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Proper nutrition is crucial for normal brain and neurocognitive development. Failure to optimise neurodevelopment

early in life can have profound long-term implications for both mental health and quality of life. Although the first

1000 days of life represent the most critical period of neurodevelopment, the central and peripheral nervous

systems continue to develop and change throughout life. Besides their individual contributions, the interaction of

nutrients with other micro- and macronutrients and the way in which they are organised in the food matrix are all of

crucial importance for normal neurocognitive development. Also the gut-brain axis, including the gut microbiota, is

an important modifier in this respect.
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1. Introduction

Nutrition is critical in supporting healthy brain development early in life, with long-lasting, and often, irreversible

effects on an individual’s cognitive development and life-long mental health. In this review, we present recent

human and pre-clinical evidence on the role of nutrition, with particular focus on more emerging nutrients, in

neurocognitive development in healthy infants and children aged 0–59 months.

Development of the human brain starts with the closure of the neural tube by the fourth week of pregnancy  and

the proliferation of neurons in the germinal layers near the ventricles during the early phases of gestation (from

week six of pregnancy) . This is followed by the migration of neurons to their final destination and simultaneous

initiation of neuronal differentiation (Figure 1), adapted from ). Neuronal differentiation includes the formation of

dendrites and axons, the production of neurotransmitters, the development of synapses and intracellular signaling

systems, and establishment of complex neural membranes starting from late pregnancy until the first few months

postnatally. The formation of synapses continues throughout life , whereas the production of various

neurotransmitters starts prenatally and reaches mature levels around the age of three years . In parallel, glial cell

production begins during the second trimester (32 weeks of gestation) ; glial cells insulate the axons by

surrounding them with a membranous myelin sheath (axonal myelination), a process that predominantly takes

place between the second trimester of gestation and the first year of life. Myelination continues, but starts to

decline in early adulthood after which it stops at around the age of 40 years .
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Figure 1. Visual representation of brain development timeline in humans from in utero up to adulthood.

Development of brain structures occurs in several phases. The major transition takes place when the transient

cortical structure, mediating fetal and neonatal behavior, is replaced by the cortical plate at three to four months of

age. As a result, motor behavior changes from non-directed general movements to more goal-directed movements,

such as reaching. The hippocampus, which is important for facial and scene-recognition, as well as spatial

memory, develops at approximately 32 weeks of gestation until at least 18 months postnatally . The prefrontal

cortex, responsible for complex processing tasks such as attention and multi-tasking, exhibits initial rapid

development during the first 6 months of life . Note, that prefrontal development continues well into the third

decade of life . The pruning of axons and synapses to further optimize the brain’s functioning usually starts

between the onset of puberty and early adulthood .

2. Nutrients that Play a Role in Neurodevelopment

2.1. Lipids

2.1.1. Long-Chain Polyunsaturated Fatty Acids

Neurodevelopment is influenced by a number of factors ranging from gestational age at birth and social

environment to nutrition. Dietary fat in particular is an important modifiable nutritional factor illustrated by the crucial
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role of the polyunsaturated fatty acids (PUFAs) linoleic acid (LA; 18:2 n-6), alpha-linoleic acid (ALA, 18:3 n-3),
docosahexanoic acid (DHA; 22:6 n-3) and arachidonic acid (AA, 20:4 n-6) in normal brain formation
and neuronal myelination during infant neurodevelopment . Furthermore, long-chain PUFAs
(LCPUFAs) have been shown to affect the production of various neurotransmitters , with profound
effects on monoaminergic, cholinergic, and gamma-aminobutyric acid (GABA) ergic systems. DHA is
especially important for visual and prefrontal cortex development, the latter of which mediates
attention, inhibition and impulsivity actions .
In addition to sufficient intake via diet or supplementation, a balanced ratio between LA and ALA is important as

well . In the prospective Mothers and Children’s Environmental Health (MOCEH) cohort of 960 pregnant women

in Korea, an inverse association between LA/ALA ratio during pregnancy and Mental Developmental Index (MDI)

and Psychomotor Developmental Index (PDI) scores in the offspring at six months of age was reported . The

average LA/ALA ratio in this population amounted to 11.12 ± 6.9.

LA is abundantly present in daily food and high intake can have negative health consequences . High LA in

colostrum and breastmilk has been associated with poorer motor and cognitive scores at two and three years of

age  and a lower verbal intelligence quotient (IQ) at five-to-six years  in the observational EDEN (Etude de

cohorte généraliste, menée en France sur les Déterminants pré et post natals précoces du développement

psychomoteur et de la santé de l’Enfant) cohort in France. This negative impact was postulated to take effect

through several mechanisms, namely the suppression of biosynthesis of n-3 PUFAs (due to enzymatic competition

to convert n-6 and n-3 PUFA to LCPUFA), which supplies necessary DHA for brain development, as well as by

decreased uptake of circulating DHA by the brain and thus impaired accretion of DHA in the brain. Lastly, n-6

PUFAs are precursors for several pro-inflammatory eicosanoids that can be produced in early life and may have a

negative impact on cognitive function .

