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In the coming age of omics technologies, next gen sequencing, proteomics, metabolomics, and other high

throughput techniques will become the usual tools in biomedical cancer research. However, their integrative

approach is not trivial due to the broad diversity of data types, dynamic ranges and sources of experimental and

analytical errors characteristic of each omics.

data analysis  artificial intelligence  precision medicine  machine learning models

computational oncology  cancer disease  omics tools

1. Introduction

Last fact sheets from World Health Organization (WHO), updated to March 2021, reports cancer is the second

leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. Approximately 70% of the

deaths from cancer occur in low- and middle-income countries. Breast, lung, colorectal, and prostate cancers are

the most common .

A correct cancer diagnosis is essential for adequate and effective treatment because every tumor is involved in

interactions with non-cancer elements such as gene-environment interactions (GxE), micro-environmental

interactions, and those with the immune system; intercellular interactions within the tumor environment; and

intracellular interactions, such as transcriptional regulation and gene co-expression, signaling and metabolic

pathways, as well as protein interactions (Figure 1) .
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Figure 1. The many levels of interactions found in a cancer system, that can be measured via the different omics

technologies, such as genomics, epigenomics, transcriptomic, and proteomic.

This is the reason why only an integrating framework among different omics layers can gather and organize the

knowledge gained with each experimental approach into mechanistic or semi-mechanistic descriptions of the

biological phenomenon .

Multi-omics model is defined as a biological approach that, by using one or more current high-throughput

experimental techniques, can investigate physiological or pathological phenomena and characterize biomolecular

systems at different levels. As a matter of fact, each omics contributes on a specific fashion to shape the actual

biological phenotype of interest.

Thus, a comprehensive recognition of molecular networks based on multi-omics data has an important scientific

role to understand the molecular mechanisms of cancer, but this is possible only because of bioinformatics

application . Computational oncology can be defined as an integrative discipline incorporating scientific

backgrounds from the mathematical, physical, and computational fields to get a deeper understanding on

malignancies .

In the coming age of omics technologies, next gen sequencing, proteomics, metabolomics, and other high

throughput techniques will become the usual tools in biomedical cancer research. However, their integrative

approach is not trivial due to the broad diversity of data types, dynamic ranges and sources of experimental and
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analytical errors characteristic of each omics . The multi-omics systematic study of cancer found many different

factors involved in the development/maintenance of the malignant state such as genetic aberrations, epigenetic

alterations, changes in the response to signaling pathways, metabolic alterations, and many others . The advent

of high-throughput technologies has permitted the development of systems biology. The system biology paradigm

tries to analyze cancer as a complex and intricate pathology and to gain insight into its molecular origin by taking

into account the different contributions like DNA mutations, deregulation of the gene expression, metabolic

abnormalities, and aberrant pathway signaling .

The essential basis of systems biology is to consider a biological phenomenon as a system of interconnected

elements such as many complex molecular and environmental components interacting with each other at different

levels. For example, tumor behavior is determined by a combination of changes in genomic information possibly

associated with abnormal gene expression, protein profiles, and different cellular pathways. In this scenario, the

complex interaction of DNA and proteins in replication, transcription, metabolic, and signaling networks are

considered the decisive causes for cancer cells dis-functioning . The integration of multi-omics data provides a

platform to connect the genomic or epigenomic alterations to transcriptome, proteome, and metabolome networks

underling the cellular response to a perturbation. Powerful and sophisticated computational tools can identify the

interconnection between genomic aberrations with differentially expressed mRNAs, proteins, and metabolites

associated with cancer-driven cellular perturbation . If on the one hand this aspect provides an opportunity to

better study the cellular response, on the other hand it poses a challenge for systems biology-driven modelling.

Therefore, the next step of systems biology approach focuses on dynamic models that can deal with thousands of

mRNA, protein, and metabolite changes developing effective strategies to administer personalized cancer therapy

. Summarizing, the main goal of the systems biology research driven by multi-omics data is to develop predictive

models that are refined by experimental validations in order to select patients based on personalized multi-omics

data and stratifying them to determine who are most likely to benefit from targeted therapies .

