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Different water treatment technologies such as photochemical degradation, biodegradation, electrochemical

degradation, reverse osmosis, and membrane separation have been used to get rid of water pollutants. Enzymatic

treatments have received great attention due to several advantages compared to physical and chemical

treatments, such as mild operating conditions and high catalytic efficiency without harsh side effects. Oxidase and

peroxidase enzymes from different sources have been immobilized on metal and metal oxide-polymer composites

and used in the degradation of pollutants.

enzyme-nanoparticle-polymer composites  wastewater  pollutants

1. Introduction

In recent decades, the global community has increasingly recognized the formidable challenge posed by water

pollution arising from the unregulated release of municipal and industrial waste . Many industries including

petrochemical, paints and explosives, food, pharmaceutical, leather and textile, pulp and paper, and cosmetics

have contributed to this cause . These discharges cause serious problems to aquatic life due to their high

biochemical oxygen demand (BOD), chemical oxygen demand, and blockage of sunlight .

One of the industries producing the highest level of toxic chemicals from dyeing, printing, and finishing is the

leather and textile industry . The conversion of skin into leather in textile industries generates huge amounts of

wastewater containing a variety of organic and inorganic chemicals such as dyes, neutral salts, phenols, and

biogenic matter of skins . The complex aromatic structures of these chemicals, especially the dyes, make them

highly soluble in water and stable against light, aerobic decomposition, and oxidizing reagents . Therefore, their

accumulation leads to serious environmental concerns for aquatic life and human beings due to their adverse

effects of toxicity, carcinogenicity, and mutagenicity . Another industrial sector that has developed rapidly in the

last century is the pesticide industry, as it is an important component of modern global agricultural systems for

controlling pests and increasing crop yield . These pesticides are applied in much higher doses than those

required to kill the pests, and end up accumulating in water bodies via run off and percolation  . Unfortunately,

these agrochemical residues not only pollute the aquatic systems and damage biodiversity, they cause serious

health hazards to humans and may even directly or indirectly lead to death . Moreover, these compounds

have very long half-lives and can remain in the environment for several decades .
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The growth of the pharmaceutical industry (veterinary and human medicines) in the past years has also led to

rising amounts of drugs, antibiotics, and hormones. These medicines are not fully metabolized by living organisms

and when these end up in wastewater treatment plants, they are difficult to biodegrade, since most of them are fat

soluble . For example a study conducted by Joss et al.  indicated that biological degradation of

pharmaceuticals using activated sewage sludge from municipal wastewater could only degrade 4 out of 35

compounds by over 90% and 17 compounds by less than 50%. These compounds have increased in the

environment due to their increased consumption and direct discharge into the environment. The presence of

pharmaceuticals, cosmetics, and their metabolites in municipal waste and industrial effluents presents a significant

challenge, as these compounds cannot be effectively eliminated using conventional techniques, and consequently

are released to the receiving environment . While in the environment, they accumulate or transform into

metabolites under certain environmental conditions, and these secondary metabolites may even be more toxic than

the parent compounds . These make pathogenic organisms develop resistance against them over time,

which is a high risk to human health .

The continued release, spread, and accumulation of persistent organic pollutants in the water environment from

these industries, including polychlorinated biphenyls and polycyclic aromatic hydrocarbons from the petrochemical

industries, have become a major threat to human health due to their toxic, mutagenic, and carcinogenic properties

. The emission of these pollutants occurs at the manufacturing stage, after consumption and disposal of

unused products. These products are hard to be tracked or controlled in most situations and are resistant to natural

biodegradation . Most of these compounds are phenolic and, therefore, bio-recalcitrant, carcinogenic, and

easily accumulate in plants and animals. They should, therefore, be removed prior to wastewater discharge 

.