Several observational studies reported that high DHA levels in pre- and postnatal periods seem to improve specific

cognitive skills ranging from processing ability and attention to overall IQ in the offspring, even up to 12 years of life

. Nonetheless, the impact of DHA supplementation during pregnancy remains controversial. Daily 400 mg

DHA supplementation for 20 weeks in pregnant mothers showed positive effects on the infant’s attention ability at 5

years of age , while an earlier study among 2499 pregnant women in Australia found that daily 800 mg DHA

supplementation did not affect cognitive and language development of the offspring at 12 and 18 months . The

latter is further supported by the results of a Cochrane systematic review (2015) stating that there was no effect of

DHA supplementation in breastfeeding mothers on language development, problem-solving abilities, psychomotor

development, and general movement ability of their offspring . Another Cochrane review (2017) reported that,

although there was no concern over the safety of infant formulas supplemented with DHA and AA, the majority of

evaluated randomized controlled trials (RCTs) did not show any beneficial effects on neurodevelopmental

outcomes in term infants . In addition, the authors concluded that the positive effect on visual acuity had not

been consistently demonstrated. Although the review included the study by Colombo et al. , reporting a

beneficial effect of DHA/AA supplementation (up to 0.64% DHA/0.64% AA) in infant formula on problem-solving

skills at nine months , it did not include earlier studies on the topic . These studies indicated that routine

supplementation of term infant milk formula with DHA (at the level of 0.3% PUFA), from birth to four months of age,
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was associated with improved neurodevelopmental outcome at four months  and higher MDI scores at 18

months . In addition, better inhibitory control measured by behavioral and brain electrophysiology responses

among those supplemented with the above-mentioned dose at 5.5 years of age has been described as well .

Importantly, dosing LCPUFAs at a level higher than 0.64% in early life may have negative effects on cognitive

development at a later stage .

The impact of essential fatty acids (EFA) and LCPUFAs on cognition and brain development appears to be

particularly evident in older children. Interestingly, DHA and AA supplementation of 200 mg daily in Growing Up

Milk (GUM) among toddlers aged 13 months for the duration of one year increased the Bayley III language

composite score at 24 months as compared to those receiving standard GUM without LCPUFA. The same study

reported fewer inattention episodes among boys receiving LCPUFA-supplemented GUM as compared to their

unsupplemented counterparts .

Two separate studies in two-to-six years old children in Ghana and Tanzania revealed that children with the highest

levels of blood EFA and DHA had at least a three times higher chance of successfully passing an executive

function test . In older pre-school children, the consumption of 978 g of fish over one week influenced

cognitive function compared to those consuming 850 mg of meat, after adjusting for dietary compliance;

information on EFA and DHA blood levels was not included .

2.1.2. Polar Lipids

Polar lipids are amphiphilic in nature and contain a hydrophobic tail and a hydrophilic head. Phospholipids

(glycerophospholipids and sphingomyelin) and sphingolipids (ceramides, cerebrosides and gangliosides) are the

main representatives of this group. Polar lipids make up biological membranes but are also found in circulating

fluids. In mammalian milk, the milk fat globule membrane (MFGM), the trilayer membrane structure surrounding

each fat globule, is an important source of polar lipids , as are nanovesicles (exosomes). Nanovesicles are

secreted into milk by mammary gland cells and are implicated in cell-to-cell communication by virtue of their

functionally active cargo (e.g., messenger-RNA (mRNA), micro-RNA (miRNA), and different proteins; ). Human

as well as bovine milk contains approximately 4% fat in the form of fat globules . These globules are filled with

triglycerides, constituting 98% of total fat. The lipids within the MFGM primarily include polar lipids but also

comprise neutral lipids (like cholesterol). The main polar lipids present in human and bovine MFGMs are

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and

sphingomyelin (SM) ; human milk contains higher levels of SM and PS, whereas relatively more PE is

present in bovine milk fat .

To date, no intake recommendations or guidelines for polar lipids have been proposed or implemented by health

authorities. However, adequate intakes have been defined for two nutrients that serve as structural parts of polar

lipids, choline and DHA . Presently, only limited scientific evidence exists on the brain bioavailability of polar

lipids via placental transfer or transport over the blood brain barrier (BBB) . Nevertheless, supplementing

polar lipids in wild-type animal models and healthy infants does suggest benefits for cognitive performance.
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The putative role of MFGM polar lipids in brain and neurocognitive development has received significant attention.