Definition and detection of cancer-distinctive features allow the investigation of the transition process of a normal

cell to malignancy. Generally, the hallmarks involve phenotypic and molecular changes in several metabolic

pathways such as uncontrolled proliferation by blocking growth suppressors, reprogramming of energy metabolism,

evading immune destruction, resisting cell death, angiogenesis, and metastasis . These variations in cellular

machinery are driven by molecular aberration in several omics layers such as genome, epigenome, transcriptome,

proteome, and metabolome within cancer cells. Specifically, by applying next generation sequencing to cancer cell

genomes, it is possible to reveal how mutations in proliferative genes like B-raf drives the activation of mitogen-

activated protein- (MAP-) kinase signaling pathway underlying an uncontrolled cell proliferation . Molecular

aberrations leading to cancer are involved not only in genomic mutational events but also in the epigenome. In

particular, aberrant epigenetic mechanisms can be responsible for silencing of certain cancer suppressor genes

. The multistep processes of invasion and metastasis require a transition of epithelial cell toward mesenchymal

phenotype to colonize distant sites. Recent studies have revealed that epithelial-mesenchymal transition is induced

by specific transcription factors that coordinate the invasion and metastasis processes . By applying

transcriptomics techniques it is possible to investigate the transcription factors involved in transcription regulatory

networks assumed to be activated in malignancy. Moreover, manifestations of cancer hallmarks also affected
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cellular metabolism, in fact tumor cells can reprogram glucose metabolism and energy production pathways

detectable with a metabolomics approach .

2. Roles of Computational Approach in Multi-Omics Era

Computational approach plays central roles not only in the analysis of high-throughput experiments, but also in

data acquisition, in processing of raw file derived from several instruments, in storage and management of large

streams of omics information and in the data model integration. Bioinformatics workflow management systems can

be used in developing and in application of a certain pipeline. Examples of such systems include Galaxy ,

Snakemake , Nextflow , and the general-purpose Common Workflow Language . Several tools for omics

data studies are available in Bioconductor project as packages for the R language  and in Biopython project .

2.1. Data Acquisition

All the omics technologies have a specific role to figure out the complex phenotype of cells especially in complex

diseases like cancer. Knowledge of the biological molecular basis of different cellular signaling pathways does not

involve only genes and transcripts, in fact, proteins and metabolites are particularly important to predict the

phenotypic alterations for diagnosis and prognosis of cancer, and for this reason, in this chapter, we will spend

some words about them. Table 1 represents a summary of the applications of different NGS-based and mass

spectrometry-based techniques which are at the basis of different omics data acquisition approaches.

Table 1. Summary of the applications of different techniques for sequencing, which are at the basis of different

omics data acquisition approaches. Genomics, epigenomics, and transcriptomics are based on NGS techniques,

whereas proteomics and metabolomics are driven by mass-spectrometric (LC-MS/MS) method. The main goal of

genomics, epigenomics, and transcriptomics is the screening of genome-wide mutations, the identification of

altered epigenomic modifications, and exploring differential RNA expression, while for proteomics and

metabolomics is the identification of differentially regulated proteins and metabolites (reprinted from reference ).
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OMICS TYPE PRINCIPLE APPLICATION BIOINFORMATICS
TOOLS

GENOMICS

Whole exome
sequencing

NGS
Exome-wide

mutational/analysis
BWA

Bowtie
Bowtie2
SNAP
SAM
BAM

Whole genome
sequencing

NGS
Genome-wide

mutational/analysis

Targeted
gene/exome
sequencing

Sanger
sequencing

Mutational analysis in
targeted gene/exon

EPIGENOMICS Methylomics Whole genome
bisulfite

sequencing

Genome-wide mapping
of DNA methylation

pattern

Methylation-Array-
Analysis
SICER2

PeakRanger
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2.1.1. Genomics

To date, genomics approach has highly sustained the finding and investigation of variations at both the germline

and somatic levels thanks to many progresses in genome-exome sequencing techniques, for instance from the

