In Vivo Brain Glutathione Subjects: Neuroimaging Contributor: Luca Pasquini, Antonio Napolitano, Martina Lucignani, Francesco Dellepiane, Emiliano Visconti Glutathione (GSH) is an important antioxidant implicated in several physiological functions, including the oxidation-reduction reaction balance and brain antioxidant defense against endogenous and exogenous toxic agents. Altered brain GSH levels may reflect inflammatory processes associated with several neurologic disorders. An accurate and reliable estimation of cerebral GSH concentrations could give a clear and thorough understanding of its metabolism within the brain, thus providing a valuable benchmark for clinical applications. Keywords: glutathione (GSH); magnetic resonance spectroscopy (MRS); neurological disorders ## 1. Introduction Glutathione (GSH) is an antioxidant metabolite originating from glutamic acid (Glu), cysteine (Cys), and Glycine (Gly) amino acids, globally present in all mammalian cells [1]. Among its many roles, GSH is mainly implicated in oxidation-reduction reactions, acting as a protector against endogenous and exogenous toxic agents like reactive oxygen species (ROS) and reactive nitrogen species (RNS) [2]. Changes in the GSH brain concentration from oxidative stress may reflect inflammatory processes and mitochondrial dysfunction associated with biological aging [3] and pathological conditions [4][5]. In particular, as high levels of ROS may lead to cerebral tissue damage, the altered GSH concentration of specific brain areas has been described in several neurologic disorders, including epilepsy [6][7], multiple sclerosis [8][9], Alzheimer's disease [10], Parkinson's disease [11][12], and psychiatric disorders [13][14][15][16]. In order to provide a clear and thorough understating of GSH metabolism within the brain, an accurate and reliable estimation of cerebral concentrations needs to be performed. The quantification of GSH brain levels was first attempted ex vivo from autoptic specimens, by means of liquid chromatography with UV detection and spectroscopic techniques [17][18][19]. GSH biosynthesis and metabolism were also tested in vitro, where different cell culture models were investigated to assess oxidative stress levels from blood and cerebrospinal fluids [20][21]. More recently, in vivo GSH measurements were obtained using proton magnetic resonance spectroscopy (MRS), a powerful non-invasive technique for brain metabolite quantification. Although widely used for GSH detection in both animals and humans [22], MRS presents several technical challenges, mostly related to the low GSH brain concentration and severe spectral overlapping between metabolites with different peak intensities [23]. Many MRS techniques have been developed for GSH concentration assessment, with a high methodologic heterogeneity, which may limit a comparative evaluation of the results provided by different studies. For this reason, the literature is still lacking a comprehensive and detailed description of the GSH normal levels within different specific brain areas. This information appears crucial for the interpretation of GSH findings in the normal brain and neurologic disorders, providing a valuable benchmark for clinical applications. ## 2. GSH Metabolism GSH is abundant in the brain, with a high concentration in non-neuronal cells, mostly neuropil and white matter tracts, with the exception of some cerebellar neurons, such as granule cells and Purkinje cells [22]. Within the brain, GSH is synthesized from the essential amino acids Glu, Cys, and Gly in a two-step reaction catalyzed by ATP-dependent enzymes. In the first step, Glu is combined with Cys by γ-glutamylcysteine synthetase (or glutamate-cysteine ligase (GCL) EC 6.3.2.2) to form γ-Glu-Cys. This dipeptide is further combined with Gly by glutathione synthetase (GS; EC 6.3.2.3) to produce GSH [1]. GSH catabolism is realized through hydrolysis by γ-glutamyltransferase (γGT; EC 2.3.2.2), which is located in the cell membranes of many cells throughout the body. In the brain, γGT is located in non-neuronal cells, mostly ependymal cells, and secondarily in Schwann and glial cells [22]. GSH metabolism is summarized in **Figure 1**. GSH fulfills its antioxidant role through two main mechanisms: (1) direct non-enzymatic reaction with free radicals such as superoxide (O2⁻), NO, or hydroxide (OH⁻), and by (2) acting as a reducing agent in the presence of glutathione peroxidase (GP), by donating an electron to H2O2, leading to the formation of H2O, O2, and glutathione disulfide (GSSG) [1]. In turn, glutathione reductase (GR) regenerates GSH by transferring an electron from NADPH to GSSG (**Figure 1**). This enzyme is mostly expressed in oligodendrocytes, microglia, and neurons, with a lower expression in astrocytes Another major role of GSH is the detoxification and removal of xenobiotics and other endogenous compounds, that are conjugated with GSH by glutathione-S-transferase to be exported from the cell through multidrug resistance pumps (MRPs), the main GSH transporters [22][24]. Furthermore, GSH is a cofactor of various enzymes. For example, the glyoxalase enzyme system catalyzes the detoxification of ketoaldehyde methylglyoxal (a very reactive molecule that mediates protein denaturation) to D-lactate with the participation of GSH [22]. **Figure 1.