In Sprague-Dawley rats, oral gavage supplementation with MFGM led to neurocognitive benefits by early

upregulation of genes involved in brain function, such as brain-derived neurotrophic factor (BDNF) and St8 alpha-

N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 . Somewhat unexpectedly, a human RCT evaluating the

effects of maternal dietary supplementation of complex milk lipids (CML; gangliosides and phospholipids) from the

MFGM during pregnancy on fetal growth showed no effects on any of the fetal biometric dimensions measured .

The lack of effect could be due to the application of an inadequate dose of polar lipids. In a Belgian study, a

phospholipid-rich MFGM concentrate given daily to preschool children aged 2.5–6 years for a period of four months

decreased behavioral problems and reduced days with fever during the intervention period . Notwithstanding

this encouraging result, Timby and colleagues (2017) concluded that while MFGM interventions seem safe, it is still

unclear which MFGM fractions are most suitable for supplementation and at what concentration at which age.

Furthermore, it was pointed out that the evidence base for the effects of MFGM polar lipids on brain and

neurocognitive development is still limited . Since then, several studies have provided additional evidence for

the importance of the MFGM in early life with mixed outcomes. A study in 451 healthy term infants showed that

receiving formula with added bovine MFGM and bovine lactoferrin (LF) resulted in accelerated neurodevelopment

at day 365 as evidenced by higher mean cognitive (+8.7), language (+12.3), and motor (+12.6) Bayley-III scores,

and improved global development scores from day 120 to day 275 and attention at day 365 in the MFGM + LF

group . In addition, enhanced language skills at day 545 were observed (some subcategories of the MacArthur-

Bates Communicative Development Inventories were higher in the MFGM + LF group).

There has been growing interest in the use of gangliosides as part of a supplement for either the infant or the

mother because these polar lipids serve a crucial role in pre- and postnatal development of the brain, which

coincides with the critical window of rapid brain growth around birth . Ceramides are essential for neural

development contributing to ganglioside synthesis in utero. Interestingly, the phlorizin domain of the lactase

enzyme splits ceramides from glucosyl, galactosyl, and lactosyl-cerebrosides . In addition, lactase splits lactose

into glucose and galactose. As nearly all healthy infants are lactase persistent, lactase activity in their small

intestine yields ceramide, glucose, and galactose moieties from dietary lactose and glycosphingolipid intake, all

important building blocks for the developing nervous system. Gangliosides are glycolipids that contain sialic acid,

which is an essential nutrient for optimal brain development and cognition. Endogenous production of sialic acid is

possible but limited. Rather, it is available in human milk oligosaccharides in relatively large quantities,

predominantly in the form of Neu5Ac (N-acetylneuraminic acid), which is the precursor of various neural brain

glycoproteins, including polysialic acid, gangliosides, glycosaminoglycans, and mucins. The major protein carrier of

polysialic acids is NCAM (Neural Cell Adhesion Molecule); polysialylated-NCAM is a key neuroplastic molecule

involved in neuronal plasticity and of crucial importance for memory formation. Other examples of sialylated

proteins are synaptic cell adhesion molecule 1 and scavenger receptor CD36 . Sialic acid is particularly

abundant in neuronal cell membranes. Notably, the location and amount of sialic acid in different regions of the

brain change dramatically during development.

The high sialic acid content of human breast milk in addition to its role in brain development suggest that sialic acid

in breast milk has an impact on infant cognitive development. This could also imply that brain growth creates a
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greater need for sialic acid than can be provided by endogenous biosynthesis in the infant. This is supported by

findings from a study in which sialic acid was measured in brain samples from infants (1–38 weeks) that died of

sudden infant death showing that the sialic acid content was higher in the brains of breast-fed infants than in those

of formula-fed infants .

2.2. Minerals

2.2.1. Iron

In addition to lipids, micronutrients are critical for normal neurodevelopment as well. Iron, for instance, is vital for

energy production, oxygen transportation, and DNA synthesis. It plays a crucial role in hippocampal development,

myelination and production of neurotransmitters, such as dopamine, serotonin, and norepinephrine as shown in

pre-clinical studies . Iron deficiency results in reduced 6-desaturase enzyme activity that is required for the

synthesis of essential fatty acids and can therefore impair the synthesis of 

-linoleic acid (ALA, 18:3 n-3) into DHA . Currently, no literature is available on the impact of combined iron and

LCPUFA deficiencies on cognitive neurodevelopment.

