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Biliary tract cancer (BTC) is often refractory to conventional therapeutics and is difficult to diagnose in the early

stages. Implantation-based models have recently drawn attention for their convenience, flexibility, and scalability. 

genetically engineered mouse  biliary tract cancer  organoid  orthotopic model

nude mouse  syngeneic  hydrodynamic injection  implantation

1. Introduction

The biliary system is a network of bile ducts that collect bile produced and secreted by hepatocytes in the liver. The

bile ducts merge into the common bile duct (CBD), transporting bile to the duodenum, where it aids the absorption

of dietary lipids in the intestine. The gall bladder (GB) is located in the middle of this network. It functions to

temporally store bile during the fast state, which in turn is secreted by GB contraction upon food intake. Biliary tract

cancer (BTC) is a malignant tumorous cancer that arises from epithelial cells that cover the lumen of the bile duct.

It is typically divided into three subtypes (Figure 1) based on anatomical site: intrahepatic cholangiocarcinoma

(iCCA), extrahepatic cholangiocarcinoma (eCCA), and gallbladder carcinoma (GBC). While the histological

diagnosis for most BTCs is adenocarcinoma, a subset of liver cancer is a biphasic tumor comprising both iCCA and

hepatocellular carcinoma (HCC), thereby diagnosed as mixed type .[1]
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Figure 1. Malignancy of the hepatobiliary system. Anatomical classification of the biliary system (left). The

corresponding tumors are listed (right). Biliary tract cancers (BTC) (blue) and liver cancer (black) are not

necessarily mutually exclusive.

The major risk factors for BTC include chronic infection with liver fluke and primary sclerosing cholangitis. Other

risk factors include chronic liver disease, stones, fibrocystic polycystic disease, chemicals, obesity, aging, and

some genetic diseases, suggesting that chronic inflammation in the local biliary tract may be implicated in its

pathogenesis . Worldwide, iCCA cases are increasing, and eCCA cases are decreasing. The reasons for this

trend remain largely unknown . BTC is one of the most devastating cancer types, with a 5-year survival rate of

approximately 10% to 30% for all patients and 2% to 3% for patients with metastatic disease. Although biliary

intraepithelial neoplasia (BilIN)  is regarded as a putative pre-cancerous lesion for BTC, it can only be detected

by histological examination of the tumors. Non-invasive diagnostic modalities, such as serum biomarkers or

imaging, have not been developed. For early stage tumors, surgical resection followed by adjuvant chemotherapy

is the first-line therapy to achieve a complete cure. In contrast, patients with advanced or metastatic disease are

treated with systemic chemotherapy, radiation therapy, and local therapy, which may lead to palliative care.

Recent genomic analyses have revealed that mutations in tumor protein 53 (TP53), BReast CAncer gene (BRCA),

phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), and KRAS are commonly found

in all types of BTC. In contrast, fibroblast growth factor receptor 2 (FGFR2) fusion genes and isocitrate

dehydrogenase 1 (IDH1) mutations are preferentially detected in iCCA, protein kinase CAMP-activated catalytic

subunit alpha (PRKACA)- and PRKACB-fusion genes in eCCA, and mutations in epidermal growth factor receptor

(EGFR), ERBB3, and phosphatase and tensin homolog (PTEN) in GBC . Hence, molecular

targeted therapies with inhibitors of IDH or FGFR can be considered for patients with iCCA. Radiation therapy and

immunotherapy with immune checkpoint inhibitors or chimeric antigen receptor T cell therapy may also be applied,

although their efficacy remains elusive. Mouse models, particularly genetically engineered mice (GEM), have been

fundamentally important in elucidating the mechanisms underlying BTC development and are a potentially powerful

tool for preclinical studies.

Given the recent progress in cancer genome projects and their application to genomic medicine in clinical practice,

this work comprehensively reviews the recent progress in mouse BTC models, emphasizing those that recapitulate

the whole processes of BTC development by genetic approaches. Although perihilar cholangiocarcinoma (pCCA) is

a distinct entity of high clinical relevance, it is not distinguished from eCCA in most genomic studies, and no mouse

model has been developed for pCCA. Therefore, we adopted this classification of BTC in this review and excluded

hepatocellular carcinoma (HCC) models unless the induced tumors were mixed with iCCA. Similarly, other BTC

models  with patient-derived xenografts in immunodeficient mice, or in vivo mouse models based on the

liver damage caused by chemicals or bile duct ligation were also excluded.

2. Technical Overview of Genetic Mouse Models of BTC
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There are several different platforms for genetic modeling of BTC in mice, generating considerable variations in the

latency and penetrance of tumor development, cost, equipment, technique required for the models, and the

experimental settings. Thus, thorough considerations are advisable before selecting the type of model to be

generated. Several options can be selected for the genetic modeling of BTC in mice. These include the target cell

type, the method used in genetic engineering, the type of host mouse, and the location of tumor development

(Figure 2). In this section, we review the technical aspects of these options.

