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Different water treatment technologies such as photochemical degradation, biodegradation, electrochemical degradation,

reverse osmosis, and membrane separation have been used to get rid of water pollutants. Enzymatic treatments have

received great attention due to several advantages compared to physical and chemical treatments, such as mild operating

conditions and high catalytic efficiency without harsh side effects. Oxidase and peroxidase enzymes from different

sources have been immobilized on metal and metal oxide-polymer composites and used in the degradation of pollutants.
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1. Introduction

In recent decades, the global community has increasingly recognized the formidable challenge posed by water pollution

arising from the unregulated release of municipal and industrial waste . Many industries including petrochemical,

paints and explosives, food, pharmaceutical, leather and textile, pulp and paper, and cosmetics have contributed to this

cause . These discharges cause serious problems to aquatic life due to their high biochemical oxygen demand (BOD),

chemical oxygen demand, and blockage of sunlight .

One of the industries producing the highest level of toxic chemicals from dyeing, printing, and finishing is the leather and

textile industry . The conversion of skin into leather in textile industries generates huge amounts of wastewater

containing a variety of organic and inorganic chemicals such as dyes, neutral salts, phenols, and biogenic matter of skins

. The complex aromatic structures of these chemicals, especially the dyes, make them highly soluble in water and

stable against light, aerobic decomposition, and oxidizing reagents . Therefore, their accumulation leads to serious

environmental concerns for aquatic life and human beings due to their adverse effects of toxicity, carcinogenicity, and

mutagenicity . Another industrial sector that has developed rapidly in the last century is the pesticide industry, as it is an

important component of modern global agricultural systems for controlling pests and increasing crop yield . These

pesticides are applied in much higher doses than those required to kill the pests, and end up accumulating in water bodies

via run off and percolation  . Unfortunately, these agrochemical residues not only pollute the aquatic systems and

damage biodiversity, they cause serious health hazards to humans and may even directly or indirectly lead to death 

. Moreover, these compounds have very long half-lives and can remain in the environment for several decades .

The growth of the pharmaceutical industry (veterinary and human medicines) in the past years has also led to rising

amounts of drugs, antibiotics, and hormones. These medicines are not fully metabolized by living organisms and when

these end up in wastewater treatment plants, they are difficult to biodegrade, since most of them are fat soluble .

For example a study conducted by Joss et al.  indicated that biological degradation of pharmaceuticals using activated

sewage sludge from municipal wastewater could only degrade 4 out of 35 compounds by over 90% and 17 compounds by

less than 50%. These compounds have increased in the environment due to their increased consumption and direct

discharge into the environment. The presence of pharmaceuticals, cosmetics, and their metabolites in municipal waste

and industrial effluents presents a significant challenge, as these compounds cannot be effectively eliminated using

conventional techniques, and consequently are released to the receiving environment . While in the environment,

they accumulate or transform into metabolites under certain environmental conditions, and these secondary metabolites

may even be more toxic than the parent compounds . These make pathogenic organisms develop resistance

against them over time, which is a high risk to human health .

The continued release, spread, and accumulation of persistent organic pollutants in the water environment from these

industries, including polychlorinated biphenyls and polycyclic aromatic hydrocarbons from the petrochemical industries,

have become a major threat to human health due to their toxic, mutagenic, and carcinogenic properties . The

emission of these pollutants occurs at the manufacturing stage, after consumption and disposal of unused products.
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These products are hard to be tracked or controlled in most situations and are resistant to natural biodegradation .

Most of these compounds are phenolic and, therefore, bio-recalcitrant, carcinogenic, and easily accumulate in plants and

animals. They should, therefore, be removed prior to wastewater discharge .

Different water treatment technologies such as photochemical degradation, biodegradation, electrochemical degradation,

reverse osmosis, and membrane separation have been used to get rid of these pollutants. However, these techniques are

costly, consist of complicated procedures, do not entirely remove the pollutants, and lead to secondary contaminants that

also need to be redisposed of . Enzymatic treatments of these pollutants have received great attention due to

several advantages compared to physical and chemical treatments, such as mild operating conditions and high catalytic

efficiency without harsh side effects . Hence, the use of biocatalysts in wastewater treatment has gained momentum

due to their ability to target a wide range of pollutants . Enzymes immobilized onto supports are often used in the

treatment of wastewaters to ensure improved thermal and pH stability and repeatability, which is rarely achieved with free

enzymes . Various pollutants including drugs, dyes, pesticides, polycyclic aromatic hydrocarbons (PAHs), and even

heavy metals have been degraded using enzyme/metal-polymer biocatalysts, as demonstrated in Figure 1. Oxidase and

peroxidase enzymes from different sources have been immobilized on metal and metal oxide-polymer composites and

used in the degradation of pollutants, as observed in Figure 1. 