Limited evidence from recent studies suggest that iron supplementation during pregnancy and infancy may

positively influence the psychomotor development of children . A positive effect of prenatal iron

supplementation during pregnancy on overall cognitive development of the child has been described only for

anemic pregnant women. In this group, a favorable effect on cognitive performance in children under two years of

age, toddlers and primary school children was observed .

Based on a systematic review and a follow-up study, the effects of iron supplementation during early life on

cognitive function are unclear at 12 months of age. In addition, no benefit on cognitive function at 18 months could

be detected . Notably, the provision of iron to iron-replete infants could have a negative effect on long-term

cognitive development as shown in a cohort study among infants in Chile . Positive impact of iron

supplementation on cognitive function seems to be observed only in anemic primary school children . Based

on the available evidence, adequate dietary iron intake should be encouraged during pregnancy and post-natal life

up to adulthood. With regard to iron supplementation, a different picture emerges. Given the uncertainty of the

efficacy of iron supplementation due to significant supplementation heterogeneity across the various studies (i.e.,

type and format of iron supplementation, dosage, length of supplementation, presence of other nutrients) ,

combined with the potential negative impact of providing high iron dosages to iron-replete infants , it seems

advisable to restrict the provision of iron supplements, in the right form and dosage, to anemic individuals.

2.2.2. Zinc

Zinc is necessary for central nervous system (CNS) development and is one of the most ubiquitous metals found in

the brain; it is present in many enzymes involved in brain growth and is important for neurotransmission. In animal
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models, zinc has been shown to be involved in neurogenesis, neural migration, synaptogenesis, and regulation of

GABA-Ergic neurotransmitter release .

Zinc deficiency during pregnancy and early infancy has long been associated with developmental deficits, such as

poorer learning, attention, memory, and mood . However, there is currently no convincing evidence that maternal

zinc supplementation improves cognitive development in the offspring .

Evidence on the association between zinc intake and cognitive development is quite limited for infants. Six-month

old infants receiving either a combination of micronutrients (10 mg/d zinc, 10 mg/d iron and 0.5 mg/d copper) or

iron and copper alone for the duration of 6 months presented with different outcomes. In the group receiving zinc,

there was an improvement in normative information processing and active attentional profiles at two years of age.

However, no differences were reported regarding other parameters, which included Bayley Scales of Infant

Development (BSID) at six, 12, and 18 months. Infants receiving zinc supplementation were also able to maintain a

better zinc status .

A Cochrane systematic review (2012) concluded that there is no significant effect of zinc intake on mental and

motor development in children . This was nuanced by another systematic review, published later that year,

stating that the effect of zinc supplementation on cognitive function might be dependent on the dose of

supplementation and the duration of the intervention .

2.2.3. Iodine

Iodine plays an important role in brain development in the form of thyroxine and triiodothyronine. It affects the

timing of differentiation of neural tissue in the brain prenatally and determines the number of glial cells for myelin

sheath production postnatally. Maternal thyroid hormone can be found in the embryonic cavities at the end of week

4 post-conception when the formation of the brain cortex and the anterior part of the neural tube takes place .

The impact of pre-conception iodine levels has been recently investigated in the Southampton Women Cohort .

The results revealed that a low maternal urinary iodine concentration, measured by iodine/creatinine (I/Cr) ratio, at

3.3 years before conception was associated with low overall childhood cognitive function at 6–7 years as assessed

by the Wechsler Abbreviated Scale of Intelligence (WASI) . Around 8.9% of the women in this cohort presented

with a low I/Cr ratio. Unexpectedly, the same study reported no influence of pre-conception iodine levels on specific

measures of executive function at the age of six-to-seven years .

The Generation R cohort study showed that mild-to-moderate iodine deficiency in early pregnancy affects the

offspring’s behavior and risk for development of ADHD at eight years of age . Severe iodine deficiency during

pregnancy is well-known to result in maternal and fetal hypothyroidism and has been shown to be associated with

serious adverse health effects in the offspring, including congenital hypothyroidism, growth retardation and

impaired cognition encompassing deficits in hearing, speech, gait and IQ . Still, several iodine

supplementation studies during pregnancy on offspring cognitive function reported inconclusive findings. This, in

[5][53]

[5]

[54][55]

[55]

[56]

[57]

[58]

[59]

[59]

[59]

[60]

[5][61]



Nutrients and Cognitive Neurodevelopment | Encyclopedia.pub

https://encyclopedia.pub/entry/13059 8/27

part, may be explained by the application of age-inappropriate global development assessments that may have

caused misclassification and lack of correlation with cognitive function at that particular time .

Post-natally, iodine continues to play a role in neurocognitive development. The level of iodine in colostrum predicts

the motor development capability of infants at 18 months, but does not relate to other abilities, such as language

development or overall cognition . Interestingly, a study on iodine supplementation using iodized salts for

children in areas where the incidence of iodine deficiency is high, reported no benefits on cognitive function in

children older than three years of age despite the improvement in iodine status .