Sanger sequencing-based approaches to the NGS-based sequencing. Bioinformatics has always had a central role

in the analysis of downstream genetic data. For example, in the multiscale scale project “The Cancer Genome

Atlas” (TCGA), researchers used NGS sequencing associated to bioinformatics tools with the aim to discover

somatic mutational landscape across thousands of tumor samples and to understand the complexity underlying

different cancer types . For the analysis of NGS data a sequence aligner tool is used on the sequence data

(stored in FASTQ format). Some popular aligners are the stand-alone BWA , Bowtie , Bowtie2 , and SNAP

, with aligned sequences being stored in SAM (Sequence Alignment Map, text-based) or BAM (Binary Alignment

Map) files.

2.1.2. Epigenomics

Epigenomics is concerned with the genome-wide identification of chemical modifications (i.e., methylation and

acetylation of DNA) which are involved in regulatory mechanisms controlling gene expression and cellular

phenotypes . Chromatin immunoprecipitation (ChIP) assays-coupled NGS (ChIP-seq) and methylation analysis

through whole-genome bisulfite sequencing (WGBS) or bisulfite sequencing (BSSeq) are the most widely used

methods in epigenomics analysis . By exploiting the advances in NGS field, it is now possible to analyze

genome-wide methylome patterns at a single nucleotide resolution and to detect the methylated cytosine bases in

genomic DNA. Data from array-based techniques can be analyzed using dedicated packages such

as methylationArrayAnalysis , whereas for ChIP-seq data processing tools like SICER2 , PeakRanger ,

GEM , MUSIC , PePr , DFilter , and MACS  are used.

2.1.3. Transcriptomics

The detection and quantification of RNA transcripts (mRNA, noncoding RNA and microRNAs) is possible owing to

the employment of several transcriptomics techniques. Differently from the static nature of genome, transcriptome

dynamically changes as consequence of temporal cellular and extracellular stimuli. Microarray was the technique

of choice to detect alterations in cellular mRNA levels in a high-throughput manner owing to its ability to quantify

the relative abundance of mRNAs for thousands of genes at the same time. Microarrays are widely used to

facilitate the identification of genes with differential expression between normal and cancer conditions. With the

OMICS TYPE PRINCIPLE APPLICATION BIOINFORMATICS
TOOLS

GEM
MUSIC
PePr

DFilter
MACS

ChIP-
sequencing

NGS
Genome-wide mapping

of epigenetic marks

TRANSCRIPTOMICS

RNA-
sequencing

NGS
Genome-wide

differential gene
expression analysis

Bowtie
STAR
kallisto
Salmon

Microarray Hybridization
Differential gene

expression analysis

PROTEOMICS
Deep-

proteomics
Mass-

spectrometry
Differential protein

expression analysis
MaxQuant
Perseus

METABOLOMICS
Deep-

metabolomics
Mass-

spectrometry
Differential metabolite
expression analysis

Metab
metaRbolomics

Lipidr
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advent of NGS, the identification of the presence and the abundance of RNA transcripts in genome-wide manner

became possible. In contrast to microarrays technique, RNA-seq does not depend on the transcript-specific probes

and thus can effectively perform an unbiased detection of novel transcripts, also the less abundant, with high

specificity and sensitivity. Starting points for RNA-seq bioinformatics analysis include alignment-based methods,

such as Bowtie , and STAR , or alignment-free methods, such as kallisto  and Salmon . Cancer-related

omics experiments often rely on specific, tailor-made analytic pipeline. TCGA and other repositories give the great

opportunity to analyze the omics data by a pan-cancer approach where different types of cancers can be compared

in terms of genomic and transcriptomic landscapes .