Figure 1. Different pollutants that have been degraded by enzyme-nanoparticle-polymer composites. A—Laccase, B—

Horse radish peroxidase, C—Lignin peroxidase, D—Chloroperoxidase, E—Glucose oxidase, F—Glucose

oxidase/laccase, G—S. cerevisiae enzyme, H—Glycerophosphodiesterase, I—Manganese peroxidase, * 0–6 h, # 6–24 h,

ɸ over 24 h.

2. Laccase-Based Nanocomposite Biocatalysts for Degradation of
Pollutants

Laccase is the most explored enzyme in wastewater treatment due to its ability to degrade a wide range of micro

pollutants including dyes, pharmaceuticals, and endocrine-disrupting chemicals . Unlike other oxidoreductases,

laccase does not require hydrogen peroxide or other cofactors for substrate cleavage  and its range of

compounds for oxidation can be increased with redox mediators . Laccase-based composite biocatalysts show great

potential in wastewater treatment as they have demonstrated high pollutant degradation rates with high reusability (Table
1). For example, Laccase/Fe O /PEI biocatalyst completely degraded sulfa drugs (Sulfadiazine, Sulfamethazine and

Sulfamethoxazole) within 30 min and could still degrade 82.8% after 10 cycles in the same time frame . Laccase/Ca-
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alginate beads degraded 99% bisphenol A  and dyes (aniline purple–86%, lanset grey G–85%, and reactive black 5–

80%)  in 2 h and 24 h, respectively.

Table 1. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for application in

wastewater treatment.
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Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

TiO /polyvinylidene fluoride
(PVDF)

Crosslinking of
TiO /PVDF
membrane

using APTES
and

glutaraldehyde
followed by

immersion in
laccase solution

Bisphenol A 95 5 h

91.7% (96 h
of

continuous
use)

TiO /bacterial cellulose (BC)

Physical
adsorption of
TiO  on BC
followed by
crosslinking

with
glutaraldehyde
and immersion

in laccase
solution

Reactive red X-
3B in presence of

ABTS
80 60 min

70% and
57% (6 and
10 cycles,

respectively)

Calcium alginate

Physical
entrapment of

enzyme in
nanocomposite

Fluoranthene in a
fluidized bed

reactor
81.06 8 h

66.845% (60
days of
storage)

Fe O /poly(ethylene
glycol)/concovalin A

Chemical co-
precipitation
followed by
crosslinking

with
glutaraldehyde
and immersion

in laccase
solution

Sulfadiazine

100 30 min
82.8% (10

consecutive
cycles)

Sulfamethazine

Sulfamethoxazole
(all in presence of

syringaldehyde
mediator)

MNPs/chitosan

Physical mixing
of NPs and
chitosan

followed by
crosslinking

with
glutaraldehyde
and immersion

in laccase
solution

Reactive black 5 90 30 min

47% (10
cycles)

Evans blue 60 30 min

Tryphan blue 80 40 min

Direct blue 15 70 60 min

MNPs/polydopamine

Functionalized
MNP-

polydopamine
NC with

dialdehyde
starch followed
by immersion in
laccase solution

2,4-
dichlorophenol

72 3 h

77% (8
cycles)

91 12 h

Fe O /Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Triclosan

89.6 8 h

86.9% (3
cycles in
acetate
buffer)

53.2 8 h
(wastewater)

Remazol Brilliant
Blue R (RBBR)

75.8 8 h

55 25 h
(wastewater)

35 25 h (waste
water)
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Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

Cu (II)-chitosan-graft-poly
(glycidyl methacrylate)/poly

(ethylene imine)

Physical
adsorption of

laccase on
nanocomposites

Phenol in
presence of

ABTS
80 4 h 50% (8

cycles)

