roles in brain tissues becomes apparent in tissues

that display an HA deficiency. For example, brain tissues that are deficient in HA synthase-3 activity (Has3 KO) display

frequent seizures and an epileptic phenotype .

2. Application of HS Containing Biomatrices for Neural Repair

Perlecan is also a major functional component of the stem cell niche and has many attributes with regard to tissue

development and repair processes . Perlecan is expressed in the basal neuroepithelium during neural

development and is a crucial component of the neural niche . Perlecan has multifunctional instructive properties 

in developmental brain tissues  and promotes the proliferation and differentiation of neuroprogenitor stem cells in the

sub-ventricular fractones through the sequestration of FGF-2 in the neural niche activating the Akt and Erk 1/2 cell

signaling pathways . The Wnt and ShH pathways also regulate stem cell proliferation, neurogenesis and neural

network formation . However, Wnt and Hedgehog proteins are relatively poorly soluble in aqueous media. Wnt and

ShH bind to perlecan domain II, and this acts as a transport PG, aiding in the establishment of Wnt and ShH morphogen

gradients in tissues that are important for tissue development . The availability of recombinant perlecan domain I and

domain V will allow investigations to be undertaken in the stimulation of neural repair processes in tissues  and
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in repair of the blood–brain barrier following ischemic stroke . Further studies with perlecan in neural repair

processes are expected in the future, and these offer exciting possibilities.

2.1. Harnessing Cell Instructive Properties of Perlecan’s HS Side Chains in Repair Biology

The fine structure (sulfation position and density) of the HS side chains of perlecan is an important regulatory determinant

in the differentiation of pluripotent stem cells in the niche environment in neural tissues . Interaction of HS with growth

factors (FGF-2) and morphogens (Wnt, SHh) is also essential for the long-term viability of recycling stem cells and the

proliferation and differentiation of stem cells that have escaped from quiescent recycling and along with interactions with

niche ECM components regulates the development of stem cell lineages that attain migratory properties facilitating their

participation in neural repair processes . The expressions of HS biosynthetic enzymes in the niche and tissue

environments also have important roles in determining the fine structure of HS and how it exerts these effects spatially

and temporally in tissue development and neural repair processes and also has roles in the determination of synaptic

specificity, axonal guidance, synapse development and synapse function . Perlecan is an important regulatory cell

instructive PG in the neural stem cell fractone . The availability of recombinant perlecan domain I and domain V now

makes it possible to incorporate these components into new generation bioscaffolds in neural repair strategies attempting

to mimic the niche environment of native neural tissues. Such approaches used in combination with HA and neural

progenitor stem cell preparations have a high probability of further improving on existing neural repair applications.

Collagen–HS porous scaffolds containing NSCs have been used to treat a rat model of traumatic brain injury, established

using a controlled cortical impact . Brain edema and cell apoptosis were significantly reduced, and motor and cognitive

functions markedly improved using this procedure suggesting that porous collagen–HS scaffolds loaded with NSCs can

improve neurological deficits in a rat model of traumatic brain injury . Three-dimensional (3D) bioprinter-assembled

collagen–HS scaffolds have also been used to treat controlled spinal cord injuries in rats . The HS component of this

scaffolding material crosslinks the collagen fibers, increasing its compression modulus and mechanical stability. This

scaffold displays good biocompatibility with neurons co-administered within the scaffold. The HS component of this

scaffold significantly improves the immobilization of bioavailable FGF-2, which promotes progenitor cell proliferation. A

significant recovery in locomotor function and increased numbers of neurofilament positive cells were evident using this

approach, suggesting that this matrix actively stimulates axonal guidance and neural repair processes. Porous

bioscaffolds of chitosan–gelatin containing HA and/or HS have also been used in neural tissue engineering . Such

scaffolds contained highly interconnected pores ranging in size from 90 to 140 μm, and the scaffold had a porosity index

of over 96%. Neural progenitor stem cells seeded into this matrix displayed adhesion, proliferation and multi-lineage

differentiation in the 3D scaffold environment, indicating that this matrix may be useful in neural repair biology applications

.

2.2. Development of Artificial Neural Stem Cell Niches

Significant improvements in bioscaffold microfabrication methodology has permitted the miniaturization of these platforms.

Lithography and direct laser printing have been applied to prepare 2D patterns and 3D scaffolds to shape hydrogels and

synthetic polymers to create niche-like structures for single neural cell culture . Artificial laminin 3D neural stem cell

niche-like structures have been developed to recapitulate the dynamic nature and some of the biological complexity of the

neural stem cell niche and maintain laminin in a native conformation and orientation as found in the niche. These scaffolds

support enhanced human NSC proliferation and neurite extension . Stem cell niches are intricate spaces that

provide specific chemical and biological environments that control stem cell fate . Microdevices have been developed

that have proved useful for the culture of NG108-15 neuroblastoma and human NPCs and represent a system amenable

to modifications that promote these cellular activities for applications in neural repair biology .
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