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Non-Orthogonal Multiple Access (NOMA) has become a promising evolution with the emergence of fifth-generation

(5G) and Beyond-5G (B5G) rollouts. The potentials of NOMA are to increase the number of users, the system’s

capacity, massive connectivity, and enhance the spectrum and energy efficiency in future communication

scenarios.
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1. Introduction

Cellular networks are becoming denser and more sophisticated because of the expansion in demand for wireless

services with extremely fast speeds and low latency. One of the main problems cellular network operators have is

developing and managing networks with an extensive number of components and characteristics. Consequently,

self-organizing networks (SONs) have emerged as crucial components in managing wireless cellular networks .

By limiting human involvement in a network through various capabilities, such as self-healing, self-optimization,

and self-configuration, SON technology seeks to lower capital and operating costs . A significant use case for

self-healing is the control of cell outages. It is applicable to base stations (BSs) that are no longer able to provide

services to customers inside their zone, creating a coverage gap in the network . To enhance coverage and

capacity, cellular networks are using many accessing techniques like frequency division multiple access (FDMA),

time division multiple access (TDMA), code division multiple access (CDMA) and orthogonal frequency division

multiple access (OFDMA). These accessing techniques use the concept of orthogonality to reduce the interference

between the users, but it also reduces the number of users multiplexed to access the spectrum. To increase the

spectral efficiency (SE) of networks and the throughput of cell-edge users by enabling more users as compared to

the available orthogonal resources, non-orthogonal multiple access (NOMA) has emerged as a promising

technique in 5G networks . NOMA can be integrated with MIMO, cognitive radio (CR), HetNets, milli-meter

waves, mobile edge computing (MEC), visible light communication (VLC), vehicle communication, etc. This will

provide high spectral efficiency, data rates and massive connectivity and decreases inter-cell interference and

intra-cell interference. Initially, NOMA was used with single cells to improve spectral efficiency. The spectral

efficiency is increased by increasing the multiplexed users accessing the single channel with different channel

gains. NOMA may be an excellent choice for cell outage compensation due to its capacity to improve performance
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for cell edge users. In this case, the cell edge users that are participating in the compensation procedure are the

users who are experiencing an outage (the unsuccessful users). In , the authors attempted the first effort to

represent the dual issue of unsuccessful user association and power control quantitatively in a NOMA-based cell

outage compensation system.

NOMA is divided into the power domain NOMA (PDNOMA) and code domain NOMA (CDNOMA). In PDNOMA, the

multiplexing is based on the transmitted power and in CDNOMA, multiplexing is based on code. Along with

CDNOMA and PDNOMA, there were other NOMA techniques like signature NOMA (S-NOMA) and compressing-

based NOMA (CS-NOMA). In a recent study, the authors investigate the power domain NOMA , which divides

users into two groups: those close to the network infrastructure, who receive low transmission powers, and those

further away, who receive higher transmission powers. It may provide features like fast throughput and minimal lag

time in communication, which are necessary for meeting the criteria. The usual successive interference

cancellation (SIC)  decoding approach is used at the receiver in a NOMA-based system to ensure the system

meets the criteria. Multiple user devices increase the complexity of the wireless system in areas such as low-

latency real-time transmission, secrecy rate maximization, resource allocation, and signal identification.

Cooperative communication has been introduced in NOMA, which refers to the employment of a relay to improve

the system’s capacity to serve many customers and to increase the transmission area. There are two varieties of

cooperative NOMA communication: user-assisted and relay-assisted . In relay-aided transmission, an extra

relay aids in communication between users; in this scenario, a near user helps a remote user to send data. A relay

either decodes the message or transmits it to the recipient as is or amplifies it and sends it on to the recipient as a

larger version .

Recently, deep learning-based NOMA systems have been utilized in several application scenarios. The field of

study known as “deep learning” (DL) allows a system to learn and improve via exposure to data rather than through

predetermined rules. Deep learning is a subset of machine learning. It has distinct advantages over traditional

machine learning methods, such as being capable of working on huge volumes of data available for analysis

purposes from complex networks owing to the growth of network sizes and usages. End-to-end classification

solutions are conceivable from these metadata profiles with processing powers of graphic processing units (GPUs).