** Glutathione (GSH) metabolism within the nervous tissue. GSH is synthesized in the cytoplasm of neurons and glia from essential amino acids, and catabolized through hydrolysis in the cell membranes. GSH acts as a reducing agent by donating an electron to H2O2, leading to the formation of H2O, O2, and glutathione disulfide (GSSG), which is regenerated by glutathione reductase (GR) from NADPH. The transportation of GSH and essential metabolites is regulated by different transporters across cell membranes. Cys—cysteine; glu—glutamate; gln—glycine; met—methionine; homocys—homocysteine; MPR—multidrug resistance pump; γGT—γ-glutamyltransferase; γ-glucys—γ-glutamylcysteine; EAAT—excitatory amino acid transporter; SNAT—sodium-coupled neutral amino acid transporter; ASC—alanine, serine, and cysteine transport system. ## 3. Brain Areas GSH Concentration and MRS techniques The MRS acquisition sequence used to sample brain GSH 'in vivo' is a decisive step, as the metabolite concentrations could be different when selecting edited or unedited techniques. Dhamala showed strongly correlated GSH measures between SPECIAL and PRESS techniques, while a weak correlation occurred between MEGA-PRESS and both SPECIAL and PRESS [25]. Similarly, Nezhad reported a significant difference in GSH concentration estimates when comparing MEGA-PRESS with PRESS [26]. Moreover, the study showed more sensibility in edited (MEGA-PRESS) compared with unedited sequences (PRESS) when identifying differences between two brain area concentrations (i.e., anterior cingulate cortex and occipital cortex) only with MEGA-PRESS. As GSH detection has the potential to provide a better understanding of the oxidation-reduction balance in the human brain, several examples of both edited and unedited techniques have been reported in the literature, where VOI were placed in different brain areas, with sizes ranging from 15 mm³ [27] to 30 cm³ [9][28]. A comprehensive description of the GSH detection studies has been reported. Researchers reported GSH concentration within the different brain areas investigated for HC subjects found in the literature (Table 1). Particularly, Table 1 reports the number of HC participants and the corresponding mean age, together with the main evidence found for each study. The definition of standard reference GSH values within the different brain areas reported could lead to a better interpretation of the altered GSH levels recorded in subjects with neurological disorders, with insight into the possible role of GSH as a biomarker and therapeutic target. Referring to the reliability previously discussed and the sensibility of MEGA-PRESS, the most reliable GSH detected values were those of studies that used this technique in brain area analysis through a comparison between groups and in clinical applications [3][10][29] $\underline{[30][31][32][33][34][35][36][37][38]}$ **Table 1.** Number of healthy control subjects, the corresponding age, and GSH concentration measured in the brain areas, type of scanner, method, site of voxels for the GSH measurements, and the results reported in the studies. | | | Age | | | Site of | | | |---------------|---------------------|----------------------------|--|---|---|---|--| | Ref | HC
Participants | (Range
or Mean
± SD) | Scanner | Method | Detection
(VOI Dimension
and Brain Area) | GSH
Concentration
(HC) | Results | | [39] | Phantoms | | 3 T GE + 8 channels head
coil | Edited: MEGA-PRESS
TR/TE = 1800/131 ms
+ LCModel
Unedited: PRESS
TR/TE = 3000/30 ms +
LCModel | | | MEGA-PRESS
appears more
precise at a
lower GSH
concentration | | [<u>40]</u> | Phantoms +
10 HC | 26 ± 3.3 | 3 T Siemens + 32 channels
head coil | Edited: MEGA-PRESS TR/TE = 2000/120 ms + Gannet Unedited: PRESS TR/TE = 2000/30 ms SPECIAL TR/TE = 2000/8 ms PR-STEAM TR/TE = 2000/6.5 ms + LCModel | 24 cm ³ in MFC | MEGA-PRESS
1.87 ± 0.36
mM PRESS:
1.69 ± 0.13
mM SPECIAL
= 2.3 ± 027
mM
PR-STEAM:
2.29 ± 0.16
mM | Reliability comparison shows more reproducible GSH
measurements for unedited sequences (only for highest values, above 3 mM) | | [<u>23</u>] | Phantoms +
5 HC | 24-36;
30 ± 3 | 3 T Siemens + 32 channels
head coil | Unedited: PRESS
TR/TE = 2000/30 ms +
CNN for GSH
quantification | 20 × 20 × 20
mm ³ in left FC | GSH/tNAA =
~0.07-0.15 | Implementation
of a robust
method for GSH
quantification in
MRS using CNN | | [41] | Phantoms +
4 HC | 30–45 | 7 T Siemens + 32 channels
head coil | Unedited: 2D-COSY
TR/TE = 2000/20 ms | 25 × 25 × 25
mm ³ in OC | GSH/Cr = 0.05
± 0.01 | Non-uniformly weighted sampling (NUWS) sequences produced a higher SNR | | [42] | Phantoms +
13 HC | 28 ± 9 | 3 T Magnex Scientific | Edited: Multiple
Quantum Chemical
Shift Imaging +
Levenberg-Marquardt
least square
minimization
algorithm | 40 × 40 × 40
mm ³ in FPC | 1.2 ± 0.16
mmol/Kg | DQC filtering-
based chemical
shift imaging of
GSH at 3T
implementation | | [43] | Phantoms +
6 HC | 34 ± 13 | 3 T
Siemens/Philips/GE/Canon
+ 32 channels head coil | Edited: MEGA-PRESS
TR/TE = 2000/80 ms +
Gannet | 27 cm ³ in MCC | GSH/Cr = 0.045 ± 0.013 (Philips scanner) GSH/Cr = 0.051 ± 0.007 (Siemens scanner) | In vivo GSH/Cr
ratio shows
relatively low
variations
between
scanners using
the universal
sequence | | [44] | Phantoms +
10 HC | 32.6 ± 8.8 | 3 T Philips + 32 channels
head coil | Edited: MEGA-PRESS
TR/TE = 2000/120 ms
MEGA-PRIAM TR/TE
= 2000/120 ms +
Gannet | 33 × 33 × 33
mm ³ in left and
right FC | MEGA-
PRESS:
2.61 ± 0.50 i.u.
(left FC)
2.95 ± 0.65 i.u.
(right FC)
MEGA-PRIAM
2.44 ± 0.60 i.u.
(left FC)
2.81 ± 0.67 i.u.