2.3. Vitamins

Despite extensive research conducted on vitamin supplementation, only limited recent evidence exists to suggest

that vitamin supplementation during pregnancy and early intake by infants positively influences cognitive

development of children. Nevertheless, vitamin A, vitamin B12 (cobalamin), folate, and vitamin D are well-

recognized for their capacity to critically influence early cognitive development , and micronutrient deficiencies

early in life can lead to impairments of the CNS.

2.3.1. Vitamin A

Mice postnatally deprived of vitamin A exhibited a reduction in the expression of brain retinoid receptors and

associated target genes, which was accompanied by selective memory impairment after 39 weeks of deprivation

. Retinoids have typically been associated with relational memory, synaptic plasticity, learning, memory and

sleep, and are essential nutrients that help support normal embryonic development, cell growth, and differentiation

.

A recent human intervention study on vitamin A and cognitive function assessed the effectiveness of vitamin A,

zinc, glutamine, zinc plus glutamine, zinc plus vitamin A, and vitamin A plus zinc plus glutamine . Only the

combination of all three positively influenced cognitive function in girls (aged 6–12 years), but not in boys. It should

be noted, however, that the power of this study was limited due to the small sample size of each intervention group.

2.3.2. Vitamin B12

A study on maternal intake of methyl-donor nutrients and child cognition at three years of age revealed a weak

inverse association for vitamin B12 intake and a linear association for folate intake during the first and second

trimester with the Peabody Picture Vocabulary Test III (PPVT-III scores) . Each 600 mcg/day increment in total

folate intake during the first trimester was associated with an increase of 1.6 points in PPVT-III scores. No

correlations were found between choline, betaine, or methionine and cognitive function .

Recent findings from the GUSTO (Growing Up in Singapore Towards healthy Outcomes) cohort showed that

maternal B12 deficiency was associated with lower cognitive scores of infants at 24 months when compared to

infants from vitamin B12-replete mothers . The level of vitamin B12 at 2–12 months correlated with development
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and performance in social perception tasks and visuo-spatial abilities at 5 years of age among 330 children in

Nepal ; an increase of one unit in vitamin B12 status was associated with an increase of 4.88 in the Ages and

Stages Questionnaires (ASQ-3), 0.82 in recognition score, 0.59 in geometric puzzle score, and 0.24 in block

construction scores. In another study (650 children, India), vitamin B12 status at four-months was associated with

increased BSID-II score at 12–14 months . Vitamin B12 plays an important mechanistic role in neural

myelination, synaptogenesis, and neurotransmitter synthesis in pre- and postnatal periods. In addition, it promotes

development of the hippocampus and is therefore relevant to memory, language, and visual processing .

Vitamin B12 and folate are required for cell division and generation of methionine, which is needed to produce

neurotransmitters and myelin . A relationship between folate and vitamin B12 was also reported by Strand and

colleagues, demonstrating that the plasma folate concentration was independently associated with mental

development scores when children with poor vitamin B12 status were excluded from the analysis . Timing of

folic acid intake (and the resultant endogenous folate level) is likely critical, as it is well-known that severe folate

deficiency during pre-conception and early pregnancy is associated with inadequate closure of the neural tube

resulting in severe brain defects, including spina bifida . However, in older children, supplementation with folic

acid, vitamin B2, B5, and calcium did not affect verbal IQ, short term memory, or processing speed .

2.3.3. Vitamin D

In a rodent model, low maternal vitamin D (1,25-dihydroxycholecalciferol) status during pregnancy was associated

with structural changes in the brain, such as enlarged lateral ventricles, a thinner cortex, and increased cell

proliferation . Low prenatal vitamin D status was also linked to the severity of schizophrenia and autism

symptoms in epidemiological studies . In addition, vitamin D status during pregnancy was shown to be related

to cognitive development, and maternal 25(OH)D levels <50 nmol/L were independently associated with low MDI

and PDI scores at six months . This prospective cohort of 363 mother-infant pairs in China also reported an

inverted U–shaped relation between vitamin D levels in cord blood and neurocognitive score at 16–18 months .

Interestingly, vitamin D has been shown to be able to upregulate serotonin expression .

