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Elizabethkingia spp. is a ubiquitous pathogenic bacterium that has been identified as the causal agent for a variety of

conditions such as meningitis, pneumonia, necrotizing fasciitis, endophthalmitis, and sepsis and is emerging as a global

threat including in Southeast Asia. Elizabethkingia infections tend to be associated with high mortality rates (18.2–41%)

and are mostly observed in neonates and immunocompromised patients. Difficulties in precisely identifying

Elizabethkingia at the species level by traditional methods have hampered the understanding of this genus in human

infections. In Southeast Asian countries, hospital outbreaks have usually been ascribed to E. meningoseptica, whereas in

Singapore, E. anophelis was reported as the main Elizabethkingia spp. associated with hospital settings. Misidentification

of Elizabethkingia spp. could, however, underestimate the number of cases attributed to the bacterium, as precise

identification requires tools such as MALDI-TOF MS, and particularly whole-genome sequencing, which are not available

in most hospital laboratories. Elizabethkingia spp. has an unusual antibiotic resistance pattern for a Gram-negative

bacterium with a limited number of horizontal gene transfers, which suggests an intrinsic origin for its multidrug resistance.
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1. Introduction

The Gram-negative bacteria of the genus Elizabethkingia have recently emerged as an important pathogen in hospital-

acquired infections and are generally associated with high mortality . Recent literature has reported several cases of

severe infection in humans owing to this organism, with neonatal meningitis most commonly presented in children ,

accompanied by a range of other clinical manifestations such as septicemia and bacteremia , osteomyelitis , urinary

tract infections , endogenous endophthalmitis , endocarditis , epididymo-orchitis , pulmonary abscess ,

necrotizing fasciitis , cystic fibrosis , hydrocephalus , and secondary infections with a high mortality rate,

particularly in immunocompromised patients . Elizabethkingia meningoseptica infections have also been associated

with COVID-19 patients . Elizabethkingia spp. infects not only immunocompromised patients but also

immunocompetent ones .

Historically, the first report of human infection due to Elizabethkingia was that of 19 cases of meningitis in infants in the

United States of America . Even in its earliest description, the isolates were demonstrated to be multidrug-resistant. Not

long after King’s (1959) report, an outbreak of meningitis infection with E. meningoseptica was reported among neonates

in the Congo  with varying sensitivities to chloramphenicol, carbomycin, magnamycin, and erythromycin.

Worldwide infections caused by E. meningoseptica were reportedly high amongst immunocompetent neonates as well as

hospitalized patients with existing underlying infections, and in a comprehensive review, Dzuiban et al.  showed that

from 283 cases reported from 28 countries from 1944 to 2017, 76% of them were neonates aged 0–1 month. From the

283 cases that were reviewed, 209 of the patients were diagnosed with meningitis . Infections by this pathogen have

been reported in many parts of the world, including in Southeast Asian countries such as Malaysia , Singapore ,

Thailand , Indonesia , and Cambodia . However, until now, there have been no published reports from other

Southeast Asian countries such as the Philippines, Brunei, Myanmar, Laos, and Timor-Leste.

2. Identification

When first discovered in 1959, the suggested name for the bacterium was Flavobacterium meningosepticum, which was

later recommended to be changed to Chryseobacterium meningosepticum (in 1994) . In 2005, it was assigned to the

genus Elizabethkingia (named after the first scientist to report its’ discovery, Elizabeth King) under the Flavobacteriaceae

family based on 16S rRNA phylogenetic studies . Recently, whole-genome sequence analysis along with optical
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mapping and MALDI-TOF mass spectrometry led to the revision of the genus Elizabethkingia into eight species, namely

E. meningoseptica, E. miricola, E. anophelis, E. bruuniana, E. ursingii, E. occulta , E. argenteiflava sp. nov. , and the

latest E. umeracha .

Since correct identification of Elizabethkingia is difficult using traditional microbiological methods and misidentification of

E. anophelis with E. meningoseptica has been found to be common (Lau et al., 2016), it is therefore highly likely for this

pathogen to be underreported. Correct identification of the organism is crucial for the diagnosis and management

strategies, as E. anophelis is a nososcomial pathogen . Hence, differentiation between E. anophelis and E.
meningoseptica requires accurate microbial identification, but the phenotypic similarities between E. anophelis and E.
meningoseptica present a challenge to accurate identification, particularly for clinically derived isolates; 16S rRNA gene

analysis had identified a 98.6% similarity between E. meningoseptica and E. anophelis, which has often led to the

misidentification of these bacteria .