A well-trained system can make sense of whatever data it is fed, extracting relevant information, and using that

knowledge to identify and address issues. Researchers may classify DL under three broad categories:

reinforcement learning (RL), supervised, and unsupervised . In supervised learning, a system learns how to

make decisions based on examples that have already been categorized. Classification and regression are two

applications that can benefit from supervised learning. Unsupervised learning permits a machine to carry out

judgments considering unlabeled data and uncovers latent structure in an input. Association and clustering issues

are common applications of algorithms based on unsupervised learning. Reinforcement learning describes a

system’s ability to acquire skills via repeated practice. As it learns from its surroundings, reinforcement learning

doesn’t need any input data to function. Reinforcement learning allows for the fully automatic detection and

categorization of signals. Neural networks are used to implement DL algorithms . The hidden layer, input layer,

and output layer are the three components of a simple neural network, as shown in Figure 1. Deep neural

networks (DNN) are so named because they have several hidden layers between the input and output levels.
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Neurons serve as the central processing units for each layer of the network. Recurrent neural networks (RNN) and

convolutional neural networks (CNN) are two types of DNNs that differ in how they process inputs and generate

outputs.

Figure 1. Deep neural network general framework.

Background

Demanding applications such as virtual reality (VR), internet gaming, and high-definition (HD) films have

contributed to a burgeoning information explosion  during the past decade. The advent of 5G has posed new

difficulties in the areas of extensive connection, energy efficiency, peak data throughput, reduced latency, ultra-

reliability, and spectral efficiency . The rapid expansion of the Internet of Things (IoT)-based massively

heterogeneous networks has necessitated incorporating a number of notable difficulties into 5G technology. Major

obstacles to adopting modern multiple access systems now exist due to the uplink or downlink transfer of

substantial user data between different networks. NOMA, an intriguing and potential solution for 5G networks, has

attracted enormous attention recently  as a result of the aforementioned difficulties. Industry and academics

alike have recognized NOMA as a promising trend and technology for meeting the varied requirements of 5G.

Next-generation mobile or wireless networks rely on this crucial enabling technology to meet the varied demands of
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users for redundancy, speed, fairness, throughput, and connection. Through signal superposition, NOMA can serve

an arbitrary number of users in each resource block.

Additionally, they may allocate power resources to nodes with poor channel characteristics to improve throughput.

Compared to traditional multiple access (MA) methods, NOMA makes better use of available resources .

Unlike NOMA, each orthogonal resource unit in conventional MA techniques serves a single user. This has an

adverse effect on the system’s overall throughput and spectrum effectiveness. When NOMA is used in these

circumstances, it assures that not only users with poor channel characteristics are supplied, but also users with

better channel conditions can consume a similar amount of bandwidth as the weak user. The multiuser signals in

NOMA are broadcast to the end users after being multiplied in the transmission part through superposition coding

(SC) at various power levels based on nonorthogonal symmetry.

Compared to consumers with better channel conditions, those with poorer channel conditions often receive more

power. Therefore, having the proper channel state information (CSI) to transmit data has become more important in

NOMA. With a strong channel gain, users may readily retrieve the signals gathered in the receiver. Users that

experience weak channel capability mistake other signals for interference, which significantly lowers spectral

efficiency. With NOMA, in the absence of a guard period and no signal interference, this issue may be solved.

NOMA improves user fairness and provides great performance .

In contrast to fourth-generation (4G) networks, NOMA in 5G systems is primarily employed to enable larger user

density and achieve high spectrum efficiency and low latency . Significantly higher data speeds, increased

system capacity, enormous numbers of mobile device connections, decreased latency and decreased power

consumption may all be supported by 5G. A wide variety of data transmission entities with various data rates and

latency demands make up 5G-enabled systems, including IoT systems. In 5G networks, where several users

depend on the same resources, NOMA is employed. In the context of high spectral efficiency and dependable

connection among multiple data transmission entities, NOMA in 5G systems is anticipated to satisfy the desiderata

of 5G communication systems. Howbeit, NOMA systems have specific drawbacks, including high computational

complexity, difficult designs, and issues with resource allocation.