2.4. Dietary Protein and Amino Acids

A classic example of the importance of proteins to behavioral and neurocognitive development in infants is the

longitudinal study by Chavez et al.  which evaluated the effects of nutritional supplementation on infants’

physical, mental, and social development in two groups of 17 mother-child pairs in a poor rural Mexican

community. In this study, one group of mothers was supplemented daily with 205 calories and 15 g of protein

during pregnancy and 305 calories and 15 g of protein during lactation, whilst the other group followed the usual

feeding habits of the community. Between the 12th and 16th week of life, the supplemented infants began to

receive whole cow’s milk ad libitum and prepared baby food in quantities sufficient to maintain adequate rates of

growth. At 18 months of intervention, the mothers of supplemented children displayed more complex interactions

with their children, who were more restless, playful, demanding and disobedient than those non-supplemented.

These results suggest a beneficial effect of protein (and energy) supplementation on the behavioral patterns within

the family, with the more active children eliciting greater stimulation from their parents. Another historic study 
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demonstrated that protein supplementation, rather than energy, during early childhood improved psycho-

educational performance. Therefore, Guatemalan children exposed to protein supplement scored significantly

higher on tests of knowledge, numerical aptitude, reading and vocabulary as compared to those that only received

energy supplementation. Two decades later, 130 female subjects were re-evaluated and, interestingly, women

exposed to protein supplementation during early childhood had better educational achievements than those from

the energy group .

2.4.1. The Importance of Protein Quality

The nutrient value of dietary proteins (protein quality) essentially resides in the individual (essential) amino acids

that are absorbed into the system. During gestation, the growing fetus only receives amino acids because proteins,

with the exception of certain immunoglobulins, do not cross the placenta in significant amounts. Amino acids are

the precursors of structural proteins required for the growth of body tissues, including the brain. In addition, various

amino acids are precursors of neurotransmitters or, in many cases, are neurotransmitters themselves. They also

serve as direct precursors of enzymes and peptide hormones. Therefore, insufficient provision of any single amino

acid from the maternal diet can hinder protein synthesis by the fetus and can have deleterious effects on fetal brain

development similar to those induced by the omission of proteins as a whole . Rodent studies studying

inadequate protein intake (protein malnutrition) report reduced brain size, dendritic arborization, cell maturation ,

emotional reactivity and sensitivity to aversive or painful stimuli , reduction in cognitive flexibility , and

learning and memory impairments .

2.4.2. mTORC1: Linking Protein (in)Adequacy to Brain Development

One plausible mechanistic pathway that may explain the link between protein (in)adequacy and brain development

is the activity of the serine/threonine kinase mammalian target of rapamycin complex 1 (mTORC1), which is a

master regulator of all cell growth and metabolism. This kinase integrates signals triggered by different stimuli,

such as variations in amino acid supply, changes in the cellular energy state, growth factors (e.g., BDNF, insulin,

and IGF1 (insulin-like growth factor 1)), and (within the brain) by transduction of neurotransmitters and

neurotrophin signals . After influx through L-amino acid transporters, leucine activates mTORC1 in

neurons . In addition, uptake of arginine by the cationic amino acid transporters CAT1 and CAT3 has also been

demonstrated to activate mTORC1 in neurons . Amongst growth factors, insulin and IGF1 enhance mRNA

translation in neurons possibly through mTORC1 . BDNF, the most prominent neurotrophic factor in the

CNS , has been shown to activate mTORC1 signaling and enhance de novo protein synthesis in cortical

neurons . Several studies suggest that amino acid sufficiency is essential for the insulin-induced activation of

mTORC1 in several cell lines , but not for BDNF-induced mTORC1 activation in neurons .

Neurotransmitters such as serotonin (5-HT) have also been reported to possibly activate mTORC1 .

During early CNS development, mTORC1 is involved in neural stem cell proliferation, migration, and differentiation,

axonal and dendrite development, gliogenesis, synaptic plasticity, and learning and memory storage .

Aberrant mTORC1 signaling alters neural development and can result in a wide spectrum of neurological

developmental disorders, including learning disabilities and mental retardation.
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3. Nutrient Interactions through the Gut-Brain Axis (GBA)

3.1. What Is the Microbiome Gut-Brain Axis?

Approximately 2500 years ago, Hippocrates stated that all disease begins in the gut. This bold statement has now

received support from a substantial body of research in both humans and animal models. The gut is home to a

complex and dynamic ecosystem consisting of trillions of microorganisms—the gut microbiota, including bacteria,

archaea, yeasts, viruses and protozoa . The human host and the gut microbiota are conceptualized as a unique

entity . Whereas humans shape the microbiota via diet and life-style changes , the microorganisms

reciprocally contribute to the host physiology. This symbiotic relationship starts from the moment when the

maternal microbiota shape embryonic development  and initiate infant gut colonization during birth, and is

continued by the role of the infant microbiota in postnatal brain and cognitive development , as well as

its important, longer-term influence on the maturation of immune, endocrine and neural systems .