(right FC) | No significant
difference
between MEGA-
PRESS and
MEGA-PRIAM in
GSH estimates | | Ref | HC
Participants | Age
(Range
or Mean
± SD) | Scanner | Method | Site of
Detection
(VOI Dimension
and Brain Area) | GSH
Concentration
(HC) | Results | |--------------|-------------------------------------|-----------------------------------|--|---|---|---|---| | [45] | Phantoms +
5 HC +
simulations | 31 ± 8 | 3 T Philips + 32 channels
head coil | Edited: MEGA-PRESS
TR/TE = 2000/120 ms
+ Gannet | 36 × 36 × 36
mm ³ in midline
PC | GSH integrals
normalized by
the sum of
the
integrals from
each subject
averaged
across all
subjects
~0.4–0.5 | TE of 120 ms
appears to be
optimal for in
vivo GSH
detection | | [26] | Phantoms +
7 HC | 23-35 | 3 T Philips + 8 channels
head coil | Edited: MEGA-PRESS
TR/TE = 2000/130 ms
+ AMARES
Unedited: PRESS
TR/TE = 2000/35 ms +
jMRUI | 40 × 25 × 25
mm ³ in ACC
and 30 × 30 ×
30 mm ³ in OC | MEGA-
PRESS:
3.2 ± 0.6 mM
(ACC)
1.4 ± 0.4 mM
(OC)
PRESS:
2.8 ± 0.3 mM
(ACC)
2.5 ± 0.7 mM.
(OC) | Physiological
concentrations
(<4 mM) of GSH
cannot be
reliably
quantified from
PRESS spectra
at 3 T | | [<u>46]</u> | Phantoms +
9 HC | 25 | 4 T Varian INOVA | Edited: MEGA-PRESS
TR/TE = 4000/60 ms +
LCModel | 30 × 30 × 30
mm ³ in OC | 1.3 ± 0.2
μmol/g | GSH
concentration
estimation | | [47] | Phantoms +
2 HC | 18-32 | 1.5 T Philips | Edited: DQC
Unedited: PRESS | 15.6–17.4 cm ³ | | DQC filter for
the selective in
vivo detection of
GSH in the
human brain
presentation | | [48] | Phantoms +
10 HC | 34.7 ± 8.8 | 3 T Philips + 32 channels
head coil | Edited: MEGA-PRESS
TR/TE = 2000/80 ms
HERMES TR/TE =
2000/80 ms + Gannet | 30 × 30 × 30
mm ³ in Ins | | SNR of the HERMES spectra is similar to those of MEGA- PRESS, with the benefit of saving half the acquisition time | | [49] | Phantoms +
6 HC +
simulations | N.D | 7 T Philips | Unedited: asymmetric
PRESS TE1/TE2 =
37/63 ms
STEAM TR/TE =
2500/14-74 ms +
LCModel | 25 × 30 × 30
mm ³ in MPFC | | Optimization of
the TE delays in
asymmetric
PRESS enables
the separation
of GSH without
editing | | [50] | Phantoms +
8 HC +
simulations | 32 ± 11 | 7 T Siemens + 32 channels
head coil | Unedited: asymmetric
PRESS TR/TE =
3000/3.9 ms | 20 × 20 × 20
mm ³ in MPFC
and FC | GSH/tCr = 0.216 ± 0.02 (MPFC) GSH/tCr = 0.27 ± 0.03 (FC); | Glu and Gln
higher in GM.
GSH and Gln
have a similar
concentration
(20–27% of Cr) | | [<u>51]</u> | 6 HC | 22-26 | 3 T/7 T Siemens | Unedited: SPECIAL
TR/TE = 4000/6 ms +
LCModel | 20 × 20 × 20
mm ³ in OC | 1.4 ± 0.11
mmol/Kg (3
T); 1.3 ± 0.2
mmol/Kg (7 T) | SPECIAL with
ultrashort TEs
resulted in a
high SNR and
allow to reduce
RF power
requirements
and improve
chemical shift
displacement
errors | | Ref | HC
Participants | Age
(Range
or Mean
± SD) | Scanner | Method | Site of
Detection
(VOI Dimension
and Brain Area) | GSH
Concentration
(HC) | Results | |---------------|--------------------|-----------------------------------|--|---|--|---|--| | [<u>25</u>] | 15 HC | 24.9 ± 3.5 | 3 T Siemens + 32 channels
head coil | Edited: MEGA-PRESS
TR/TE = 3200/68 ms +
LCModel
Unedited: SPECIAL
TR/TE = 3200/8.5 ms +
LCModel | 30 × 30 × 20
mm ³ in DLPC
and M1 | MEGA-
PRESS:
0.5-3 mmol/L
(M1)
3-4 mmol/L
(DLPC)
SPECIAL:
1.3-2.4
mmol/L (M1
and DLPC) | GSH levels detected with reasonably good precision using SPECIAL, but poor precision using MEGA-PRESS | | [<u>27]</u> | 21 HC | 32.2 ± 8.1 | 3 T Siemens + quadrature
head coil | Unedited: SPECIAL
TR/TE = 3000/6 ms +
LCModel | 15 × 15 × 15
mm ³ in left A | 1.03 ± 0.38
mmol/L
(CRLBs: 24 ±
11 only in
16/21 HC) | Only in a small
portion of the
acquired
spectra GSH
passed the
CRLB threshold
of 20% | | <u>[52]</u> | 18 HC | N.D. | 3 T Siemens | Unedited: PRESS
TR/TE = 2000/30 ms +
LCModel | 25 × 25 × 15
mm ³ in SMA | ~2.2–2.6
mmol/Kg | No difference in
GSH
concentration
recorded
between HC and
PSP | | [53] | 22 HC | 12–14 | 3 T Siemens | Unedited: 2D J-
resolved PRESS
TR/TE = 2000/22 ms +
LCModel | 20 × 20 × 30
mm ³ in RACC | | GSH variation factor results of 8.6 ± 4.1%, significant Pearson correlation (0.821) resulted between test and retest | | [<u>54</u>] | 63 HC | 40–60 | 3 T Siemens | Unedited: 2D J-
resolved MRS TR/TE
= 2000/31–229 ms +
ProFit | 19 cm ³ in RACC | GSH/H20 =
0.003-0.004 | GSH significantly increased for HC receiving supplements when compared with the placebo | | [9] | 5 HC | 32 ± 8 | 7 T Agilent + 8 channels
