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Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality

treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median

overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor

prognosis, novel treatment strategies are needed, such as immunotherapies. Natural killer (NK) cell-based

immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based

immunotherapy. 

glioblastoma  NK cell  immunotherapy

1. Introduction

Glioblastoma (GBM) is the most common and aggressive primary brain tumor. The annual incidence of GBM is

3.19 per 100,000  and it is classified as grade IV by the World Health Organization . For several decades, the

standard GBM therapy has consisted of maximum safety resection, adjuvant radiotherapy, and chemotherapy with

temozolomide, termed the Stupp regimen. Despite the multidisciplinary therapy, the median overall survival (mOS)

is only 15–17 months and the 5-year overall relative survival is only 5.8% . Several novel strategies were

investigated, where the addition of tumor-treating fields to standard treatment statistically significantly improved

progression-free survival and overall survival (OS) . A recent phase 2 trial of intratumoral oncolytic herpes virus

G47∆ for residual or recurrent GBM demonstrated survival benefits and a good safety profile, which led to the

approval of G47∆, albeit with conditions under the early approval system of Japanese-specific law, as the first

oncolytic virus product in Japan . Figure 1 summarizes the multimodality treatment against GBM. However, given

the poor prognosis of patients with GBM, further novel approaches are needed for GBM treatment.
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Figure 1. Multimodality treatment against GBM. While the standard therapy consists of maximum safety resection,

adjuvant radiotherapy, and chemotherapy with temozolomide, which is collectively termed the Stupp regimen,

several promising adjuvant therapies have been used for treating GBM. 5ALA: aminolevulinic acid, PDT:

photodynamic therapy, TTF: tumor-treating fields, TMZ: temozolomide, BCNU: carmustine, BEV: bevacizumab.

Almost every immunotherapy mainly aims to generate a tumor-specific immune response to selectively eliminate

tumor cells as a result of T cell activation. The representative immunotherapies are checkpoint inhibitor and

chimeric antigen receptor (CAR) T-cell therapies, which have been used in other solid tumors and hematologic

malignancies . Contrastingly, several GBM immunotherapies have long been investigated, but few attractive

strategies have been reported.

Compared to T cell-based therapy, natural killer (NK) cell-based therapy approaches tumors from new aspects.

First, NK cells recognize the tumor, which consists of heterogeneous cells, via multiple activating and inhibitory

receptors despite the diminished or absent expression of major histocompatibility complex class I (MHC-I)

molecules . Second, NK cells are important for recruiting conventional type 1 dendritic cells (cDC1s) and

subsequently CD8  T cells . These functions promote cancer immunity cycle activation, which has the

advantage of overcoming the immunosuppressive GBM tumor microenvironment (TME) .

2. NK Cell and NK Cell-Based Immunotherapy for Cancer

More than 40 years ago, it was determined that NK cells recognize cancer cells in mice and humans without

antigen sensitization . Recent research focused on the potential of NK cells in cell-based therapies.
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NK cells are considered an important part of the immune system, where they control microbial infections and tumor

progression . In patients and animal models, NK cell deficiency or impairment led to recurring virus infections

and increased incidence of various types of cancer. In particular, NK cells controlled transplantable tumor growth

and metastasis in numerous mouse models via antibody depletion of NK cells . Additionally, NK cells are the

founding members of the innate lymphoid cell (ILC) family . In human peripheral blood, bone marrow, and

tissues, NK cells can be identified by the expression of neural cell adhesion molecule (NCAM: CD56) and the

absence of T cell receptor (TCR) and CD3 . In the bone marrow, human NK cells derive from CD34

hematopoietic progenitors and mature in the lymphoid organs . Despite the differentiation from progenitor

cells, NK cells persist in peripheral blood . Human NK cell turnover in blood occurs over approximately 2

weeks .

NK cells can recognize tumor cells based on a balance between stimulatory and inhibitory receptors [stimulatory

receptors: DNAX accessory molecule 1 (DNAM1), 2B4 (also known as CD244) and NK group 2D (NKG2D);

inhibitory receptors: killer cell immunoglobulin-like receptors (KIRs), T-cell immunoreceptor with immunoglobulin

and ITIM domains (TIGIT), killer cell lectin-like receptor subfamily G member 1 (KLRG1), T-cell immunoglobulin

mucin family member 3 (TIM3), and programmed death 1 (PD1)]  (Figure 2). In detail, the main activating

receptors are natural cytotoxicity receptors (NCRs: NKp-46/NCR1, NKp44/NCR2, NKp30/NCR3) . B7-