Different water treatment technologies such as photochemical degradation, biodegradation, electrochemical

degradation, reverse osmosis, and membrane separation have been used to get rid of these pollutants. However,

these techniques are costly, consist of complicated procedures, do not entirely remove the pollutants, and lead to

secondary contaminants that also need to be redisposed of . Enzymatic treatments of these pollutants have

received great attention due to several advantages compared to physical and chemical treatments, such as mild

operating conditions and high catalytic efficiency without harsh side effects . Hence, the use of biocatalysts in

wastewater treatment has gained momentum due to their ability to target a wide range of pollutants . Enzymes

immobilized onto supports are often used in the treatment of wastewaters to ensure improved thermal and pH

stability and repeatability, which is rarely achieved with free enzymes . Various pollutants including drugs, dyes,

pesticides, polycyclic aromatic hydrocarbons (PAHs), and even heavy metals have been degraded using

enzyme/metal-polymer biocatalysts, as demonstrated in Figure 1. Oxidase and peroxidase enzymes from different

sources have been immobilized on metal and metal oxide-polymer composites and used in the degradation of

pollutants, as observed in Figure 1. 
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Figure 1. Different pollutants that have been degraded by enzyme-nanoparticle-polymer composites. A—Laccase,

B—Horse radish peroxidase, C—Lignin peroxidase, D—Chloroperoxidase, E—Glucose oxidase, F—Glucose

oxidase/laccase, G—S. cerevisiae enzyme, H—Glycerophosphodiesterase, I—Manganese peroxidase, * 0–6 h, #

6–24 h, ɸ over 24 h.

2. Laccase-Based Nanocomposite Biocatalysts for
Degradation of Pollutants

Laccase is the most explored enzyme in wastewater treatment due to its ability to degrade a wide range of micro

pollutants including dyes, pharmaceuticals, and endocrine-disrupting chemicals . Unlike other

oxidoreductases, laccase does not require hydrogen peroxide or other cofactors for substrate cleavage 

and its range of compounds for oxidation can be increased with redox mediators . Laccase-based composite

[37][38][39]
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biocatalysts show great potential in wastewater treatment as they have demonstrated high pollutant degradation

rates with high reusability (Table 1). For example, Laccase/Fe O /PEI biocatalyst completely degraded sulfa drugs

(Sulfadiazine, Sulfamethazine and Sulfamethoxazole) within 30 min and could still degrade 82.8% after 10 cycles

in the same time frame . Laccase/Ca-alginate beads degraded 99% bisphenol A  and dyes (aniline purple–

86%, lanset grey G–85%, and reactive black 5–80%)  in 2 h and 24 h, respectively.

Table 1. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for

application in wastewater treatment.

2 3

[24] [19]

[45]

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

TiO /polyvinylidene fluoride
(PVDF)

Crosslinking of
TiO /PVDF
membrane

using APTES
and

glutaraldehyde
followed by

immersion in
laccase solution

Bisphenol A 95 5 h

91.7% (96 h
of

continuous
use)

TiO /bacterial cellulose (BC)

Physical
adsorption of
TiO  on BC
followed by

crosslinking with
glutaraldehyde
and immersion

in laccase
solution

Reactive red X-
3B in presence of

ABTS
80 60 min

70% and
57% (6 and
10 cycles,

respectively)

Calcium alginate

Physical
entrapment of

enzyme in
nanocomposite

Fluoranthene in a
fluidized bed

reactor
81.06 8 h

66.845% (60
days of
storage)

Fe O /poly(ethylene
glycol)/concovalin A

Chemical co-
precipitation
followed by

crosslinking with
glutaraldehyde
and immersion

in laccase
solution

Sulfadiazine

100 30 min
82.8% (10

consecutive
cycles)

Sulfamethazine

Sulfamethoxazole
(all in presence of

syringaldehyde
mediator)

MNPs/chitosan Physical mixing
of NPs and

chitosan
followed by

Reactive black 5 90 30 min 47% (10
cycles)