Furthermore, to perform consecutive interference nullification at the receiver side, NOMA systems also need

flawless CSI. Perfect consecutive interference nullification is critical for improving NOMA performance. Without

understanding the correct CSI at the system’s transmitter, it is extremely complex to build a successful power

allocation (PA) technique. However, it might be challenging to obtain a near-perfect or flawless CSI. Deep learning

(DL) technology may be applied to address all these constraints. The performance of different wireless

communication systems is primarily improved by the employment of DL methods. Current communication systems

heavily utilize DL-assisted NOMA technologies for a variety of uses. The authors in  examine how such systems

are used in the literature to assess their contribution to system performance improvement and the various

difficulties that arise in such systems when trying to change their design or create technologies optimized for 5G

network performance. In recent studies, DL methods have been applied in the NOMA system to enhance the
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system’s functionality. Figure 2 shows a NOMA-VLC system with a DL-based signal demodulator to successfully

attenuate nonlinear and linear distortions.

Figure 2. An illustration of DL-based NOMA-VLC system.

2. Key Aspects for Practical Implementation of DL-Based
NOMA

2.1. Resource Allocation

In NOMA, one resource block (RB) is shared by multiple users, and the SIC receiver is used to decode the user

information at the receiver end based on the user’s channel gains. Interference between the users can be avoided

by choosing proper power allocation algorithms. Otherwise, resource allocation issues such as user pairing and

power allocation (PA) will arise. In user pairing, the users with less power are allocated with more channel gain,

and users with more power are allocated with less channel gain to make channel fairness to all the users at the

transmitter end. At the receiver end, the SIC receiver is used to decode the same. In this method, if the number of

users increases, then the decoding complexity also increases at the receiver end. This is one of the major

problems in user pairing. Along with this, another problem, i.e., if the users with high and low gain are transformed

to mid-gain, then mid-gain users may be paired or may not, which leads to reduced channel capacity.

To overcome the user pairing issues, optimization techniques, game theory, machine learning and deep learning

algorithms are proposed in the literature. The authors proposed an optimization method while pairing two users 

. To optimize the user pairing, the channel gain should not be less than the predefined threshold. A strong

channel pairing algorithm can increase the system capacity and fairness in user pairing. In , the authors used a

new pairing concept, i.e., the highest channel gain users are paired with the next highest gain users. Different

Game theory algorithms for multiple user pairing and machine learning algorithms for user pairing have been

proposed in recent research. In , the authors proposed an RL-enabled joint power allocation and user pairing

scheme. Through Q-learning, they were able to successfully implement both power allocation and user pairing with
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reduced computational complexity. In , the authors introduced an optimal power allocation technique with a

given sub-channel assignment through a closed-form approach. Considering this, a traditional deep reinforcement

learning (DRL) algorithm named Deep Q-Network (DQN) algorithm is used to investigate the optimal user pairing

scheme. The DQN algorithm provides better performance of the feature extraction ability and higher learning

efficiency than conventional reinforcement learning (RL) schemes.

2.2. Power Allocation

One crucial challenge is how to allocate power when there are limited resources to make the most of the benefits

of the NOMA system. It has been established that this issue of optimum power allocation is NP-hard, indicating that

it is impractical and expensive to study all possible channel assignments to find an ideal solution. As a result,

several methods have been put forth by researchers to deal with this issue. Solutions include distributing power for

a downlink single input and single output (SISO) NOMA system , distributing power for the most equitable

distribution of users , and distributing power for the most energy-efficient use of resources . Deep learning

techniques must be used because several solutions have been demonstrated to be less than ideal. A thorough

literature assessment of deep learning-based approaches to the power allocation concern will be provided in

sufficient depth in this section. Utilizing DL in NOMA, deep neural network generic architecture efforts are at the

forefront of current technological advancements in power allocation. To distribute power to consumers in the best

possible way,  suggests a deep reinforcement learning (DRL) method; specifically, an artificial neural network