head coil | Edited: JDE semi-
LASER TR/TE =
3200/72 ms +
LCModel
Unedited: STEAM
TR/TE = 3000/10 ms +
LCModel | 30 × 30 × 30
mm ³ for JDE
semi-LASER
and 20 × 20 ×
20 mm ³ for
STEAM in
midline OC | 1.34 ± 0.13
mM (JDE
semi-LASER)
2.15 ± 0.16
mM (STEAM) | Better reliability
results (in terms
of Coefficient of
variation CV) for
JDE semi-
LASER when
compared to
STEAM | | <u>[55]</u> | 21 HC | Neonates | 1.5 T GE | Unedited: PRESS
TR/TE = 3000/20 ms +
LCModel | 29 × 10 × 11
mm ³ in WM; 11
× 24 × 11 in Th;
22 × 13 × 15 in
GM | 2.1 ± 0.7
mmol/Kg
(WM)
2.4 ± 0.8
mmol/Kg (Th)
2.5 ± 0.5
mmol/Kg
(GM) | Absolute brain GSH content in premature infants at term was not considerably different from that in fullterm infants | | [28] | 5 HC | 25-32 | 3 T Siemens + quadrature
head coil | Edited: DQF TR/TE =
3000/70 ms | 30 × 30 × 30
mm ³ in left and
right PC | 0.91 ± 0.16
mM (left PC)
0.89 ± 0.16
mM (right PC) | Sequence shown to be invariant to phase difference between excitation and DQF generating pulse. | | Ref | нс | Age
(Range | Scanner | Method | Site of
Detection | GSH
Concentration | Results | |---------------|--------------|------------------|---------------------------------------|---|--|--|---| | Kei | Participants | or Mean
± SD) | Scame | Metriou | (VOI Dimension and Brain Area) | (HC) | Results | | <u>[56]</u> | 10 HC | 26.1 ± 9 | 3 T Siemens | Unedited: STEAM
TR/TE = 2000/6.5 ms +
LCModel | 6 cm ³ in ACC
and PCC | 2.74 ± 0.2 i.u.
(ACC)
2.07 ± 0.0025
i.u. (PCC) | Good reliability
results in terms
of coefficient of
variation CV
(<10%) | | <u>[57]</u> | 60 HC | 60–85 | 3 T Siemens | Edited: Multiple
Quantum Chemical
Shift
Imaging +
Levenberg-Marquardt
least square
minimization
algorithm | 50 × 50 × 30
mm ³ in FC and
PC | 1.27 ± 0.32
mmol/Kg (FC)
1.28 ± 0.27
mmol/Kg (PC) | glutathione
concentrations
in brain regions
were positively
correlated with
milk servings | | <u>[58]</u> | 18 HC | Neonates | 3 T Philips | Edited: HERMES
TRT/E = 2000/80 ms +
Gannet | 31 × 25 × 20
mm ³ in Th and
ACC | 0.55–0.7 i.u.
(ACC)
0.5–0.58 i.u
(Th) | lower GSH levels in Th compared to the ACC and higher GSH levels in the ACC following tissue- correction | | [59] | 20 HC | 21-35;
29 ± 5 | 3 T Philips + 32 channel
head coil | Edited: HERMES
TRT/E = 2000/80 ms +
LCModel | 25 × 25 × 25
mm ³ in MACC | GSH/tCr =
0.18 ± 0.04 | HERMES showed to be more sensitive to motion, as variability of spectral quality measures were observed for GSH when only retrospective outlier removal was applied. | | [60] | 40 HC | | 3 T Philips | Edited: HERMES
TRT/E = 2000/80 ms +
Gannet | Ranging from
30 × 30 × 30 to
36 × 36 × 36
mm ³ in medial
PC | | The multi step Frequency and Phase Correction approach (msFPC) results in improved correction of frequency/phase errors in multiplexed GABA-/GSH- edited MRS experiments. | | [<u>61</u>] | 67 HC | 8–12 | 3 T Philips | Edited: HERMES
TR/TE = 2000/80 ms +
Gannet | 30 × 30 × 30
mm ³ in right
SM, SMA, and
right Ins | 0.56 ± 0.14 i.u.
(SM)
0.57 ± 0.15 i.u.
(SMA)
0.69 ± 0.19 i.u.
(Ins) | Robust Spectral Registration (rSR) reduced more subtraction artifacts than the multistep method | | [<u>62</u>] | 12 HC | 25 ± 2.5 | 3 T Siemens + 32 channel
head coil | Edited:MEGA-PRESS
TR/TE = 2000/120 ms
HERMES TRT/E =
2000/80 ms + Gannet | 30 × 25 × 25
mm ³ in DACC | 1.96 ± 0.49 i.u.
(MEGA-
PRESS)
3.95 ± 0.44 i.u.
(HERMES) | MEGA-PRESS
provide more
reproducible
GSH (in terms of
CV%)
quantification
compared to
HERMES | | Ref | HC
Participants | Age
(Range
or Mean
± SD) | Scanner | Method | Site of
Detection
(VOI Dimension
and Brain Area) | GSH
Concentration
(HC) | Results | |---------------|---------------------------------------|--|-------------------------------|---|---|--|---| | [63] | 4 HC | 47.3 ± 5.6 | 3 T GE | Edited: MEGA-PRESS
TR/TE = 2000/80 ms | 30 × 30 × 30
mm ³ in PC | 2 mM | Phantoms confirm GSH MEGA-PRESS signal and that GSSG would be undetectable at concentrations expected in vivo | | [<u>64]</u> | 9 HC | 23 | 4 T Varian INOVA | Edited: DWE with
MEGA-PRESS TR/TE
= 4500/112 ms +
LCModel | 30 × 30 × 30
mm ³ in
midsagittal OC | 0.8 ± 0.1
µmol/g | Double editing
did not
compromise
sensitivity | | [3] | 44 HC (22
young + 22
elderly) | Young =
20.4 ± 1.4
Elderly =
76.6 ± 6.1 | 4 T Varian INOVA | Edited: DWE with
MEGA-PRESS TR/TE
= 4500/122 ms +
LCModel | 30 × 30 × 30
mm ³ in
midsagittal OC | Young = 0.31
± 0.05 i.u.