2.1.4. Proteomics and Metabolomics

Given the high complexity and dynamic range of proteins, their identification and quantification in large scale are

significantly challenging. Proteomic analyses are applied to identify and quantify the set of proteins present within a

biological system of interest. Progressions of the tandem mass-spectrometry (LC-MS/MS) techniques in terms of

resolution, accuracy, quantitation, and data analysis have made it a solid instrument for both the identification and

quantification of cells proteome . Recently, the advent of cutting edge high-resolution “Orbitrap” mass-

spectrometer instruments associated with powerful computational tools (i.e., MaxQuant  and Perseus )

simplified the genome-wide detection of all expressed proteins in human cells and tissues paving the way for a first

draft of the human proteome . MS-based proteomics techniques have been extensively applied also to

investigate the proteome alteration in several human cancer tissues . In particular, the study of cancer

proteomes is a promising path for biomarkers and therapeutic targets identification because proteins are the

molecular unit from which cellular structure and function arise .

The application of MS techniques is not restricted to proteomics but rather can be extended to smaller molecules

such as metabolites. Metabolomics is characterized by the quantifications of metabolites that are synthesized as

products of cellular metabolic activities, such as amino acids, fatty acids, carbohydrates, and lipids. Their levels

can be dynamically altered in disease states reflecting aberrant metabolic functions in complex disorders like

cancer. Indeed, metabolic variations are significant contributors to cancer development . This is the reason why

cancer metabolomics has become an important research topic in oncology , with the aim to get new insights on

cancer progression and potential therapeutic targets. Lipidomics is a subset of metabolomics , specifically

cancer lipidomics has recently led to the identification of novel biomarkers in cancer progression and diagnosis .

Metabolomics is still an ongoing field with the potential to be highly effective in the discovery of biomarkers,

especially in cancer. This is possible due to the support of bioinformatics tools like metab package , which

provides an analysis pipeline for metabolomics derived from gas chromatography-MS data, or metaRbolomics

package , which is a general toolbox that goes from data processing to functional analysis. Similarly, the lipidr

package  is an analogous framework focused on lipidomics data processing.

2.2. Data Management

The huge amount of data deriving from different omics analyses need to be adequately collected and stored.

Challenges of data management include defining the type of data to be stored and how to store it, the policies for
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data access, sharing, use, and finally, long-term archiving procedures . One of the most successful repositories

regarding application of multi-omics approach in cancer is NIHs Genome Data Commons (GDC)  containing all

data generated by the Cancer Genome Atlas (TCGA) project . TCGA project has performed integrative analysis

of more than 30 human cancer types with the aim to create a publicly available comprehensive platform for

collecting the molecular alterations in the cancer cells at the forefront of multi-omics research . Information about

aberrations in the DNA and chromatin of the cancer-genomes from thousands of tumors have been catalogued by

matching with the normal genomes and linking these aberrations to RNA and proteins levels. Moreover, it provides

data for method development and validation usable in many current projects. In 2020, the collaboration of an

international team has completed the most comprehensive study of whole cancer genomes, significantly improving

the fundamental understanding of cancer, and indicating new directions for developing diagnostics and treatments.

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Project (PCAWG, or the Pan-Cancer Project) involved

more than 1300 scientists and clinicians from 37 countries, analyzed more than 2600 whole genomes of 38

different tumor types. Commenting this aspect, Rameen Beroukhim, an associate member of the Broad Institute,

said: “It was heartening that this very large group was able to bring together disparate resources and work to come

up with some groundbreaking findings”. Additionally, Gad Getz, an institute member and the director of the Cancer

Genome Computational Analysis Group at the Broad Institute, director of bioinformatics at the Massachusetts

General Hospital’s (MGH) Cancer Center and professor of pathology at Harvard Medical School, said: “This large

international effort shows the breadth of the types of research and new biological insight that are possible using

whole cancer genome data”. He continued: “By analyzing the largest collection of whole cancer genomes studied

thus far, we created the most comprehensive catalog of mutational signatures to date, this catalog can be used to

understand the mechanisms that generate mutations and drive cancer in each patient” . The Pan-Cancer Project

improved and developed new methods for exploring not only exome, that represent the 1 percent of the genome,

but, also, the remaining 99 percent of the genome, which includes regions that regulate the activity of genes.