(ANN) is employed to perform channel assignment. The system model is based on BS and several users in a

downlink NOMA scenario. Users serve as the performance environment for the deep learning algorithm, which

treats BS as an agent. To allocate resources and channels to users, BS first chooses a task (channel assignment)

from a set. A feedback signal is then provided towards the BS to help assign users in the following transmission

based on the users’ responses. The three crucial parts of this process are the status space, action space, and

reward function. The channel information is responsible for the state space. The agent (BS) chooses a single

channel for data transmission for a single user in the action space. The collection of actions is constrained to meet

the requirements of user channel allocation, so each user is associated with a unique action. After the user acts,

the allocation procedure is complete. The signal returned to the BS as a result of a failed or successful

transmission at the conclusion of each time slot is the reward function, as shown in Figure 3. The data rates each

user experiences and is sent by the BS to make up the signal. The goal of  is to maximize this incentive signal

and, in turn, optimize each user’s data rate. The acquired findings provide a sum-rate comparison of Joint

Resource Allocation (JRA) without downlink versus JRA with DL, where the non-DL variant is significantly

outperformed by the DL counterpart.  suggests a power allocation plan that uses DL approaches to optimize the

system sum rate in a downlink NOMA environment with an incomplete SIC. The algorithm for finding the best

power allocation is exhaustive. In a recent study , a power allocation approach for imperfect SIC to enhance the

experienced system sum rate is suggested.
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Figure 3. Power allocation and channel assignment of DL-based NOMA system.

2.3. Channel State Information

Practically speaking, channel state information (CSI) significantly influences the NOMA system’s performance, and

several efforts have been made to implement channel estimation using NOMA scenarios . In , a new linear

estimator was developed to maximize the average effective signal-to-interference noise ratio (SINR) of the strong

user, with a finite SINR required for the weak user to identify the CSI. Meanwhile, several researchers are looking

at NOMA-based solutions in various CSI circumstances because the CSI is difficult to collect using conventional

approaches. Two power allocation techniques and the performance of NOMA in an incomplete CSI environment

were reported . Furthermore, using uplink NOMA systems, the researchers demonstrated that insufficient CSI

causes improper decoding and additional interference with the intended signal .

Consequently, how to efficiently collect flawless CSI is a crucial challenge in NOMA-aided approaches, and new

techniques must be used to address this issue. Although numerous recent research contributions have developed

various reliability and sum data rate optimization methods, these techniques demand high computational

complexity because of the nonlinear optimization. They are unable to produce an associated power allocation

mechanism against a given CSI. In particular, virtually all of the key benefits of NOMA techniques rely mainly on

CSI; as a result, several strategies have been presented in previous studies to further enhance the effectiveness of

channel estimates . Conventional approaches, however, are unable to trace the alteration in the channel state in

real time due to the complexity of the channel conditions in multiple-user systems . Usually, the drastically

fluctuating channel characteristics cause CSI acquisition to be disrupted and the NOMA system efficiency to suffer.
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Nevertheless, nonlinear reconstruction techniques are inevitable since the channel sparsity trends have been

frequently taken for granted in previous studies. Therefore, super-resolution direct arrival (DOA) estimates, and

signal identification cannot be accomplished using standard approaches since they are inefficient and unreliable.

The NOMA system has recently been enhanced with a promising machine learning (ML) approach to enable the

auto-detection of the CSI. The DL  idea, introduced in 2006 and a typical branch of machine learning, is a

particularly effective technique for managing large amounts of data and resolving challenging nonlinear issues. A

few earlier papers  included DL in communication in relation to the physical layer, channel coding, and

MIMO. The intriguing system that incorporates the DL into the OFDM context has been demonstrated in , and its

outstanding performance in the context of signal recognition and channel estimation has been confirmed. DL has

also been used in traffic monitoring systems, which work admirably . Additionally, DL-based

communication systems have shown certain benefits in terms of security, BER, and throughput performance.