Figure 2. Options in implantation-based modeling of BTC. (See Table 1 for the details of each study.) As examples

of options for modeling BTC, target cell selection (A) and host selection (B) are illustrated. Abbreviations are:

IHBD, intrahepatic bile duct and EHBD, extrahepatic bile duct. Nude mice and C57BL/6J strain mice were used as

representatives for immunodeficient mice and immunocompetent mice, respectively.

Table 1. Implantation- and organoid-based hybrid model of biliary tract cancer in mice.
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Driver

Oncogenes

Genotype of

Organoids *

Methods for Genetic

Engineering **
Host Implantation Ref.

    Oncogenes TSGs      

HCC (Hepatocellular Carcinoma) from Liver Organoid

cMyc WT
cDNA

(R)

shRNA (R); Trp53

and CRISPR/Cas9

(T); Apc

C57BL/6J liver

iCCA (Intrahepatic Cholangiocelular Carcinoma) from Liver Organoid

Kras

Kras

Cre (L)

shRNA (L): Cdkn2a

and/or Pten, Trp53,

Apc

Nude s.c.

Kras ;

Trp53
N.T.

Pik3ca

Pik3ca
shRNA (L): Cdkn2a,

Pten,

Rosa26-

Pik3ca ;

Trp53

N.T.

FGFR2-AHCYL1 WT cDNA(R)
shRNA (L): Cdkn2a

and/or Pten

Kras Kras ;

Trp53

(outbred)

Cre (R) N.T. or shRNA (R):

Pten

NSG s.c. or liver

[18]

G12D

LSL-G12D/+

[19]

LSL-G12D/+

flox/flox

H1047R

H1047R

H1047R

flox/flox

G12D LSL-G12D/+

flox/flox

[18]
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Driver

Oncogenes

Genotype of

Organoids *

Methods for Genetic

Engineering **
Host Implantation Ref.

    Oncogenes TSGs      

Kras Cre (T)
CRISPR/Cas9 (T):

Pten and Trp53
C57BL/6J liver

FGFR2-BICC1, -

MGEA5, -TACC3
Trp53

cDNA

(R)
N.T. NOD-SCID s.c. or liver

KRAS Cdkn2a
cDNA

(R)  
C57BL/6J

s.c., liver,

or kidney

eCCA (Extrahepatic Cholangiocelular Carcinoma) from CBD Organoid

Kras

Kras ;

Tgfbr2 ;

Cdh1

Cre (L) N.T.
Nude or

C57BL/6J
s.c.

KRAS Cdkn2a
cDNA

(R)
N.T. C57BL/6J

s.c., liver,

or kidney

GBC (Gallbladder Carcinoma) from GB Organoid

Kras

Kras

Cre (L)

shRNA (L): Cdkn2a,

Pten

Nude s.c.

Kras ;

Trp53
N.T.

LSL-G12D/+

−/− [20]

G12V −/− [21]

G12D

LSL-G12D

flox/flox

flox/flox

[22]

G12V −/− [21]

G12D

LSL-G12D

[19]

LSL-G12D/+

flox/flox
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For those models that developed cancer, pre-cancerous lesion and cystic lesions were listed. Note that liver

organoid-derived tumor are either HCC or CCA (adenocarcinoma), but not mixed type liver cancer * C57BL/6J

background unless otherwise indicated. ** L, lentivirus; R, retrovirus; T, transfection; N.T., not tested. Abbreviations:

TSG, tumor suppressor genes; s.c., subcutis; WT, wildtype; CBD, common bile duct; GB, gallbladder.

3. In Vivo GEM Model of BTC

Owing to Alb expression in hepatoblasts, which are bi-potential progenitors for hepatocytes and cholangiocytes,

liver-specific tumor models have been generated mostly by intercrossing Alb-Cre mice with conditional GEMs

carrying floxed alleles. However, the histology of the resulting tumors varies among HCC, iCCA, and the mixed

type, depending on the reconstitution of genetic alterations. For example, in mice with liver-specific homozygous

deletion of Smad4 and Pten (hereafter Alb-Cre; Smad4 ; Pten ), all mice developed iCCA and died after 10

months, while Alb-Cre; Pten  mice predominantly developed HCC . In Alb-Cre; Pten ; Kras  mice, only
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Krt19-Cre is often used to induce genetic alterations in the biliary system, although Krt19 expression can also be

detected in many glandular epithelia and non-keratinized squamous basal cells throughout the body . In

contrast, Krt19-Cre, Kras , Tgfbr2 , and Cdh1  mice invariably developed eCCA and Krt19-Cre, Kras

, and Tgfbr2  mice died from respiratory cancers without eCCA development . These results suggest that

the lack of tissue specificity could impair the relevance of BTC models, especially when other organs become more

cancer-prone. There are no known genes specifically expressed in GB. Nonetheless, Pdx1-Cre, often used to

induce pancreatic carcinogenesis, also developed GBC by crossing with Kras  mice . Transgenic mice

expressing rat ErbB-2 under the bovine keratin 5 promoter, which was aimed at developing skin tumors, also

developed GBC , underscoring the oncogenic potential of ErbB-2.
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GEMs. The implementation- and organoid-based BTC models are summarized in Table 1.
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