Evans blue 60 30 min

2

2

[46]
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Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

crosslinking with
glutaraldehyde
and immersion

in laccase
solution

Tryphan blue 80 40 min

Direct blue 15 70 60 min

MNPs/polydopamine

Functionalized
MNP-

polydopamine
NC with

dialdehyde
starch followed
by immersion in
laccase solution

2,4-
dichlorophenol

72 3 h

77% (8
cycles)

91 12 h

Fe O /Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Triclosan

89.6 8 h

86.9% (3
cycles in
acetate
buffer)

53.2
8 h

(wastewater)

Remazol Brilliant
Blue R (RBBR)

75.8 8 h

55
25 h

(wastewater)

35
25 h (waste

water)

Cu (II)-chitosan-graft-poly
(glycidyl methacrylate)/poly

(ethylene imine)

Physical
adsorption of
laccase on

nanocomposites

Phenol in
presence of

ABTS
80 4 h

50% (8
cycles)

MNPs/chitosan

Crosslinking
with

glutaraldehyde
followed by

immersion in
laccase solution

2,4-
Dichlorophenol

91.4

12 h

75.8% and
57.4% (2,4-
DCP and 4-
CP after 10

cycles)4-Chlorophenol 75.5

MNPs/SiO /poly (glycidyl
methacrylate)-S-SH

Physical
adsorption of

enzyme on the
nanocomposite

Meloxicam 92

48 h

82.3%,
88.9%, and

87.5%
(meloxicam,

piroxicam
and Cd ,

respectively,
after 5
cycles)

Piroxicam 95

Cd 94

[48]
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Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

MNPs/Poly(p-
Phenylenediamine)

Covalent
immobilization

using
glutaraldehyde
for crosslinking

Reactive blue 19 80 1 h
43% (8
cycles)

MNPs@MoS /polyethyleneimine

Physical
adsorption of
laccase on

nanocomposite

Malachite green 82.7

Overnight
62% (10
cycles)

Bisphenol A 87.6

Bisphenol F
(all in presence of

ABTS)
70.6

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Fuschin blue 65 (HOBT)

4 h

100% and
95% (120 h
continuous
use and 15

days
storage,

respectively)

Congo red 27 (ABTS)

Tryphan blue 51(syringaldehyde)

Malachite green 60 (ABTS)

Erichrome black
T

50 (HOBT)

Crystal violet
(all in different

mediators)
32 (HOBT)

Textile effluent in
a continuous flow

packed bed
bioreactor

66 (colour)
90 (BOD)
98 (COD)

MNPs/chitosan

Physical
entrapment of

enzyme in
presence of

ionic liquid and
ABTS

2,4-
dichlorophenol

100 4 h

93.2% (for
2,4-DCP
after 6
cycles)

Bisphenol A 100 72 h

Indole 70.5 72 h

Anthracene 93.3 72 h

MNPs/polyethylenimine Crosslinking of
NPs with PEI

using
glutaraldehyde

followed by
chelation of

Phenol in a fixed
bed reactor

72.93% at a
flowrate of 25

μL/min

- -

[6]

2
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3. Horse Radish Peroxidase (HRP)-Based Nanocomposite
Biocatalysts for Degradation of Pollutants

Another commonly explored peroxidase on nanoparticle-polymer composite materials is horse radish peroxidase

(HRP), due to its ability to oxidize a wide range of phenolic compounds in the presence of hydrogen peroxide . It

oxidizes phenolic compounds by adding hydrogen peroxide to form corresponding radicals which spontaneously

interact to form insoluble polymers that can be easily removed from the wastewater . HRP/nanoparticle-polymer

composite biocatalysts have been explored in the degradation of phenols, dyes, and endocrine-disrupting

compounds, as illustrated in Table 2. For example, HRP/MNPs/polyvinyl alcohol/poly acrylic acid could completely

degrade estrone after 40 min , and HRP/TiO /polydopamine completely removed 2,4-dicholorphenol in Zhaohe

wastewater samples in only 30 min . Interestingly, the HRP/TiO /polydopamine biocatalyst retained 100% and

90% degradation activity after 15 and 25 reuses, respectively.