2.4. Successive Interference Cancellation

The drawbacks of SIC might also be addressed using the DL technique. Due to the SIC receiver’s poor

cancellation, overall capacity decreases . As a result of different hardware limitations, decoding and canceling

may be faulty in real-world systems, making SIC possible. The performance gain of NOMA may be enhanced by

using SIC at cell-edge users, as demonstrated by the authors in . The creation of an easy-to-use, effective SIC

receiver is essential to NOMA. Multi-stage SIC lowers multi-path fading and BER. The performance of the system

is impacted by the signal’s decoding sequence. High signal-to-noise ratio (SNR) signals are initially deciphered.

The performance of the SIC receiver is enhanced by a low complexity, highly effective power allocation algorithm

. A real implementation’s non-idealities and flaws cause error propagation in SIC, which is utilized to decode and

identify desirable signals. Due to the signal processing required for SIC, receiver complexity increases as user

equipment (UE) numbers rise. A deep neural network (DNN) is used in  to approximate the SIC receiver. In the

MIMO-NOMA system, the combined optimization of precoding and SIC decoding minimizes the total mean square

error between the user’s intended signal and their decoded signal. Users and their sub-bands are grouped

according to the status of the channel, ascending. The binary dislocation principle pairs them (BDP). As a result,

users with excellent and bad channel conditions will be paired.

A sub-band that satisfies user demands is selected. EP at the receiver can be removed if the signal-to-interference-

plus-noise ratio (SINR) difference among a pair of users in the sub-band is sufficiently great. Users that share a

band are given authority by BS. The minimum mean square error (MMSE)-SIC method with Interference Rejection

Combining (IRC), which analyzes noise and interference independently and enhances average channel capacity

and, therefore, system performance, can be used to attain the best performance at the receiver . Some recent

works are based on the theory that most EP-related problems in SIC may be handled by appropriately grouping or

clustering users. Additionally, by concurrently optimizing precoding and SIC decoding using DNN and domain-

specific information, the mean square error (MSE) value between the intended and decoded signals would be

reduced to the absolute minimum.

2.5. User Fairness
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Several recent studies  have discussed the benefits of employing NOMA. This increases system throughput,

spectrum efficiency and user fairness. Researchers can also obtain an extremely highly reliable connection. Time

and frequency resources are distributed to users in the spatial domain through the power domain or code domain

NOMA . A recent work  uses a deep learning algorithm to ensure user fairness by dividing users into low-rate

and high-rate requirement users considering their mobile phone usage habits. The authors consider a NOMA

system with DL-based coordinated multi-point (CoMP), used in 5G cellular networks to guarantee the rate

requirements from the different edge users. Figure 4 evaluates the performance of user sum rates in dynamic

point selection CoMP (DPS-CoMP) subchannels and the number of cells subchannels. Figure 4 shows that the

user sum rate in the DPS-CoMP subchannel of each cell in the DPA algorithm, the NOMA-CoMP algorithm, and the

maximum throughput (MT) algorithm all increase as the number of subchannels increases. In the NOMA power

domain, power distribution among users varies depending on the channel characteristics and user-specific channel

quality. As a result, consumers located far from the BS will receive more power, and vice versa. According to the

works cited in , fairness for NOMA in 5G is highlighted by the fact that, in downlink mm-wave NOMA, various

data from all users is thus overlaid in the power domain at the transmitter, and the SIC is performed at the receiving

side. By integrating SIC and superposition coding (SPC) at the transmitter end and receiver side, respectively,

researchers may use NOMA to increase spectral efficiency. The max-min fairness of both the average CSI and

instantaneous CSI is also discussed in this literature. Considering the interaction between NOMA and cooperative

transmission, the integration of NOMA with several emerging 5G technologies, the correlation with other NOMA

variants, and the resource control of NOMA, the authors in  focus on state of the art in power-domain