Elderly = 0.20
± 0.08 i.u. | Elderly subjects
had a lower GSH
concentration
than younger
subjects | | [32] | 12 HC | | 4 T Varian INOVA | Edited: DWE with
MEGA-PRESS TR/TE
= 4500/102 ms +
LCModel | 30 × 30 × 30
mm ³ in OC | 0.7–0.9
μmol/g | GSH
concentration
remains costant
after
intravenous
vitamin C
infusion | | [29] | 11 HC | 61.5 ±
10.5 | 3 T GE + 8 channels head coil | Edited: MEGA-PRESS
TR/TE = 1500/68 ms +
in-house software
developed in
MATLAB | 20 × 25 × 25
mm ³ in PG and
MC | GSH/W = 1.6 ± 0.4×10^{-3} i.u. (MC) | Significantly
lower GSH in
ALS patients
when compared
with HC | | [<u>31</u>] | 11 HC | 30 ± 11 | 3 T Philips | Edited: MEGA-PRESS
TR/TE = 2000/131 ms | 50 × 30 × 30
mm ³ in PC | 1.20 ± 0.14
mM | Optimal TE =
130 ms. Stroke
patients not
significantly
different from
HC | | [<u>65</u>] | 10 HC | 18-65 | 3 T | Edited: MEGA-PRESS
TR/TE = 1500/68 ms | 30 × 30 × 20
mm ³ in OC | | Anhedonia and
GSH negatively
correlated | | [66] | 13 HC | 18-45 | 3 T GE | Edited: MEGA-PRESS
TR/TE = 1500/68 ms | 30 × 30 × 20
mm ³ in OC | | No differences
between HC and
CFS patients | | [<u>34]</u> | 44 HC (25
males and
19 females) | 23.6 ± 2.1 | 3 T Philips | Edited: MEGA-PRESS
TR/TE = 2500/120 ms | 2.5 cm ³ in FC
PC, Hyp and C | ~20-22 a.u. (FC females) ~15-22 a.u. (FC males) ~30 a.u. (PC females) ~17-25 a.u. (PC males) ~15 a.u. (Hyp females) ~15 a.u. (Hyp males) ~14-17 a.u. (C females) ~10-15 a.u. (C males) | Higher GSH in
young, gender
matched parietal
cortex
hippocampus
vs. older
patients | | [<u>10]</u> | 21 HC | 65 ± 5 | 3 T Philips | Edited: MEGA-PRESS
TR/TE = 2500/120 ms
+ KALPANA | 15–16 cm ³ in FP
Hyp | 1.12 ± 0.18
mmol/L (FC)
1.02 ± 0.17
mmol/L (Hyp) | Significant
reductions in
GSH in both the
frontal cortex
and
hippocampus in
disease | | Ref | HC
Participants | Age
(Range
or Mean
± SD) | Scanner | Method | Site of
Detection
(VOI Dimension
and Brain Area) | GSH
Concentration
(HC) | Results | | | |---------------|--------------------|-----------------------------------|--|--|---|--|---|--|--| | [35] | 17 HC | 38.8 ±
13.1 | 3 T GE | Edited: MEGA-PRESS
TR/TE = 1800/68 ms +
LCModel | $25 \times 40 \times 30$
mm ³ in DLPC
$28 \times 30 \times 25$
mm ³ in ACC | GSH/Cr = 0.11
± 0.03 (ACC)
GSH/Cr = 0.11
± 0.03 (left
DLPC); | Higher GSH in patients | | | | [30] | 16 HC | 21-41;
30 ± 7.2 | 3 T GE + standard
quadrature coil | Edited: MEGA-PRESS
TR/TE = 1500/94 ms +
GE software | 28 × 30 × 22
mm ³ in PMPC | 0.928 ± 0.24
mM | No significant
differences
between GSH
concentration of
HC and patients | | | | [3] | 14 HC | 32 ± 10 | 7 T Magnex Scientific | Unedited: STEAM
TR/TE = 5000/8 ms +
LCModel | Ranging from 6
× 6 × 13 to 20 ×
20 × 20 mm ³ in
FWM, LS, PCC,
OC, P, SN, and
CV | Ranging from 0.50 ± 0.1 μ mol/g (OC) to 1.2 ± 0.2 μ mol/g (CV) | Lower GSH
concentration in
elderly subjects
than in younger
subjects | | | | [<u>67</u>] | 10 HC | 25 ± 3 | 7 T Philips + 16 channels
head coil | Unedited: STEAM
TR/TE = 3000/15 ms +
LCModel | 20 × 20 × 20
mm ³ in OC | 2.28 ± 0.1
μmol/g | GSH increased
during visual
stimulation | | | | [68] | 10 HC | 20 ± 3 | 4 T Varian INOVA | Edited: MEGA-PRESS
TR/TE = 4500/68 ms +
LCModel
Unedited: STEAM
TR/TE = 4500/5 ms +
LCModel | 17 cm ³ in ACC
and 8 cm ³ in
OC | 1.6 ± 0.4
μmol/g (ACC)
1.6 ± 0.2
μmol/g (OC) | Validation of
glutathione
quantitation
from the STEAM
spectra | | | | (Z) | 10 HC | 20-70;
39.2 ±
15.3 | 7 T Siemens + 32 channels
head coil | STEAM TR/TE = 8500
(9 subjects)-9300 (1
subject)/6 ms +
LCModel | 20 × 20 × 20
mm ³ in
PCC/precuneus | 1.9 ± 0.3
mmol/L | GSH levels higher in IGE (idiopathic generalized epilepsy) compared with HC | | | | <u>[69]</u> | 8 HC | 19–53;
28.4 ±
10.7 | 1.5 T Philips + birdcage
head coil | PRESS + DCQ
(double quantum
coherence) filtering | 25 × 25 × 25
cm ³ POC | GSH/H2O = $2.3 \pm 0.9 \times 10^{-5}$ (right POC) $2.5 \pm 1.2 \times 10^{-5}$ (left POC) | GSH/water ratio
significantly
reduced in both
hemisphere Ins
epileptic
patients
compared with
HC | | | | [<u>70</u>] | 7 HC | 6–17 | 3 T Siemens + 32 channels
head coil | PRESS TR/TE =
1980/30 ms +
LCModel | variable from 3
to 8 cm ³ in the
right
gangliocapsular
region | 2.0 ± 0.5 mM | Higher levels of
brain GSH in KD
patients
compared with
HC | | | | [7 <u>1</u>] | 17 HC | | 7 T and 3 T Siemens + 16
channels head coil (7 T) | MEGA-PRESS TR/TE