The four automated bacterial identification systems that are commonly used in diagnostic laboratories are: (1) API/ID32

Phenotyping Kits (bioMérieux, Marcy l’Etoile, France); (2) Phoenix 100 ID/AST Automated Microbiology System (Becton

Dickinson Co., Sparks, MD, USA); (3) VITEK 2 Automated Identification System ; and (4) MALDI-TOF MS System

(bioMérieux, Marcy l’Etoile, France) . At the time of writing this research, the four microbial identification systems that

are listed above do not, however, contain all eight species of Elizabethkingia in their reference spectra database. Studies

have also shown that misidentification of Elizabethkingia was rife using these automated identification systems, with E.
anophelis commonly misidentified as E. meningoseptica . When the accuracy of the API/ID32, Phoenix 100

ID/AST, Vitek 2, and Vitek MS Elizabethkingia, clinical isolate identifications were compared with 16S rRNA gene

sequencing; it was reported that species identification concordance between these identification systems and 16S rRNA

gene sequencing was low at only 24.5–26.5% . Nevertheless, MALDI-TOF MS systems with amended databases

(labeled as “research-use only” system) either in the Vitek MS Knowledge Base v3.2 and Bruker MALDI Biotyper Library

(Bruker Daltonics GmbH, Bremen, Germany) are now able to reliably differentiate E. meningoseptica from E. anophelis,

but not the remaining species of the genus Elizabethkingia . In a recent report of 22 clinical and 6 environmental

hospital isolates from Queensland, Australia, Burnard et al. (2020) showed that the VITEK MS Knowledge Base v3.2 had

a 96.2% accuracy in identifying Elizabethkingia, with a solitary isolate of E. bruuniana being the only species that was

misidentified. Whole-genome sequencing confirmed that the majority of the isolates were E. anophelis (n = 22), with the

rest being E. miricola (n = 3), E. meningoseptica (n = 2), and E. bruuniana (n = 1) .

In the near future, the inclusion of novel Elizabethkingia species spectra into the databases should ensure highly accurate

identification using MALDI-TOF MS systems, making it a reliable identification tool in lieu of whole-genome sequencing.

3. Antibiotic Resistance

Elizabethkingia are intrinsically resistant to most β-lactams, β-lactam/lactamase inhibitors, and carbapenems due to the

presence of two unique class B metallo-β-lactamases (MBLs), namely bla  and bla , along with a class A extended-

spectrum β-lactamase (ESBL), bla  . Elizabethkingia are the only known bacteria thus far with multiple

chromosomally encoded MBLs . Reports of subclasses of MBL genes such as bla  , bla , and bla  in both

E. meningoseptica and E. anophelis , as well as bla  and bla  in E. miricola isolated from a black-spotted

frog in China , make Elizabethkingia spp. a possible environmental reservoir for β-lactam resistance.

Elizabethkingia isolates are frequently resistant to aminoglycosides, macrolides, tetracycline, and vancomycin but show

variable susceptibility to piperacillin, piperacillin-tazobactam, fluoroquinolones, minocycline, tigecycline, and trimethoprim-

sulfamethoxazole ; cephalosporins, monobactams, and moderate susceptibilities to piperacillin ,

ceftazidime, colistin, and meropenem ; and levofloxacin . There are currently no established MIC breakpoints for

Elizabethkingia, and susceptibilities are largely reported based on Enterobacteriaceae breakpoints of the Clinical and

Laboratory Standards Institute (CLSI) M100 guidelines and/or the European Committee on Antimicrobial Susceptibility

Testing (EUCAST) pharmacokinetic–pharmacodynamic (PK–PD) “non-species” breakpoints . It has been pointed out

that susceptibilities, especially for vancomycin and piperacillin-tazobactam as determined by disk diffusion and E-test, are

deemed unreliable and inaccurate for Elizabethkingia, and broth microdilution is instead recommended for susceptibility

determination . Although successful therapy has been attributed to rifampicin, there has been a report of bacterial

resistance after three days of starting treatment . A similar case was reported for an E. meningoseptica isolate in the

Kuala Lumpur General Hospital, which developed resistance during treatment to cefepime, a cephalosporin antibiotic that

is normally highly active against both Gram-positive and Gram-negative organisms .
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Using disk diffusion, Lau, Chow  reported 21 Elizabethkingia isolates from Hong Kong as susceptible to vancomycin.