multiplexing-based NOMA. Considering the hybrid beamforming system described in the research , which

employs phase shifters and sets of switches, down-converter, LNA, ADC, and DAC are components of the radio

frequency (RF) chain. The price of the system rises along with the number of RF chains. To decrease the number

of RF chains, the hybrid beamforming approach is applied, and the system’s price will be reduced as a result. 5G

deep learning systems have been researched in the literature. Power allocation, DoA estimation , physical layer

security , channel estimation , energy optimization, etc., are all included in the program, which significantly

addresses user fairness issues in NOMA.
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Figure 4. Sum rate of DPS-CoMP users (Mbps) versus the number of subchannels per cell.

2.6. Impulse Noise

2.6.1. Impact of IN in NOMA

Numerous obstacles to the adoption of NOMA systems have been raised by the broader literature on NOMA, which

primarily occurs with respect to next-generation networks like the Internet of Things (IoTs) and smart grids. Analysis

has also been done on the impact of IN on the NOMA downlink  and uplink  systems. The NOMA uplink

systems’ outage performance in the occupancy of IN is given in the research work . Analytical findings and

comprehensive Monte-Carlo simulations were used to verify the NOMA system’s sensitivity to IN. The effect of IN

on the cumulative rate capacity of NOMA downlink systems was given by the authors in . The real loss from IN

was calculated using a particle IN scenario. The authors also examined how well NOMA performed across

Rayleigh-fading channels with composite noise (impulse with AWGN). A union constraint on the bit error rate (BER)

was developed using the pairwise loss of bits (LoB) formula. The research study quantified the variance in channel

conditions that NOMA users encounter when there is composite noise. The operational reduction of NOMA-aided

IoT networks caused by IN was examined, and a mitigation approach was suggested in . For acquired OFDM

symbols generated from the power domain multiple-NOMA (PDM-NOMA) strategy, a multistage nonlinear solution

based on deep learning was presented.

2.6.2. IN Mitigation Techniques

The threshold-aided IN technique is defined as a memoryless nonlinear mitigation strategy that comprises blanking

, clipping , and clipping/blanking . In this method of mitigation, the high amplitude and short duration of IN

are studied by employing a threshold whose adaptation seems difficult. The authors of  describe a threshold

optimization strategy considering the Neyman-Pearson criteria. In , the authors presented a mathematical

solution for IN mitigation utilizing clipping and blanking. In , a comparison of numerous analog domain

processing strategies for IN mitigation demonstrates that threshold value selection is the most important aspect for

enhancing the efficacy of threshold-assisted nonlinear techniques. Once the threshold varies due to channel

circumstances, the model gets mismatched. As a result, extremely impulsive environments have a negative impact

on the effectiveness of all conventional threshold-based approaches. In , the authors have successfully used DL

approaches for IN mitigation. Figure 5 presents the DNN performance for IN mitigation in User 1 and compares it

with User 2. User 1 uses SIC to reduce inter-user-interference. Thus, it will suffer from IN only. While User 2 is

affected by both IN and inter-user interference. Therefore, it has variant BER performance according to SNR

values. The results show that the DNN approach can be effectively utilized to overcome IN.
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Figure 5. Performance of NOMA user pair through DNN-based technique.

2.7. Transceiver Design

A recent study  focuses on explaining how deep learning aids in overcoming the NOMA as mentioned above

difficulties. The multiuser receiver (Rx) is initially improved using deep learning from a model-driven and data-

driven perspective. The authors briefly explain how deep learning may enable the optimization of end-to-end

NOMA transceivers with practical transmitter (Tx) restrictions or domain knowledge. End-to-end learning is used in

NOMA to integrate computation and communication. The authors investigate how deep learning can extract and

use upper-layer data for transceiver design. They conclude by outlining some exciting new avenues for deep-

learning-enhanced NOMA in mMTC.