H6 and BAG6/BAT3 represent NKp30 ligands . NKp44 recognizes a specific human leukocyte antigen (HLA)-

DP molecule (HLA-DP401) and PCNA . Barrow et al. also reported that platelet-derived growth factor

(PDGF)-DD engagement of NKp44 triggered NK cell secretion of interferon (IFN)-γ and tumor necrosis factor alpha

(TNF-α), and a distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of

tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma . Gaggero et al.

identified the extracellular matrix protein nidogen-1 (NID1) as a ligand of NKp44 . NKp46 binds to the soluble

plasma glycoprotein complement factor P/properdin . Garg et al. reported vimentin (a 57-kDA molecule) as a

putative NKp46 ligand . The lysis of influenza virus (IV)-infected cells is mediated by the interaction between

NKp46, and the IV hemagglutinin (HA) type 1 expressed by the infected cells . NKG2D is another

important NK receptor that transduces activating signals from the transmembrane adaptor protein DAP10 and

recognizes UL16-binding proteins (ULBPs) and MHC class-1 related chain (MIC) A/B .
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Figure 2. NK cell activating and inhibitory receptors. NK cells recognize tumor cells based on a balance between

the stimulatory and inhibitory receptors above. A2A AR: A2A adenosine receptor, BAG6/BAT3: BCL2-associated

athanogene cochaperone 6, CBLB: Casitas B-lineage lymphoma pro-oncogene-b, CIS: cytokine-inducible SH2-

containing protein, DNAM1: DNAX accessory molecule 1, HA: IV hemagglutinin, HIF1α: hypoxia-inducible factor

1α, HLA: human leukocyte antigen, HLA-DP: human leukocyte antigen DP molecule, HMGB1: high-mobility group

protein 1, ICAMs: intracellular adhesion molecules, IgG Fc: constant region of immunoglobulin, IL: interleukin, KIR:

killer cell immunoglobulin-like receptors, JAK/STAT: Janus kinase/signal transducer and activator of transcription,
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KLRG: killer cell lectin-like receptor subfamily G member 1, LAG3: lymphocyte-activation gene 3, LFA-1:

lymphocyte function-associated antigen-1, MIC: major histocompatibility complex class 1-related chain, NF-κB:

nuclear factor kappa B, NID: nidogen, NKG2D: NK group 2D, NKp30: natural killer cell p30-related protein, NKp44:

natural killer cell p44-related protein, NKp46: natural killer cell p46-related protein, PCNA: proliferating cell nuclear

antigen, PD-1: programmed cell death 1, PDGF-DD: platelet-derived growth factor, PD-L1/2: programmed cell

death ligand 1/2, PLC-γ1/2: phospholipase C γ1/2, PVR: poliovirus receptor, TGFβ: transforming growth factor β,

TIGIT: T-cell immunoreceptor with immunoglobulin and ITIM domains, TIM3: T-cell immunoglobulin mucin family

member 3, ULBP: UL16-binding protein.

Regarding inhibitory receptors, NKG2A–CD94 inhibits NK cell function when bound by HLA-E . However,

NKG2C–CD94 heterodimers activate NK cells when bound to HLA-E . In non-HLA-specific inhibitory NK

receptors, PD-1, TIGIT, CD96, TIM3, and CD161 function as NK cell activation immune checkpoints, and their

ligands are PDL1, Poliovirus receptor (PVR)/PVRL2, galectin-9/high-mobility group protein 1

(HMGB1)/phosphatidylserine (PtdSer), carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1),

and lectin-like transcript-1 (LLT1), respectively . KLRG1 is another inhibitory receptor expressed by activated NK

cells . KLRG1 binds E-cadherin and inhibits human ILC2 function . NK cells express several co-receptors that

enhance NK cell triggering activity via NCRs or NKG2D, where the representative co-receptors are 2B4, DNAM-1,

and NKp80 . Using these receptors, NK cells can recognize whether the adjacent cell (infected or tumor cells)

is targeted for killing without prior sensitization. NK cells eliminate cells with diminished or absent MHC-I

expression . The MHC-I ligand is a set of KIR inhibitory receptors, which suppress NK cell function and minimize

the destruction of healthy self-cells . NK cells undergo so-called licensing or education during their

development to avoid self-reactivity . NK cells chronically stimulated by self-ligands might become anergic if the

inhibitory receptors do not mitigate the stimulation . Although the ligation of self-MHC suppresses mature NK

cells, the suppression is relieved if MHC is altered or downregulated, which may occur in tumor cells .