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

laccase with
Cu(II)

MNPs/Cu -PEG

In situ oxidation
of metal salt
using PEG
followed by

physical
adsorption of

laccase

Malachite green 100 (ABTS)

120 min

99.9, 90.1,
89.4, 94.6,
76.5, 80.1,
74.6, and

66.1%
(respectively,
for the dyes

after 10
cycles)

Brilliant green 96.5 (ABTS)

Crystal violet 95.2 (ABTS)

Azophloxine 97.7 (TEMPO)

Red MX-5B 86.6 (ABTS)

Methyl orange 92.7 (VLA)

Reactive blue 19 96 (TEMPO)

Alizarin red 83.7 (TEMPO)

TiO /Zn-alginate

Physical
entrapment of

enzyme in
nanocomposite

Alizarin red 61

5 h
100% (14

cycles)

Tryphan blue 96

Malachite green 100

Indigo carmine 100

Ca-alginate

Physical
entrapment with
crosslinking of

enzyme prior to
entrapment

Bisphenol A 99 2 h
70% (10

successive
cycles)

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Aniline purple 86.1 24 h -

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Reactive Red 180 67.2

11 days -

Reactive Blue 21 88.05

Ca-alginate

Physical
entrapment of

enzyme in
nanocomposite

Reactive T. Blue 92 72 h
22.3% (6
cycles)

Ca-alginate Physical
entrapment of

RBBR 85 2 h 52.1% and
70%

2+ [10]

2
[50]

[19]

[51]

[52]

[53]

[45]

[59]

[60]

[18]
2

[61]
2
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Table 2. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for

application in wastewater treatment.

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed Degradation (%) Degradation

Time Reusability Ref.

enzyme in
nanocomposite

(Bismarck
brown and

all the
others,

respectively)

Reactive Black 5 80 24 h

Bismarck Brown
R

55 24 h

Lancet Grey G 85 24 h

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

Acid dye 38% 24 h -

MNPs/chitosan

Crosslinking
with

glutaraldehyde
followed by

adsorption in
laccase solution

Reactive yellow 2 85 10 h

-

Reactive blue 4 60 12 h

MNPs/poly(GMA-MMA)/Cu-
Poly(4-vinyl pyridine

Polymer grafting
with Cu

chelation
followed by

adsorption of
enzyme

Reactive green
19

60

18 h

63%, 76%,
and 59%

(green, red,
and brown

dyes,
respectively)

Reactive red 2 88

Reactive brown
10

90

Cu-alginate

Physical
entrapment of

enzyme in
nanocomposite

phenol model
solution

containing tannic
acid, gallic acid,

ferulic acid,
resorcinol, and

pyrogallol

75 6 h
35% (8
cycles)

FScubes/PDA@PVDF

Prepared the
FS/PDA@PVDF

membrane
using

solvothermal
process

followed by
covalent

immobilization
of laccase using
glutaraldehyde
as cross linker

Congo red 97.1 3 h

85% and
76% (7 days

and 5
cycles,

respectively)

[54]

[55]

[56]

[57]

[58]

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed

Degradation
(%)

Degradation
Time Reusability Ref.

TiO /polydopamine

In situ
polymerization
of dopamine on

TiO NPs
followed by

covalent
crosslinking of
enzyme with

glutaraldehyde

2,4-
dichlorophenol

100 30 min

100%, 90%,
and 63.6%

(15, 25, and
40 reuses,

respectively)

MNPs/poly(glycidylmethacrylate-
co-methylmethacrylate)

(poly(GMA-MMA))

Crosslinking of
enzyme and

nanocomposite
beads using

glutaraldehyde

phenol 86 2 h 84% (8
weeks), 92%,

and 79%
(phenol and

p-
chlorophenol,
respectively,
after 48 h of
continuous

use)

p-
chlorophenol

(in the
presence of

H O )