= 2000/68 ms | 3.5 × 2.5 × 2.3
cm ³ in left or
right M1 (3 T
and 7 T) and
pons (3 T) | | No significative
difference in
brain GSH
between ALS
patients and HC
using 3 T
scanner | | | | [29] | 11 HC | 58.5 ± 6.6 | 3 T GE + 8 channels head
coil | PRESS with J-edited
spin echo method
TR/TE 1500/68 ms | single voxel on
primary motor
cortex (M1) | GSH/H2O = $1.6 \pm 0.5 \times 10^{-3}$
GSH/Cr 1.9 ± 0.8×10^{-2} | Reduced GSH in
ALS patients
compared with
HC | | | | D | | | | | | | | | | References PRESS with J-edited 3 T GE + 8 channels head [<u>72</u>] 55-75 15 HC spin echo method 2.5 × 2.5 × 2.5 cm³ PCC and **GSH** reduction with increased - spin echo method cm PCC and levels of 1. Dwivedi, D.; Megha, K.; Mishra, R.; Mandal, P.K. Gluta**ரி ரா**டிக்கு முடிக்கும் இருக்கு மேற்ற முற்ற முற Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res. 2020, 45, 1461-1480. - 2. Dasari, S. Glutathione S-transferases Detoxify Endogenous and Exogenous Toxic Agents- Minireview. J. Dairy Vet. Anim. Res. 2017, 5, 157-159. - 3. Emir, U.E.; Raatz, S.; Mcpherson, S.; Hodges,
J.S.; Torkelson, C.; Tawfik, P.; White, T.; Terpstra, M. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR Biomed. 2011, 24, 888-894. - 4. Bains, J.S.; Shaw, C.A. Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev. 1997, 25, 335-358. - 5. Schulz, J.B.; Lindegau, J.; Seyfried, J.; Dichgans, J. Glutathione, oxidative setross and neurodegeneration. Eur. J. Religible Method Method Method Method Method Detection (VOI Dimension (HC)) (HC) - 6. Cárdenas-Rodríguez, N.; Coballase-Urrutia, E.; Pérez-Cruz, C.; Montesin de Britane A; Rivera-Espinosa, L.; Sampieri, A.; Carmona-Aparicio, L. Relevance of the glutathione system in temporal lobe epilepsy: Evidence in humanandc have experimental mode by Dxid. Med. Cell. Longev. 2014, 2014, 759293. | Compared Comp - 7. Gonen, O.M.; Moffat, B.A.; Desmonda A.M.; Lui, E.; Kwana 100 Brien, T.J. Seven less compared a specific resonance spectroscopy of glutamate, y-aminobutyric acid, and glutathione in the posterior cingulate cortex/procured in patients with epilepsy. Epilepsia 2020, 61, 2785–2794. - 8. Choi, I.Y.; Lee, S.P.; Denney, D.R.; Lynch, S.G. Lower lexelssofreghetathione in the highest of secondary productions - 9. Prinsen, H.; De Graaf, R.A.; Mason, G.F.; Pelletier, D.; Juchem, C. Reproducibility Measure (1.6.9) (1.6.8) i.u. and Glutamate: Towards In Vivo Neurochemical Profiling of Multiple Sclerosis, with MR Spectrosis 1.u. No difference in Magn. Reson. Imaging 2018, 45 187–198 (0.86) i.u. No difference in Five different regions (OC, 18–30) (O.86) i.u. No difference in Reson. Imaging 2018, 45 187–198 (O.86) i.u. No difference in Reson. Imaging 2018 (O.86) i.u. N - head coil 10. Mandal, P.K.; Saharan, S.; Tripathi, M.; Murari, G. Brain Glutathione Levels etwintowed, Biometric for the patients and HC Impairment and Alzheimer's Disease. Biol. Psychiatry 2015, 78, 702–710. Impairment and Alzheimer's Disease. Biol. Psychiatry 2015, 78, 702–710. Parietal 5.17 - 11. Sian, J.; Dexter, D.T.; Lees, A.J.; Daniel, S.; Agid, Y.; Javoy-Agid, F.; Jenner, P.; Marsden, C.**(9.5A)** terations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia. Ann. Neurol_{In1}194_{e0}36_{SH} PRESS TR/TE = 20 × 20 × 20 GSH/Cr = 0.22 in patients with depressive - 14.14 hitty, 44.NC; Lagopodos, J.; 3.1 GE+8 channel head photos of alcoholar disorder. An exploratory study. J. Psychiatr. Res. 2014, 550 59et6 Ryp No differences in GSH levels - 15. Duffy, S.L.; Lagopoulos, J.; Cockayne, N.; Hermens, D.F.; Hickie, I.B.; Naismith, S.L. Oxidative stress and the precisive symptoms in older adults: A magnetic resonance spectroscopy study. J. Affect. Disord. 2015, 180, 29–35. - psychiatric 17. Rahman, I.; Kode, A.; Biswas, S.K. Assay for quantitative determination of glutathione and glutathione disulficenters is using enzymatic recycling method. Nat. Protoc. 2007, 1, 3159–3165. 20 × 18 × 25 1.75 ± 0.31 - 18. Sultana, R.; Piroddi, M.; Galli, F.; Butterfield, D.A. Prote**st Havels an** dactivity of antioxing his activity of a constitution of subjects with amrestill initial cognitive in part of the constitution of subjects with amrestill initial cognitive in part of the constitution of subjects with amrestill initial cognitive in the constitution of subjects with amrestill initial cognitive in the constitution of subjects with amrestill initial cognitive in the constitution of const - 19. Ansari, M.; Scheff, S.W. Oxidative Stress in the Progression of Alzheimer Disease in the Frontal October J. Neuropathol. Exp. Neurol. 