However, studies using broth microdilution tests on isolates from Taiwan  and Australia  indicated that the isolates

are likely non-susceptible based on the high MICs obtained (that ranged between 8 and 256 µg/mL). Similar ranges of

vancomycin MICs were obtained by Han et al. , who investigated Elizabethkingia isolates from South Korea using the

agar dilution method and concluded that all isolates were non-susceptible based on the interpretive criteria used for

Staphylococcus spp. The vancomycin resistance gene, vanW, was reported in the majority of Elizabethkingia genomes,

although the exact function of vanW is currently unknown . However, mutations in vanW have been identified in

microorganisms with VanB-type glycopeptide resistance . In view of these facts and despite some anecdotal reports

of success in using intravenous vancomycin alone to treat Elizabethkingia infections , it was recommended that

even if intravenous vancomycin is the favored therapy for Elizabethkingia meningitis, ciprofloxacin, linezolid, or rifampicin

should also be included until future clinical studies could be carried out to conclusively determine the clinical efficacy of

these vancomycin-combination regiments for treatment .

One of the earliest reports of the whole-genome sequences of Elizabethkingia spp. strains from Southeast Asia was from

Singapore, whereby sputum isolates obtained from three patients (NUHP1, NUHP2, and NUHP3) and four from the

hospital’s sink (NUH1, NUH4, NUH6, and NUH11) at the National University Hospital, Singapore, were compared against

five previously sequenced E. anophelis strains Ag1 (PRJNA80705) and R26 (PRJNA178189), E. meningoseptica ATCC

12535 (NITE) (PRJNA199489), E. meningoseptica ATCC 12535 (OSU) (PRJNA198814), and E. meningoseptica 502

(PRJNA176121). This led to the discovery of 16 antibiotic resistance genes from the core genomes and 19 antibiotic

resistance genes from the accessory genomes of Elizabethkingia spp., and this included genes that confer resistance to

aminoglycosides, β-lactams, fluoroquinolones, glycopeptides, macrolide-lincosamide-streptogramins, tetracyclines,

trimethoprim, and rifampicin . A later study on two African isolates, E27017 and E18064, that compared their genomes

with the genomes of 18 strains belonging to the genus Elizabethkingia from many different regions, including Malaysian

and Singaporean genomic sequences that were available at that time, identified that all Elizabethkingia genomes

contained at least 17 antimicrobial resistance genes .

A whole-genome sequencing study on three isolates of E. meningoseptica collected from an outbreak from three separate

patients living in different counties in the Midwest regions of Michigan led to the identification of 22 resistance genes and

18 multidrug resistance efflux pump-encoded genes in all samples . While Elizabethkingia spp. genomes shared many

antibiotic-resistance genes with each other, minor differences have been reported . Hence, genomic investigations of

Elizabethkingia spp. offers invaluable novel information on the species, but unfortunately, there have not been any reports

of the whole-genome sequence of Elizabethkingia spp. isolates from Southeast Asia besides those from Singapore.

4. Virulence Factors

The mechanisms of pathogenesis of Elizabethkingia spp. are still being studied . When the virulence factor database

(VFDB, http://www.mgc.ac.cn/VFs/, accessed on 12 December 2021) was used to predict their presence from the genome

sequences of various Elizabethkingia spp., this led to the prediction of a total of 270 putative virulence factor genes. More

than fourteen virulence factor classes for Elizabethkingia spp. were identified with the following defined virulence-

associated functions: adherence, antimicrobial activity, biofilm, cellular metabolism, effector delivery system, exoenzyme,

exotoxin, immune modulation, invasion, motility, nutritional/metabolic factor, post-translational modification, regulation,

stress survival, and others. Different species of Elizabethkingia shared the same virulence factors (Figure 1).
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Figure 1. Venn diagram of shared virulence factor genes of Elizabethkingia spp. E.m.—E. meningoseptica; E.a.—E.
anophelis; E.mir.—E. miricola; E.o.—E. occulta; E.u.—E. ursingii; E.b.—E. bruuniana. Edwards mode was used to

process virulence factor gene outputs for Venn diagram visualization with InteractiVenn .