59  

Fe O /poly (amido amine)
(PAMAM)/silk fibroin

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Bisphenol A in
presence of

H O
80 120 min -

Calcium alginate

Physical
entrapment of

enzyme in
nanocomposite

Acid blue 113 76 240 min
Can be

recycled up
to 3 times

Aluminosilicate halloysite
nanotubes/chitosan

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Phenol in
presence of
hydrogen
peroxide

98.8 30 min
60% (4
cycles)

MNPs/polyacrylonitrile

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Phenol 85.2 -
52% (5
cycles)

MNPs/poly(vinyl
alcohol)/poly(acrylic acid)

Physical
adsorption of

Estrone 100 40 min 56.2% (7
cycles)

2

2
[61]

[3]

2 2

2 3

2 2

[62]

[7]

[63]

[29]

[18]
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4. Other Oxidase and Peroxidase-Based Nanocomposite
Biocatalysts for Degradation of Pollutants

Other enzymes such as chloroperoxidase, manganese peroxidase, and lignin peroxidase immobilized on

composite materials, though not very popular, prove that they can offer wonderful materials for pollutant

degradation (Table 3). For example, when lignin peroxidase was immobilized on MNPs@SiO /polydopamine, it

was able to degrade tetracycline and other phenolics such as 5-chlorophenol, phenol, and dibutyl phthalate

completely within 24 h . Manganese peroxidase immobilized on MNPs/chitosan degraded 96% of methylene

blue in synthetic wastewater in just 50 min , glucose oxidase immobilized on NiFe2O4/tannin could degrade

98.6% of indigo carmine in presence of UV light within 90 min , and chloroperoxidase/TiO /polydopamine

nanocomposites degraded over 95% of aniline blue and crystal violet in 2 min .

Table 3. Application of enzyme-nanoparticle-polymer composites in degradation of organic pollutants for

application in wastewater treatment.

Nanocomposite (NC) Immobilization
Method

Pollutants
Removed

Degradation
(%)

Degradation
Time Reusability Ref.

enzyme on
nanocomposites

MNPs/polymethyl methacrylate

Physical
entrapment of

enzyme in
nanocomposite

Phenol in
presence of
hydrogen
peroxide

55 50 min -

MNPs/poly(glycidylmethacrylate-
co-methylmethacrylate)

(poly(GMA-MMA))

Crosslinking of
enzyme with

nanocomposite
beads using

glutaraldehyde

Phenol 86 2 h
91% and

79% (phenol
and

chlorophenol,
respectively,
after 48 h of
continuous
operation)

p-
Chlorophenol
(in presence
of hydrogen
peroxide in a
fluidized bed

reactor)

59  

[64]

[3]

2

[32]

[2]

[31]
2

[61]

Nanocomposite (NC) Enzyme Immobilization
Method

Pollutants
Removed

Degradation
(%)

Degradation
Time Reusability Ref.

iO /polydopamine Chloroperoxidase (CPO)

Covalent
crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Aniline blue 97.58 2 min
90.3%,

78.2%, and
53.71% (10,
15, and 20

reuses,
respectively)

Crystal violet 98.98 2 min

NiFe O /tannin Glucose oxidase

Physical
adsorption of
enzyme on

nanocomposite

Indigo carmine in
presence of UV

light
98.6 90 min

85.57% (5
cycles)

MnFe O /calcium alginate
Glucose oxidase and

Laccase

Physical
adsorption of

enzymes on the
nanocomposite

Methylene blue 82.13

1 h -Indigo 25.09

Acid red 14 20.42

MNPs/PAMAM Glycerophosphodiesterase
(GpdQ)

Crosslinking of
enzyme with

nanocomposites
using

glutaraldehyde

Organophosphate
pesticide

44.5 120 days Used as a
filter in a
Pasteur
pipette

between two

2
[61]

2 4
[31]

2 4
[9]

[14]
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