With the genomics, epigenomics, and transcriptomics data from over 11,000 tumors representing 33 of the most

prevalent forms of cancer, the Pan-Cancer Atlas represents an exceptional chance for a comprehensive and

integrated analysis to extend our current knowledge of how a normal cell achieves cancer hallmarks. The pan-

cancer analysis involving multi-omics data in combination with structured bioinformatics and statistical instruments

provides an effective platform to recognize common molecular signatures for the stratification of patients affected

by different cancer types and uncover shared molecular pathology of different cancer types for designing tailored

therapies. Investigation of the massive amount of cancer-specific data deposited in TCGA requires special

bioinformatics methods to mine biologically meaningful information. Several analytic and visualization platforms

have been already developed to support the rapid analysis of TCGA data. For instance, cBioPortal provides the

opportunity to visualize, analyze, and download large-scale cancer genomics data sets . The impulse for open

data in the field of biomedical genomics is important to make data available in public repositories for improving and

accelerating scientific discovery, although there are ethical and technological challenges to be overcome.

2.3. Data Integration
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The need to integrate multi-omics data has led to the development of new theoretical algorithms and methods that

are able to extract biologically significant information of clinical relevance.

Unsupervised data integration refers to the cluster of methods that draw an inference from of an unlabeled input

dataset. Learning consists in detecting intrinsic regularities and relationships between the data, without any prior

knowledge about the data itself. Examples of unsupervised techniques are matrix factorization methods, Bayesian

methods, network-based methods, and multi-step analysis. CNAmet is a powerful multi-step integration tool for

CNV, DNA methylation, and gene expression data . The identification of genes which are synergistically

regulated by methylation and CNV data, allow the understanding of biological process behind cancer progression.

Supervised methods involve the use of a dataset for which the phenotype label is known. In this way, when the

system has learned a given task, it will be able to generalize, or to use the experience gained to solve problems

that provide the same basic knowledge. Supervised data integration methods are built via information of available

known labels from the training omics data. The most common supervised techniques are Network-based methods,

Multiple Kernel Learning methods, and multi-step analysis. For example, Feature Selection Multiple Kernel

Learning (FSMKL) is a method which uses the statistical score for feature selection per data type per pathway,

improving the prediction accuracy for cancer detection.

Semi-supervised integration methods, lies between supervised and unsupervised methods, takes both labeled and

unlabeled samples to develop learning algorithm. It is particularly useful in cases where we have a partial

knowledge about the data, or if the collection and sampling phase of labeled data is too expensive to be carried out

exhaustively. Semi-supervised data integration methods are usually graph-based. Graph-based semi-supervised

learning (SSL) methods have been applied to cancer diagnosis and prognosis predictions.

The combination of different biological layers, with the aim to discover a coherent biological signature, remain a

challenging process. Furthermore, multi-omics combinations are not necessarily capable to achieve better

diagnostic results. Selecting an optimal omics combination is not trivial, since there are economic and technical

constraints in the clinical setting in which such diagnostic tools are to be deployed . Machine Learning

Bioinformatic approaches play an important role in the design of such studies.

2.3.1. Multi-Omics Datasets

Selecting an appropriate dataset that allows for easy manipulation and data calculations could affect the

performance of a computational model and reduce the main obstacles to multi-omics data analysis by improving

data science applications of multiple omics datasets:

The MultiAssayExperiment Bioconductor database  contains the information of different multi-omics

experiments, linking features, patients, and experiments;

The STATegRa dataset  has the advantage of allowing the sharing of design principles, increasing their

interoperability;
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MOSim tool  provides methods for the generation of synthetic multi-omics datasets.