Multiuser Detection Design 

Different users’ signals are sent in a non-orthogonal fashion in NOMA. Generally, multiuser detectors (MUDs) are

used at the receiving end to differentiate between the overlapping signal streams, thereby minimising inter-user

interference (IUI). For several NOMA systems, state-of-the-art MUDs have been created, including parallel

interference cancellation (PIC), sequential interference cancellation (SIC), and message-passing algorithms (MPA).

Unfortunately, multi-user detection still lacks a unified signal processing framework. By using DNN to improve

MUD, researchers may get a more unified architecture, higher detection accuracy, and shorter processing times.

DNN-based concepts may be roughly divided into two distinct camps: data-driven and model-driven. Vanilla DNNs

are used in a data-driven strategy, which reduces the time spent on design but increases the amount of data

needed for training. Alternatively, a model-driven method uses domain-specific knowledge from NOMA to reduce
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the need for data and increase learning efficiency. In a recent study , the authors propose a DL method that

automatically analyzes the CSI of the communication system and detects the original transmit sequences. Figure 6

shows the symbol error rate (SER) and SNR curve of the numerical simulation. The proposed MIMO-NOMA-DL

reached 12.6 dB, whereas the traditional scheme reached 16.2 dB—a difference of approximately 3.6 dB. The

authors used powerful DL tools to perform accurate signal detection rather than traditional complex signal

processing for channel estimation and demodulation.

Figure 6. Performance comparison of MIMO-NOMA-DL and MIMO-NOMA-SIC.

2.8. DL for Channel Estimation

In a MIMO-NOMA system, an accurate channel estimate is crucial since it influences the system’s performance.

Appropriate CSI is necessary for interference cancellation at the receiving end. DNN may be a good option for

calculating precise CSI and channel estimates. The researchers of  created an algorithm that automatically

assesses and seeks the best logical plan for AWGN channels and MIMO Rayleigh fading channel-state information

to recover the signal. For every conceivable scenario, including power allocation parameters, it was demonstrated

that DL-based approaches might outperform SIC receivers in terms of symbol error rate (SER) performance.

Channel estimation and detection were carried out in batches throughout the training phase. In the testing phase,

channel error was included, and the authors investigated how the DL method behaved when the estimated CSI

and the actual channel state were different. Throughput is decreased because channel estimate errors cause

residual and SIC decoding errors. Impact channel estimate error and reference signaling are reduced by the

transmission rate back-off method (in which the transmission rate is regulated). Random beamforming is a useful
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technique for lowering CSI feedback . Since flawless interference cancellation depends on the correct CSI

estimate, NOMA system performance is impacted. Practically speaking, it is challenging because of the

complicated fluctuations in channel conditions brought on by high mobility. Utilizing the spatial diversity of massive

MIMO, DL methods may be utilized to evaluate the DOA and real-time channel estimates. The sparse features may

be fully extracted and efficiently used in the DL technique to learn the entire system. DL also performs better than

traditional approaches when SNR is high .

The articles make it clear that estimate accuracy is a performance parameter and that DL is highly preferred to

estimate CSI in real-time with less complexity and pilot overhead than the conventional alternatives. Large datasets

with different channel conditions are still difficult for supervised learning, and offline network training takes time. Its

efficacy in cases with high mobility is constrained since it is challenging to predict the channel.

2.9. DL for Beamforming and Selection

The performance of 5G technology is also determined by the beamforming process. A quick unsupervised learning-

based beamforming design methodology has been put out by authors in . In this approach, DNN is trained

offline and provides real-time assistance for simple neural network tasks once it is online. DNN in the downlink

records the channel’s characteristics, takes the channel coefficients as input, and produces a beamformer. Pruned

DNN is used because it decreases the parameters and, as a result, the computational complexity and time

required by DNN. The simulations showed that, although degrading with increasing SNR and transmit antenna

count, deep neural network performance is comparable to that of WMMSE. In , DL-aided hybrid beamforming