2010, 69, 155–167. - 20_{17th} urst, P. D.: Healess, 6±J.R.; Distribute 14:82; Bankers, J.E.; Clark, J.B. Decreased extraordical cell clutathione with obsessive increased sensitivity to oxidative stress in an in vitro blood-brain barrier model system. Brain Res. 1998, 802 mp 26:040. - 21. Dringen, R.; Gutterer, J.M.; Hirrlinger, J. Glutathione metabolism in brain: Metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur. J. Biochem. 2000, 267, 4912–4916. No difference in GSH levels - 22.77 ± 3 T GE + 8 channel head MEGA-PRESS TR/TE 20 × 40 × 30 GSH/H2O = between HC and 22. Rae, C.D.H. Williams, G.R. Glutathione in the human brain: Review of its roles and where surement by magnetic finical high risk spectroscopy. Anal. Biochem. 2017, 529, 127–143. - 23. Lee, H.H.; Kim, H. Intact metabolite spectrum mining by deep learning in proton magnetic resonance spectroscopy of the brain. Magn. Reson. Med. 2019, 82, 33–48. - 24. Kumar, A.; Dhull, D.K.; Gupta, V.; Channana, P.; Singh, A.; Bhardwaj, M.; Ruhal, P.; Mittal, R. Role of Glutathione-Stransferases in neurological problems. Expert Opin. Ther. Pat. 2017, 27, 299–309. - 25. Dhamala, E.; Abdelkefi, I.; Nguyen, M.; Hennessy, T.J.; Nadeau, H.; Near, J. Validation of in vivo MRS measures of metabolite concentrations in the human brain. NMR Biomed. 2019, 32, e4058. - 26. Sanaei Nezhad, F.; Anton, A.; Parkes, L.M.; Deakin, B.; Williams, S.R. Quantification of glutathione in the human brain by MR spectroscopy at 3 Tesla: Comparison of PRESS and MEGA-PRESS. Magn. Reson. Med. 2017, 78, 1257–1266. - 27. Schubert, F.; Külndes.; Gallinat, J.; Mekle, R.; Ittermann, B. Towards a neugachemical profile of the amygdala using Rehold TE 1H mad Rettereson and respect roscopy at 3 The NMR Biomed. 2017 1980 tien 3685. Participants or Mean (VOI Dimension Concentration - 28. Zhao, T.; Heberleักิ^Dk.; Jonas, C.; Jones, D.P.; Hu, X. New double quantuกิก ใช้กล้ย ศักริษ filter for localized detection of glutathione in vivo. Magn. Reson. Med. 2006, 55, 676-680. Striatal GSH - GSH/H2O = glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci. Lett. 2014, 570, 102–1077. deficit in - 30. Matsuzawa, D.; Obata, T.; Shirayama, Y.; Nonaka, H.; Konazawa, Y.; Yoshitome $_{\mathbf{28} \times \mathbf{30}}$ $\mathbf{x}_{\mathbf{20}}$ $\mathbf{x}_{\mathbf{25}}$ $\mathbf{z}_{\mathbf{25}}$ Takanashi, J.; Matsuda, T.; Shimizu, E.; Ikehira, H.; et al. Negative correlation between places that thion on the level and negative symptoms higher GSH 351 40.4 ± 3 T GE + 8 channel head GSH/Cr = 0.11 and 25 × 40 × schizophrenia: A 31/21-MRS study. Rebio S ONE 2008, 3, e180/68 ms + levels in PTSD ± 0.03 (ACC) 30 mm³ in patients - 31. An, L.; Zhang, Y.; Thomasson, D.M.; Latour, L.L.; Baker, E.H.; Shen, J.; Warach, S. Measurement of glutathione in normal volunteers and stroke patients at 3T using J-difference spectroscopy with minimized subtraction effects at 3T using J-difference spectroscopy with minimized subtraction effects. PRESS TR/TE = гт Magn. Reson. Imasgirag; 2009; 366, E268 e122700 el head 20 × 20 × 20 2000/35 ms + subjects with 68.7 ± 5.8 mm³ in ACC - 68.7 ± 5.8 coil mm³ in ACC mild cognitive 32. Terpstra, M.; Torkelson, C.; Emir, U.; Hodges, J.S.; Raatz, S. Noninvasive quantification of human brain an impairment concentrations after an intravenous bolus of vitamin C. NMR Biomed. 2011, 24, 521-528. **GSH levels** - 33. Da Silva, T.; Hafizi, S.; Andreazza, A.C.; Kiang, M.; Bagby, R.M.; Navas, E.; Laksono, I.; Truong, P.; Gerritsម៉ាច្រើនរាមរបce, PRESS TE 30 ms + higher in higher in the pre [remailer] ortex of អាលាប់៧២៧៤៤ Cliniខិត្ត Aigh risk for the pre [remailer] or a remainder of អាលាប់៧២៧៤៤ Cliniខិត្ត Aigh risk for the pre [remailer] or a remainder of rema Int. J. Neuropsychopharmacol. 2018, 21, 311-318. first episode of psychosis - 34. Mandal, P.K.; Tripathi, M.; Sugunan, S. Brain oxidative stress: Detection and mapping of anti-oxidant marker "Glutathione" in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy. Biochem. Biophys. Res. Commun. 2012, 417, 43-48. - 35. Michels, L.; Schulte-Vels, T.; Schick, M.; O'Gorman, R.L.; Zeffiro, T.; Hasler, G.; Mueller-Pfeiffer, C. Prefrontal GABA and glutathione imbalance in posttraumatic stress disorder: Preliminary findings. Psychiatry Res. Neuroimaging 2014, 224, 288-295. - 36. Reyes-Madrigal, F.; León-Ortiz, P.; Mao, X.; Mora-Durán, R.; Shungu, D.C.; de la Fuente-Sandoval, C. Striatal Glutathione in First-episode Psychosis Patients Measured In Vivo with Proton Magnetic Resonance Spectroscopy. Arch. Med. Res. 2019, 50, 207-213. - 37. Kolodny, T.; Schallmo, M.P.; Gerdts, J.;