2.3.2. The Problem of Missing Data

Integrating large amounts of heterogeneous data is currently one of the major challenges in systems biology, due

to the increase in available data information . The problem of missing and mislabeled samples, is a common

problem in large-scale multi-omics studies . It is common for datasets to have missing data related to some

individuals. This often happens in clinical studies, where patients can forget to fill out a form. In other cases, it is

possible that the acquisition of data reveals to be too expensive, need much time to be obtained or it is difficult to

measure. Missing row values for a table are difficult to manage because most statistical methods cannot be applied

directly to incomplete datasets. In recent years, several approaches have already been proposed to address

missing row values . The missRow package combines multiple imputation with multiple factor analysis to deal

with missing data . The omicsPrint method detects data linkage errors and family relations in large-scale multiple

omics studies .

2.3.3. Exploratory Data Analysis

Understanding the nature of the data is a critical step in omics analysis . For this purpose, it is possible to use

exploratory data analysis (EDA) techniques which allow better assessments at a further modeling step. The main

techniques for EDA include cluster analysis and dimension reduction, both widely applied to transcriptomics data

analysis . While cluster analysis consists of a set of methods for grouping objects into homogeneous classes,

based on measures related to the similarity between the elements, dimension reduction is the process of reducing

the number of variables, obtaining a set of variables called “principal.” Both cluster analysis  and dimension

reduction  are applied to cancer studies, as shown in Table 2.

Table 2. Main cluster analysis and dimension reduction package tools applied to cancer studies.

Together with dimensionality reduction and data clustering, data visualization is also an important part of EDA .

The combinations of these three factors make it possible to identify complex patterns, subpopulations within a

dataset, and understand the variability within a phenomenon. Even if the scatter plot is the most common method

for data visualization, there are other visualization tools available. Hexbins  can be used to explore sc-RNAseq
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Package Tools Description

OMICsPCA Omics-oriented tools for PCA analysis 

CancerSubtypes
Contains clustering methods for the identification of cancer subpopulations from multi-

omics data 

Omicade4 Implementation of multiple co-inertia analysis (MCIA) 

Biocancer Interactive multi-omics data exploratory instrument 

iClusterPlus Integrative cluster analysis combining different types of genomic data 
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data, while Circos diagram  can be used for the detailed representation of multi-omic data and their position in

specific genomic regions.

Recently it is stated that mapping omics data to pathway networks could provide an opportunity to biologically

contextualize the data. A network representation of multi-omics data can enhance every aspect of the multi-omics

analysis because the functional level of biological description is fundamentally composed of molecular interactions

. The main tools for a network representation of multi-omics data are Pathview  and Graphite .

2.3.4. Machine Learning Models

In recent years, machine learning has been proved to be capable of solving many biomedical problems. These

mathematical models can represent the relationships between observed variables and provide a useful description

of biological phenomena. A ML tool can perform several tasks, including classification task in which the input data

are divided into two or more classes and the learning system produces a model capable of assigning one class

among those available to each input. These models have important biomedical applications , because they are

capable of discriminating between health and disease, or between different diseases outcomes . In a regression

task instead, the output belongs to a continuous rather than discrete domain. These models provide insights into

the molecular mechanisms driving physiological states, reveal interactions between different omics, and have been

used in prognostic tools . In this context, due to the large amounts of heterogeneous data, the removal of non-

informative characteristics which simplifies the model, increases its performance, and makes it less expensive to

measure, reveals to be a crucial process . Feature selection algorithm is a process which selects the variables

that contribute most to the prediction, removing the irrelevant or less important features that can negatively

contribute to the performance of the model. Both classification and regression ML techniques combined with

feature selection algorithms have been widely used for cancer prognosis and prediction . Moreover, many

packages, which combine exploratory, supervised, and unsupervised tools, have been recently implemented in

oncology. Table 3 provides a list of some of these new tools.

Table 3. Main packages tools implemented in oncology for machine learning.
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Package Tools Description

mixOmics
R package for the multivariate analysis of biological datasets with a specific focus on data

exploration, dimension reduction, and visualization .

DIABLO
Package for the identification of multi-omic biomarker panels capable of discriminating

between multiple phenotypic groups. It can be used to understand the molecular
mechanisms that guide a disease .

MOFA Package for discovering the principal sources of variation in multi-omics data sets .