(HB) is suggested, where supervised learning and an autoencoder build the HB. Compared to other traditional

beamforming methods, this approach performed better in the context of bit error rate. A recent study  introduces

a novel MIMO-NOMA system that addresses partial CSI feedback. Channel quality information (CQI), the best

beam, and beam correlation are used to cluster users. The user pair chosen for clustering had the greatest CQI

differential and the highest beam correlation. HB is created through clustering. As an analog beamforming vector,

the best beam from a high data rate user is selected. Thus, inter-cluster interference is decreased. For weak users,

digital beamforming is used to reduce intra-cluster interference. Furthermore, the authors developed a system with

efficient power allocation by optimizing the power differential between UEs in a cluster while subject to rate

constraints. The system that was presented had a greater sum rate. With DL, choosing a beam is simpler. Using

two optimal beam indices as inputs and an estimated power delay profile (PDP) as a label, the DL model is trained

using supervised learning. Adam is used for optimization, cross-entropy is utilized as the cost function, and softmax

activation is employed at the output layer, where the number of beams equals the number of neurons . DNN

may be used to perform beam selection and hybrid beamforming with little latency. Additionally, it produces better

results from the perspective of summation rate and BER.

2.10. DL for Modulation and Signal Processing

At high SNR, long-short-term memory (LSTM) and the deep residual network (ResNet) may achieve high

classification accuracy. Still, the convolutional long-short-term deep neural network (CLDNN) and ResNet

[78]

[27]

[79]

[80]

[81]

[82]



Deep Learning Based Non-Orthogonal Multiple Access | Encyclopedia.pub

https://encyclopedia.pub/entry/42132 14/22

performed well at low SNR. Furthermore, principal component analysis and subsampling were used to minimize

training time . In the presence of faulty CSI, CNN for feature extraction and DNN for joint channel equalization

and decoding have high accuracy. In terms of BER and decoding rate, DNN outperforms CNN . A system that

combines CNN and LSTM is thought to perform well in automated modulation classification (AMC) at varied SNRs

. For signal demodulation using Rayleigh and AWGN channels, CNN and a bidirectional gated recurrent unit

layer known as a mixed neural network model are utilized. CNN is utilized to extract features, whereas RNN is

used for time-series analysis . In , the authors propose a deep residual network-based blind modulation

detection technique that uses a noisy joint constellation as input. Wavelet denoising is used to increase

constellation quality. To demodulate the signal, the SIC receiver at the distant UE requires information on the

modulation mode. This technique significantly reduces signaling overhead while improving service quality in NOMA

systems. However, for higher-order modulation, the constellation becomes more difficult. A CNN-based AMC with

an extended symbol rate sequence and an estimated SNR is a near approximation to a maximum likelihood-based

AMC (ML-AMC), learning from raw data and processing in parallel, making it quicker and better than feature-based

approaches and ML-AMC . A survey on DL in signal recognition reported in  highlighted the difficulty in

developing an accurate and effective DL signal recognition system in coexistence. For modulation recognition

under various channel impairments and datasets, a modified deep residual network (RN) has been deployed. This

outperforms CNN in terms of efficiency. Transfer learning is employed to accelerate the suggested model. In

addition, the authors compare the baseline approach and strongly boosted gradient tree classification for radio

signal classification utilizing over-the-air observations . In , the authors propose employing a single DNN for

joint optimum MIMO signal detection and channel decoding. The suggested DNN model has the limitation of

requiring training for different channel matrices as well as having a high decoding latency. A DNN that can handle

multiple channel matrices with a single training is offered as a research path. For modulation categorization, signal

identification, and decoding, prominent models include CNN, RN, LSTM, and customized DNN. In a recent work

, the authors investigated a deep learning-based SIC scheme for NOMA communication systems and compared

its performance with  and  as shown in Figure 7. The authors propose a convolutional neural network (CNN)-

based SIC scheme to enhance the single BS and multiuser NOMA scheme. The proposed CNN-based SIC

scheme can effectively mitigate losses resulting from imperfections of the SIC. The findings also indicate that the

CNN-based SIC method can achieve good detection performance and relieve conventional SIC impairments.
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Figure 7. Sum rate versus SNR for the conventional and proposed SIC schemes with varying power allocations.
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