The gut and the brain are intimately connected via the gut-brain axis (GBA), which involves several bidirectional

communicational routes. Firstly, the gut presents with a wide-extended enteric nervous system (ENS). The gut

bacteria can modulate ENS electrophysiological thresholds , as well as influence ENS development via the

activation of pattern recognition receptors (PRRs) . Accordingly, germ free (GF) mice, which are devoid of

microorganisms and can, thus, show the effects of gut microbiota on host physiology  display ENS

abnormalities in the postnatal period . Beyond influencing the nervous system via the ENS, the microbiota

communicate with the brain via autonomic, immune, endocrine and metabolic pathways . Specifically,

gut microbiota have been suggested to regulate gene expression in the brain by inhibiting miRNA and mRNA

translation . Research has also shown that the increased or decreased expression levels of many miRNAs

could reflect the various pathophysiological processes of diseases by way of neurotransmitter expression, via the

synthesis and release of neurotransmitters implicated in psychopathology (e.g., GABA and the precursor pool for

serotonin , as well as BDNF expression ). These neuroactive metabolites (e.g., GABA) can directly interact

with gut autonomic synapses , and thereby, modulate brain neurochemistry and behavior. In addition, microbes

also act via the production of short-chain fatty acids (SCFAs) and peptidoglycan (PGN). SCFAs include acetate,

butyrate, and propionate and can have wide-range effects on host health, from gastro-intestinal functioning to body

metabolism. Indeed, while 90–95% of SCFAs are promptly absorbed after production and utilized by either the gut

mucosa or the liver, a minor fraction –mostly acetate reaches the systemic circulation  by which they can

exert various effects on the brain. This is supported, for example, by the observation that butyrate injections

increase central serotonin and BDNF in mice  and by the presence of acetate, propionate and butyrate

metabolites, in decreasing concentrations, respectively, in human cerebrospinal fluid. Therefore, SCFA signaling

occurring in response to microbiota changes in the intestine can reach distant organs, including the brain, and can

influence the inflammatory and metabolic state . Further, PGN can cross the blood-brain barrier (BBB) and

interact with PGN-sensing molecules and transporters. It has been suggested that the influence of gut microbiota

might even start prenatally by contributing to BBB integrity regulation . Noticeably, a study in healthy animals

reported increased PGN concentrations in the brain in parallel with postnatal bacterial colonization, providing

evidence for the role of microbiota in early neurodevelopmental processes . Interestingly, these age-dependent
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increases in PGN concentrations were found across different brain regions, such as the prefrontal cortex, the

striatum and the cerebellum, which suggests that these mechanisms are domain-general and affect the entire

developing brain.

3.3. The Impact of Pro- and Prebiotics through the GBA

One way of influencing microbial diversity and reversing dysbiosis is via nutrition and drastic changes in diet have

been found to alter microbial diversity in mere days . Recent research suggests that microbial ecology can be

therapeutically modified via the intake of so-called ‘psychobiotics’ , referring to active compounds that are

capable of acting on the nervous system, consequentially shaping psychological processes and behavior,

ultimately exerting health benefits in persons with psychiatric conditions. Indeed, psychobiotics have anxiolytic and

antidepressant effects marked by changes in emotional, cognitive, systemic and neural indices . Initially, only

probiotics were considered as psychobiotics since they have the ability to release neuroactive substances

(depending on the strain of belonging) ; this includes, for example, the production of dopamine and

noradrenaline by members of the Bacillus genus, GABA by the Bifidobacteria genus, serotonin by the

Enterococcusand Streptococcus genera, noradrenaline and serotonin by the Escherichia genus, and GABA and

acetylcholine by the Lactobacilli genus . Researchers have consistently outlined the psychotropic effects of

probiotics: in an animal study, Barrett and colleagues demonstrated that Lactobacillus (L.) brevis and

Bifidobacterium (B.) dentiumincreased GABA concentrations in vitro . These findings were supported by a

study using an in vivo mouse model showing that ingestion of the L. rhamnosus strain regulated emotional

behavior and central GABA receptor expression . Mice fed with L. rhamnosus exhibited decreased GABA

mRNA expression in the amygdala, along with lower levels of stress-induced corticosterone and reduced anxiety-

and depression-related behavior . Another study replicated these results , and showed that the increase in

GABA metabolites in the brain was evident after about four weeks, a lag that is comparable with the onset of other

pharmaceutical interventions, such as serotonin-reuptake inhibitors . Importantly, it was pointed out that re-

colonization of gut bacteria in adolescent GF mice was not sufficient to reverse anxiety-like behavior, further

supporting the idea that early deficits in gut microbiota may not be reversible.