Biosigner
Package for the identification of molecular signatures from large omics datasets in the

process of developing new diagnostics .

omicRexposome Package that uses high-dimensional exposome data in disease association studies,
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2.3.5. Functional Enrichment Approaches

The interpretation of a ML model results could be a difficult task. A strategy that can provide readily interpretable

results consist in mapping omic data on functional characteristics, in order to make them more informative and to

associate them with a wider body of biomedical knowledge . Some functional enrichment approaches are listed

below:

Over-Representation Analysis (ORA) ;

Gene-Set Enrichment Analysis (GSEA) ;

Multi-Omics Gene-Set Analysis (MOGSA) ;

Massive Integrative Gene Set Analysis (MIGSA) ;

Exploratory Data Analysis (PCA) ;

Divergence Analysis .

The first two enrichment approaches, ORA and GSEA, are feature extraction methods generally employed as

dimensionality reduction methods. The output of these methods could be the starting points for more complex

models such as interactions among functions. In particular, ORA method is based on a statistical evaluation of the

fraction of pathway components found among a user-selected list of biological components. This input list fulfils the

specific criteria (i.e., log fold change, statistical significance, and cutting-off the majority of components from the

input list such as all the genes of a microarray experiment). GoMiner  is one of the most popular examples of

ORA method. It was developed for gene-expression analysis of microarray data. It takes as input a set of

over-/under-expressed genes plus the complete set list of the microarray, then it calculates over-/under-

representation for Gene Ontology categories by means of Fisher’s exact test. Similarly, GSEA was developed for

gene expression analysis from microarray data. The input is a list of ranked genes in accordance with their

differential gene expression between two phenotypic classes. For each set of genes, an enrichment score (ES) is

calculated based on a Kolmogorov–Smirnov pathway-level statistic. Multiple hypothesis testing is applied for the

evaluation of ES significance. In the study of , the GSEA methodology was used to validate the proliferative role

of growth-supporting genes involved in cancer treatment . Multi-omics gene-set analysis (MOGSA) is an

enrichment approach that uses multivariate analysis, which consists in integrating multiple experimental and

molecular data types measured on the same data set. The method projects the features across multiple omics data

sets to reduce dimensional spaces and calculates a gene set score with the most significant features. MOGSA’s

Package Tools Description
including its integration with a variety of high-performance data types .

OmicsLonDA
Package that identifies the time intervals in which omics functions are significantly different

between groups .

Micrographite
Package that provides a method to integrate micro-RNA and mRNA data through their

association to canonical pathways .

pwOmics Package for integrating multi-omics data, adapted for the study of time series analyses .
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multi-omics approach compensates for missing information in each single data type to find sets of genes not

obtainable from the analysis of single omics data. A different approach is the massive integrative gene set analysis

(MIGSA). It allows to compare large collections of datasets from different sources and create independent

functional associations for each omic layer. The utility of MIGSA was demonstrated in  by applying the multi-

omics perspective method to functionally characterize the molecular subtypes of breast cancer. There are

enrichment approaches, such as pathwayPCA and divergence analysis methods, which use functional aggregation

as support for other data analysis studies. In pathwayPCA, exploratory data analysis is performed using statistical

methodologies to analyze the functional enrichment of each omics set and aggregating them via consensus.

pathwayPCA overcomes alternative methods for identifying disease-associated pathways in integrative analysis.

Among various case studies, the model was applied for the identification of sex-specific pathway effects in kidney

cancer for the construction of integrative models for the prediction of the patient’s prognosis and for the study of

heterogeneity in an ovarian cancer dataset. Divergence analysis method instead, is an enrichment approach that

uses functional aggregation to classify large amounts of omics data. The omic profile is reduced to a digital

representation based on that of a set of samples taken from a baseline population. The state of a subprofile that is

not within the basic distribution is interpreted as “divergent.” In  an application of the divergence analysis within

the study of metabolic differences among the interpersonal heterogeneous cancer phenotypes has been described.
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