MNPs/chitosan

Crosslinking
with

glutaraldehyde
followed by

immersion in
laccase solution

2,4-
Dichlorophenol 91.4

12 h

75.8% and
57.4% (2,4-
DCP and 4-
CP after 10

cycles)4-Chlorophenol 75.5

MNPs/SiO /poly (glycidyl
methacrylate)-S-SH

Physical
adsorption of

enzyme on the
nanocomposite

Meloxicam 92

48 h

82.3%,
88.9%, and

87.5%
(meloxicam,
piroxicam
and Cd ,

respectively,
after 5
cycles)

Piroxicam 95

Cd 94

MNPs/Poly(p-
Phenylenediamine)

Covalent
immobilization

using
glutaraldehyde
for crosslinking

Reactive blue 19 80 1 h 43% (8
cycles)

MNPs@MoS /polyethyleneimine

Physical
adsorption of

laccase on
nanocomposite

Malachite green 82.7

Overnight 62% (10
cycles)

Bisphenol A 87.6

Bisphenol F
(all in presence of

ABTS)
70.6

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Fuschin blue 65 (HOBT)

4 h

100% and
95% (120 h
continuous
use and 15

days
storage,

respectively)

Congo red 27 (ABTS)

Tryphan blue 51(syringaldehyde)

Malachite green 60 (ABTS)

Erichrome black
T 50 (HOBT)

Crystal violet
(all in different

mediators)
32 (HOBT)

Textile effluent in
a continuous flow

packed bed
bioreactor

66 (colour)
90 (BOD)
98 (COD)

MNPs/chitosan

Physical
entrapment of

enzyme in
presence of

ionic liquid and
ABTS

2,4-
dichlorophenol 100 4 h

93.2% (for
2,4-DCP after

6 cycles)

Bisphenol A 100 72 h

Indole 70.5 72 h

Anthracene 93.3 72 h

MNPs/polyethylenimine

Crosslinking of
NPs with PEI

using
glutaraldehyde

followed by
chelation of
laccase with

Cu(II)

Phenol in a fixed
bed reactor

72.93% at a
flowrate of 25

μL/min
- -
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3. Horse Radish Peroxidase (HRP)-Based Nanocomposite Biocatalysts for
Degradation of Pollutants

Another commonly explored peroxidase on nanoparticle-polymer composite materials is horse radish peroxidase (HRP),

due to its ability to oxidize a wide range of phenolic compounds in the presence of hydrogen peroxide . It oxidizes

phenolic compounds by adding hydrogen peroxide to form corresponding radicals which spontaneously interact to form

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

MNPs/Cu -PEG

In situ oxidation
of metal salt
using PEG
followed by

physical
adsorption of

laccase

Malachite green 100 (ABTS)

120 min

99.9, 90.1,
89.4, 94.6,
76.5, 80.1,
74.6, and

66.1%
(respectively,
for the dyes

after 10
cycles)

Brilliant green 96.5 (ABTS)

Crystal violet 95.2 (ABTS)

Azophloxine 97.7 (TEMPO)

Red MX-5B 86.6 (ABTS)

Methyl orange 92.7 (VLA)

Reactive blue 19 96 (TEMPO)

Alizarin red 83.7 (TEMPO)

TiO /Zn-alginate

Physical
entrapment of

enzyme in
nanocomposite

Alizarin red 61

5 h 100% (14
cycles)

Tryphan blue 96

Malachite green 100

Indigo carmine 100

Ca-alginate

Physical
entrapment with
crosslinking of
enzyme prior to

entrapment

Bisphenol A 99 2 h
70% (10

successive
cycles)

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Aniline purple 86.1 24 h -

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Reactive Red 180 67.2
11 days -

Reactive Blue 21 88.05

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Reactive T. Blue 92 72 h 22.3% (6
cycles)

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

RBBR 85 2 h 52.1% and
70%

(Bismarck
brown and

all the
others,

respectively)

Reactive Black 5 80 24 h

Bismarck Brown
R 55 24 h

Lancet Grey G 85 24 h

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Acid dye 38% 24 h -

MNPs/chitosan

Crosslinking
with

glutaraldehyde
followed by

adsorption in
laccase solution

Reactive yellow 2 85 10 h

-

Reactive blue 4 60 12 h

MNPs/poly(GMA-MMA)/Cu-
Poly(4-vinyl pyridine

Polymer grafting
with Cu

chelation
followed by

adsorption of
enzyme

Reactive green
19 60

18 h

63%, 76%,
and 59%

(green, red,
and brown

dyes,
respectively)

Reactive red 2 88

Reactive brown
10 90
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insoluble polymers that can be easily removed from the wastewater . HRP/nanoparticle-polymer composite biocatalysts

have been explored in the degradation of phenols, dyes, and endocrine-disrupting compounds, as illustrated in Table 2.