Additionally, the representative classical HLA-F inhibits NK cell function through KIRs . NK cells also have a

potent activator, CD16, which recognizes the constant region (Fc) of IgG antibodies and is responsible for

antibody-dependent cell-mediated cytotoxicity (ADCC) .

NK cell functions are regulated by intracellular checkpoint molecules, which are inhibitory signal transduction

molecules. Cytokine-inducible SH2-containing protein (CIS) is encoded by cytokine inducible SH2-containing

protein (CISH) as an IL-15-inducible inhibitor of IL-15 signaling in mouse NK cells . CIS acts as an intracellular

checkpoint receptor in tumors with increased IL-15 concentrations . Barsoum et al. reported that reduced nitric

oxide levels in prostate cancer cells induced another intracellular checkpoint molecule, hypoxia-inducible factor 1α

(HIF1α), which augmented a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) expression

and significantly increased MICA secretion in the extracellular milieu . Moreover, the expression of HIF-1α, a

transcriptional factor, promotes multiple signaling and induces immune suppression, including that of NK cells 

.

The hypoxic TME contributes to immune escape in cancer. Casitas B-lineage lymphoma pro-oncogene-b (CBLB)

interacts with its specific targets via phosphotyrosine-containing sequence motifs generated on activated protein
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tyrosine kinases that mediate activating signal transduction . In NK cells, CBLB is activated and stabilized

through inhibitory receptor signaling and reduces NK cell degranulation and cytotoxicity by targeted degradation of

the adaptor protein linker for activation of T cells (LAT) .

Although NK cells are classified as innate cells, their responses can exhibit the adaptive phenotype of

immunological memory or trained immunity under circumstances such as viral infections or stimulation with IL-12,

IL-15, and IL-18 cytokines . Recently, single-cell RNA sequencing analysis tracked pathogen-specific

adaptation within the innate immune system via NK cell memory following human cytomegalovirus infection. NK

cell clonal expansion and persistence within the human innate immune system were demonstrated in detail, where

these mechanisms evolved independently of antigen-receptor diversification .

When NK cells encounter a target cell and are activated, a synapse is formed with the target cell and microtubules

transport lytic granules, which converge towards the synapse . Additional signals from the synapse lead to lytic

granule polarization; the granules contain the key effectors of cytotoxicity: perforin and granzymes . The

release of a single granule is sufficient to kill a target tumor cell . Moreover, cytotoxicity is mediated by the death

receptors FAS ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) . A marker of this degranulation

is cell surface expression of lysosomal-associated membrane protein 1 (LAMP1) . Furthermore, NK cells can

secrete cytokines, chemokines, and growth factors, such as IFN-γ, IL-13, TNF, FMS-like tyrosine kinase 3 ligand

(FLT3L), CC chemokine ligand 3 (CCL3), CCL4, CCL5, and lymphotactin (XCL1) . NK cells can activate

other immune cells following the secretion of these factors. For example, CCL5 and XCL1 attract DCs and FLT3L

increases the number of stimulatory DCs in the TME . NK cells are required for the anti-tumor CD8  T cell

response by triggering the recruitment of cDC1s and subsequently CD8  T cells . The effects of this

cascade are highlighted by patient survival across multiple different cancer types, where the gene signatures of

cDC1s, NK cells, and CD8  T cells all independently predicted improved survival . Furthermore, IFN-γ

production within the TME upregulates MHC-I , which causes tumor evasion from NK cells. However, it also

results in activated MHC-I presentation of neoantigens for CD8  T cells. Above all, NK cell-based immunotherapy

potentially drives the cancer immunity cycle, indicated by regression and improved patient outcomes.

Unlike T cells, NK cells lack TCRs and do not cause graft-versus-host disease (GVHD) . NK cell-based

immunotherapy presents the possibility of targeting tumors that lack well-defined antigens for specific response

and the use of allogeneic products prepared in advance. These facts allow administration in multiple patients

without causing GVHD . A recent clinical trial demonstrated that ex vivo expanded allogeneic NK cells

exhibited enhanced responses against myeloid leukemia. Clinical responses were observed in five of nine

evaluable patients, including four complete remissions with low toxicity . Berrien-Elliott et al. reported and

summarized the exploration of NK cells as an alternative cell source for allogeneic cell therapies given their

inherent ability to recognize cancer, mediate the immune functions of killing and communication, and the fact that

they do not induce GVHD, cytokine release syndrome (CRS), or immune effector cell-associated neurotoxicity

syndrome (ICANS), which indicated low toxicity . Therefore, NK cell-based therapy potentially leads to less

toxicity in comparison to CAR-T cell infusions.
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