With regards to human studies, Pärtty and colleagues administered L. rhamnosus to seventy-five infants aged six

months and followed up with them for 13 years. The results suggested that supplementation with this probiotic

strain may reduce the incidence of ADHD and Autism Spectrum disorders. However, the underlying mechanisms of

action need further clarification, as no consistent microbial patterns could be identified . In a randomized

double-blind trial including 55 adult participants, it was found that the consumption of probiotics led to reduced

measures of mood and distress, as well as decreased levels of urinary free cortisol, reflecting a decreased stress

response . Similarly, the results of a placebo-controlled, four-week probiotic food-supplement intervention study

with multispecies probiotics in 20 healthy participants without mood disorders revealed a significantly reduced

overall cognitive reactivity to sad mood (assessed by the revised Leiden index of depression sensitivity scale) as

compared to the placebo group . Lastly, consumption of a fermented milk product with probiotic for a period of

four weeks by healthy women resulted in altered activity of brain regions involved in the control of emotion

processing and regulation .
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In addition to probiotics, prebiotics have more recently been classified as psychobiotics. Prebiotics are specific

non-digestible food components, which selectively feed beneficial gut bacteria, consequentially stimulating their

growth and activity with remarkable effects on brain development and function . Prebiotics include

oligosaccharides, fructans, unsaturated fatty acids, polyphenols and dietary fibers. To date, fructooligosaccharides

(FOS) and galactooligosaccharides (GOS) have been studied the most, showing promising effects in animal

models . For example, milk oligosaccharides administration has been shown to prevent stress-induced

dysbiosis and anxiety-like behavior in mice. Similarly, chronic combined FOS and GOS supplementation exhibited

anxiolytic and antidepressant effects, as well as a reduction in the corticosterone stress response in mice . In

addition, prebiotics have been shown to modulate hippocampal and hypothalamus gene expression, and induce

changes in SCFA concentration, which positively correlate with the behavioral effects. Further supporting the

beneficial impact of prebiotics, a recent study in mice demonstrated that combined FOS-GOS supplementation

from birth was associated with reduced anxiety-like and improved social behavior. Importantly, supplementation of

short-chain GOS and long-chain FOS also affected serotonergic brain network regions comprising the prefrontal

cortex (PFC) and the somatosensory cortex, and increased BDNF mRNA expression in the PFC . In infants 12

months of age, administration of a combination of B. longum (BL999), L. rhamnosus, inulin, fructo-oligosaccharides

(FOS), and LCPUFAs for one year resulted in higher, albeit not significantly different, scores in cognition and

adaptive behavior . More in-depth research on the potential beneficial effects of psychobiotics within such a

critical developmental time window is needed, especially in light of the promising findings in older subjects.

Therefore, an increase in processing of positive versus negative attentional vigilance and a significantly lower

cortisol awakening response were observed in healthy adults after 3 weeks daily B-GOS intake, compared to the

placebo group . In a very recent study, the effects of prebiotic intake for four weeks on psychological and

behavioral emotion regulation trait indices and the underlying brain networks involved were investigated in 60 girls

in late adolescence . The results showed a significant decrease in self-reported anxiety levels in the prebiotic

group, along with a change in overt emotional processing in the dot-probe task. Moreover, the analyses of the pre-

and postintervention stool samples showed a significant increase in beneficial Bifidobacteria in the gut microbiome.

Together, these results suggest that four weeks of prebiotic intake is sufficient to induce changes in the microbial

composition that lead to reduced anxiety levels in late adolescence.

Psychobiotics can also act on the brain via modification of metabolic dynamics. For example, they can modulate

tryptophan availability , which might have an impact on the kynurenine pathway that is responsible for 90%

of tryptophan metabolization . The downstream metabolites -kynurenic acid and quinolinic acid- of this pathway

have recently been identified as relevant for the nervous system, as they exert neuroprotective, and excitotoxic

effects, respectively, through their interaction with N-methyl-D-aspartate (NMDA) receptors . Notably,

research has suggested that dysfunctions of NMDA receptors during early development might cause CNS

disorders, such as autism spectrum disorder (ASD) and attention deficit disorder (ADD), later in life . This

further emphasizes the importance of proper nutrition early in life, and indicates that psychobiotic supplementation

might be an effective approach to influence tryptophan-kynurenine metabolism and prevent atypical developmental

trajectories. In conclusion, we propose that in addition to the more traditionally recognized nutrients discussed in
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this review, emerging nutrients such as polar lipids, high quality protein/specific amino acids, and psychobiotics,

are of critical importance for normal neurodevelopment in young children (see Figure 2, adapted from ).

Figure 2. Functions and effect of some nutrients on brain and neuronal development. It also includes pre-and

probiotics and tryptophan-based interactions through the gut brain axis.
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