For example, HRP/MNPs/polyvinyl alcohol/poly acrylic acid could completely degrade estrone after 40 min , and

HRP/TiO /polydopamine completely removed 2,4-dicholorphenol in Zhaohe wastewater samples in only 30 min .

Interestingly, the HRP/TiO /polydopamine biocatalyst retained 100% and 90% degradation activity after 15 and 25 reuses,

respectively.

Table 2. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for application in

wastewater treatment.

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed

Degradation
(%)

Degradation
Time Reusability Ref.

TiO /polydopamine

In situ
polymerization
of dopamine on

TiO NPs
followed by

covalent
crosslinking of

enzyme with
glutaraldehyde

2,4-
dichlorophenol 100 30 min

100%, 90%,
and 63.6%

(15, 25, and
40 reuses,

respectively)

MNPs/poly(glycidylmethacrylate-
co-methylmethacrylate)

(poly(GMA-MMA))

Crosslinking of
enzyme and

nanocomposite
beads using

glutaraldehyde

phenol 86 2 h
84% (8

weeks), 92%,
and 79%

(phenol and
p-

chlorophenol,
respectively,
after 48 h of
continuous

use)

p-chlorophenol
(in the

presence of
H O )

59  

Fe O /poly (amido amine)
(PAMAM)/silk fibroin

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Bisphenol A in
presence of

H O
80 120 min -

Calcium alginate

Physical
entrapment of

enzyme in
nanocomposite

Acid blue 113 76 240 min
Can be

recycled up to
3 times

Aluminosilicate halloysite
nanotubes/chitosan

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Phenol in
presence of
hydrogen
peroxide

98.8 30 min 60% (4
cycles)

MNPs/polyacrylonitrile

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Phenol 85.2 - 52% (5
cycles)

MNPs/poly(vinyl
alcohol)/poly(acrylic acid)

Physical
adsorption of

enzyme on
nanocomposites

Estrone 100 40 min 56.2% (7
cycles)

MNPs/polymethyl methacrylate

Physical
entrapment of

enzyme in
nanocomposite

Phenol in
presence of
hydrogen
peroxide

55 50 min -

MNPs/poly(glycidylmethacrylate-
co-methylmethacrylate)

(poly(GMA-MMA))

Crosslinking of
enzyme with

nanocomposite
beads using

glutaraldehyde

Phenol 86 2 h
91% and 79%
(phenol and

chlorophenol,
respectively,
after 48 h of
continuous
operation)

p-
Chlorophenol

(in presence of
hydrogen

peroxide in a
fluidized bed

reactor)

59  

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

phenol model
solution

containing tannic
acid, gallic acid,

ferulic acid,
resorcinol, and

pyrogallol

75 6 h 35% (8
cycles)

FScubes/PDA@PVDF

Prepared the
FS/PDA@PVDF

membrane
using

solvothermal
process

followed by
covalent

immobilization
of laccase using
glutaraldehyde
as cross linker

Congo red 97.1 3 h

85% and
76% (7 days
and 5 cycles,
respectively)
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4. Other Oxidase and Peroxidase-Based Nanocomposite Biocatalysts for
Degradation of Pollutants

Other enzymes such as chloroperoxidase, manganese peroxidase, and lignin peroxidase immobilized on composite

materials, though not very popular, prove that they can offer wonderful materials for pollutant degradation (Table 3). For

example, when lignin peroxidase was immobilized on MNPs@SiO /polydopamine, it was able to degrade tetracycline and

other phenolics such as 5-chlorophenol, phenol, and dibutyl phthalate completely within 24 h . Manganese peroxidase

immobilized on MNPs/chitosan degraded 96% of methylene blue in synthetic wastewater in just 50 min , glucose

oxidase immobilized on NiFe2O4/tannin could degrade 98.6% of indigo carmine in presence of UV light within 90 min ,

and chloroperoxidase/TiO /polydopamine nanocomposites degraded over 95% of aniline blue and crystal violet in 2 min

.

Table 3. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for application in

wastewater treatment.
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