Among the 270 predicted genes for virulence factors, 162 have been reported as unique in E. anophelis. E.
meningoseptica carried six unique genes involved in adherence that encode curli nucleator protein (csgB), curli assembly

proteins (curEm1, curEm2, curEm3, curEm4), a curli production assembly protein (csgG), and two genes involved in

immune modulation encoding a capsular polysaccharide synthesis enzyme (cap8O), a gene encoding Rab2-interacting

conserved protein A (ricA) and a putative carbonic anhydrase-encoded gene (mig-5). Four of the E. miricola unique

virulence genes were predicted to be involved with urease accessory protein (ureE), urease alpha subunit (ureA),

twitching motility protein (pilG), and sphingomyelinase-c (smcL).

Identification of 6880 gene families in E. anophelis highlighted the genomic heterogeneity of Elizabethkingia species .

Genes homologous to heme iron acquisition, oxidative stress resistance proteins, and hemolysins were reported in earlier

studies . Extensive variations of capsular polysaccharide synthesis genes in E. anopheles were first reported by

Breurec, Criscuolo , with variable cps clusters observed amongst the different lineages suggesting virulence

heterogeneity among Elizabethkingia strains . Identification of the capsule biosynthesis gene, capD , and the adeG
gene for the AdeFGH efflux pump  in all Elizabethkingia species leads to possible biofilm formation , which

empowers the bacteria with the ability to persist on various surfaces . Thirty clinical isolates from Malaysia, which

comprised E. anophelis, E. meningoseptica, and E. miricola, were recently shown to produce biofilms on polystyrene

microtiter plates .

Nine virulence factor genes were shared between six of the Elizabethkingia spp., including the E. argenteiflava-encoded

adeFGH efflux pump, isocitrate lyase (icl), catalase/(hydro)peroxidase (katA), 60K heat shock protein (htpB),

phospholipase C (plc), phosphopyruvate hydratase (eno), translation elongation factor (tuf), catalase/peroxidase HPI

(katG), and aspartate 1-decarboxylase precursor (panD), which is involved with adherence, biofilm formation, cellular

metabolism, exotoxin production, and stress survival. Isocitrate lyase (icl) plays an important role in the glyoxylate cycle

, and its presence in Elizabethkingia spp. can predict its essential role in stationary-phase survival. An early report had

shown that the presence of icl in Mycobacterium tuberculosis promoted the tenacity of infection by helping the pathogen

to survive inside macrophages .

However, the specific role of bacterial enzymes in pathogenesis varies with infection. The presence of phospholipases C

(plc) in all Elizabethkingia spp.  suggest its crucial role in downregulating host immunity . In L. monocytogenes, plc
aided bacterial escape toward the cytosol and cell-to-cell propagation, whereas, in C. perfringens, it helped bacteria

induce endothelial damage and platelet aggregation, and in P. aeruginosa, it led to the triggering of signaling pathways

that lead to inflammation .

[59]

[39]

[32][60][61]

[39]

[39] [57]

[20] [42][62]

[57][63]

[64]

[65]

[66]

[44] [67]

[68]



The catalase-peroxidase genes, katA and katG (encoding hydroperoxidase I), are crucial against oxidative stress . An

earlier report showed that strains with katA were resistant to dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin,

and the neutrophil protease cathepsin G, and they could survive for a long period once released from lysed cells .

Presence of katA  and katG  could also support Elizabethkingia species’ resistance to

aminoglycosides.

5. Sources of Isolation and Transmission

The genera Elizabethkingia are aerobic, non-fermenting, non-motile, catalase-positive, oxidase-positive, indole-positive,

and Gram-negative bacilli widely distributed in soil, mosquitoes, plants, fresh and marine fish , food products ,

hospital settings , stagnant water, inland wetlands, and rivers . Due to their biofilm-forming ability , they have

been isolated from sinks and taps where they colonize the most, leading to nosocomial and community infections 

(Table 1).

Table 1. Various sources of isolation of Elizabethkingia spp. in Southeast Asia.

Source of Isolation
Country of

Origin
Citation

Blood

Malaysia,

Singapore,

Thailand,

Indonesia,

Cambodia

Peritoneal fluid Malaysia

Cerebrospinal fluid (CSF)
Malaysia,

Singapore

Contact lens Malaysia

Hospital environment

(aerators, sink drains

and traps at ICUs, pediatric wards, surgical wards, orthopedic wards)

Singapore

Catheter tips Singapore

Respiratory specimens
Singapore

Malaysia

Rectal swabs Singapore

Urine Malaysia

Wound swabs Malaysia

Nasal swabs Malaysia
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Source of Isolation
Country of

Origin
Citation

Vitreous culture Singapore

Frogs (Rana catesbeiana (American bullfrogs) and Theloderma bicolor Chapa

bug-eyed frogs, Warty toads (Bombina microdeladigitora), and Northern

leopard frogs (Lithobates pipiens)

Malaysia

Vietnam

Mosquitoes (Anopheles minimus, Anopheles dirus, Anopheles maculatus,
Anopheles sawadwongporni, and Anopheles dravidicus)

Thailand

Fish (Clarias gariepinus (African sharptooth catfish) and Pangasius
hypophthalmus (Tra catfish)

Malaysia,

Vietnam

Retail sausages Malaysia

Gnetum gnemon (Tree) Malaysia

Vector-borne transmission of the bacterial pathogen via mosquito bites has been suggested ever since the discovery of E.
anophelis in the midgut of the Anopheles gambiae mosquito  and, more recently, in the salivary glands and saliva

of Aedes albopictus . The microbiome of Anopheles mosquitoes has evidently revealed the strong symbiotic nature of

E. meningoseptica , which has been isolated from various independent sources, including Anopheles stephensi, the

vector for the malarial parasite Plasmodium vivax , semi-field Anopheles gambiae females , field

sampled mosquitoes in Cameroon , and laboratory-reared mosquitoes where Anopheles were the predominant

species . Another comparative study on bacterial microbiota isolated from the midgut of various Anopheles spp.,

which were obtained in the same region of Mae Sot District and Sop Moei District in Thailand, reported on the findings of

Elizabethkingia spp. from Anopheles minimus, Anopheles dirus, Anopheles maculatus, Anopheles sawadwongporni, and

Anopheles dravidicus mosquitoes . However, sequences associated with the genus Elizabethkingia could not be

definitively assigned to either E. anophelis or E. meningoseptica as the V3–V4 region of the 16S rRNA gene used for

microbiome profiling could not differentiate between the two species . Despite these multiple discoveries of

Elizabethkingia spp. in the midgut and salivary glands of various mosquito species, there is currently a lack of strong

direct evidence that supports Elizabethkingia infection, particularly E. anophelis, as a mosquito-borne disease ,

although this should not be ruled out with the current level of knowledge. A comparative genomics study of three cases of

E. anophelis also provided evidence of vertical transmission from mother to her baby .

Zainuri et al. (2013) reported on the isolation of E. meningoseptica from American bullfrogs (Lithobates catesbeianus or

Rana catesbeiana) suffering from red leg syndrome and cataract in Sabah, Malaysia . Isolation of E. meningoseptica
from bullfrogs was also described in an earlier study, in which the isolates obtained were found to be resistant to multiple

antibiotics . E. miricola, which had been implicated in acute infections in humans, caused a disease outbreak

associated involving the internal organs of different anuran species, including northern leopard frogs (Lithobates pipiens),

Chapa bug-eyed frogs (Theloderma bicolor), and Vietnamese warty toads (Bombina microdeladigitora) captured in

Vietnam. The presence of β-lactamases and putative virulence genes in the E. miricola isolates were detected in silico .

E. miricola was also reportedly isolated from Tra catfish (Pangasius hypophthalmus) fillets in the industrial processing

lines in Vietnam . Tra catfish is a type of freshwater fish, which is one of the major fish species in the Mekong River,

and its processed fillets are exported to more than 80 different countries worldwide . Other scientists have also

reported the isolation of E. meningoseptica from retail sausages in Kampar, Malaysia, although the identification was

performed by traditional biochemical methods and identified as Chryseobacterium meningosepticum .

Furthermore, 454 pyrosequencing of the 16S rRNA gene from the bacterial community of the root of the gnetalean

gymnosperm Gnetum gnemon and nearby bulk soils of a tropical forest arboretum at the Forest Research Institute of

Malaysia (FRIM) at Kepong, near Kuala Lumpur, identified the mutualistic presence of E. meningoseptica and E. miricola
. Elizabethkingia spp. was surprisingly found in relative abundance (4.9%) on the leaves of Gnetum gnemon in

[8]

[92][93][94]

[95][96]

[73][97][98]

[74]

[99][100]

[101][102]

[103]

[104]

[76][105][106] [104][106][107][108]

[109][110]

[109][111]

[95]

[95]

[43]

[61]

[93]

[94]

[92]

[98]

[97]

[74]

[99]



comparison with rhizoplane (1.4%) . These reports indicate the ubiquity of Elizabethkingia spp. in the environment

and, thus, the difficulty in tracing an outbreak should one occur in the community and outside of hospital settings.
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