Edden, R.A.E.; Bernier, R.A.; Murray, S.O. Concentrations of Cortical GABA and Glutamate in Young Adults with Autism Spectrum Disorder. Autism Res. 2020, 13, 1111-1129. - 38. Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013, 2013, 972913. - 39. Brix, M.K.; Dwyer, G.E.; Craven, A.R.; Grüner, R.; Noeske, R.; Ersland, L. MEGA-PRESS and PRESS measure oxidation of glutathione in a phantom. Magn. Reson. Imaging 2019, 60, 32-37. - 40. Wijtenburg, S.A.; Near, J.; Korenic, S.A.; Frank, E.; Chen, H.; Mikkelsen, M.; Chen, S. Comparing the reproducibility of commonly used magnetic resonance spectroscopy techniques to quantify cerebral glutathione. HHS Public Access 2020, 49, 176-183. - 41. Verma, G.; Chawla, S.; Nagarajan, R.; Iqbal, Z.; Albert Thomas, M.; Poptani, H. Non-uniformly weighted sampling for faster localized two-dimensional correlated spectroscopy of the brain in vivo. J. Magn. Reson. 2017, 277, 104–112. - 42. Choi, I.Y.; Lee, P. Doubly selective multiple quantum chemical shift imaging and T1 relaxation time measurement of glutathione (GSH) in the human brain in vivo. NMR Biomed. 2013, 26, 28-34. - 43. Saleh, M.G.; Rimbault, D.; Mikkelsen, M.; Oeltzschner, G.; Wang, M.; Jiang, D.; Alhamud, A.; Near, J.; Schär, M.; Noeske, R.; et al. Multi-Vendor Standardized Sequence for Edited Magnetic Resonance Spectroscopy. Neuroimage 2019, 189, 425-431. - 44. Oeltzschner, G.; Puts, N.A.J.; Chan, K.L.; Boer, V.O.; Barker, B.; Edden, R.A.E.; Science, R.; Hopkins, T.J. Dual-volume excitation and parallel reconstruction for J- difference-edited MR spectroscopy. Magn Reson Med 2017, 77, 16–22. - 45. Chan, K.L.; Puts, N.A.J.; Snoussi, K.; Harris, A.D.; Barker, P.B.; Edden, R.A.E. Echo time optimization for J-difference editing of glutathione at 3T. Magn. Reson. Med. 2017, 77, 498-504. - 46. Terpstra, M.; Henry, P.G.; Gruetter, R. Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn. Reson. Med. 2003, 50, 19-23. - 47. Trabesinger, A.H.; Boesiger, P. Improved selectivity of double quantum coherence filtering for the detection of glutathione in the human brain in vivo: Improved Selectivity of DQC Filtering. Magn. Reson. Med. 2001, 45, 708-710. - 48. Saleh, M.G.; Oeltzschner, G.; Chan, K.L.; Puts, N.A.J.; Mikkelsen, M.; Schär, M.; Harris, A.D.; Edden, R.A.E. Simultaneous edited MRS of GABA and glutathione. Neuroimage 2016, 142, 576-582. - 49. Choi, C.; Dimitrov, I.E.; Douglas, D.; Patel, A.; Kaiser, L.G.; Amezcua, C.A.; Maher, E.A. Improvement of resolution for brain coupled metabolites by optimized 1H MRS at 7T. NMR Biomed. 2010, 23, 1044–1052. - 50. An, L.; Li, S.; Murdoch, J.B.; Araneta, M.F.; Johnson, C.; Shen, J. Detection of glutamate, glutamine, and glutathione by radiofrequency suppression and echo time optimization at 7 Tesla. Magn. Reson. Med. 2015, 73, 451–458. - 51. Mekle, R.; Mlynárik, V.; Gambarota, G.; Hergt, M.; Krueger, G.; Gruetter, R. MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T. Magn. Reson. Med. 2009, 61, 1279–1285. - 52. Barbagallo, G.; Morelli, M.; Quattrone, A.; Chiriaco, C.; Vaccaro, M.G.; Gullà, D.; Rocca, F.; Caracciolo, M.; Novellino, F.; Sarica, A.; et al. In vivo evidence for decreased scyllo-inositol levels in the supplementary motor area of patients with Progressive Supranuclear Palsy: A proton MR spectroscopy study. Park. Relat. Disord. 2019, 62, 185–191. - 53. Jensen, J.E.; Auerbach, R.P.; Pisoni, A.; Pizzagalli, D.A. Localized MRS reliability of in vivo glutamate at 3 T in shortened scan times: A feasibility study. NMR Biomed. 2017, 30, e3771. - 54. Mastaloudis, A.; Sheth, C.; Hester, S.N.; Wood, S.M.; Prescot, A.; McGlade, E.; Renshaw, P.F.; Yurgelun-Todd, D.A. Supplementation with a putative calorie restriction mimetic micronutrient blend increases glutathione concentrations and improves neuroenergetics in brain of healthy middle-aged men and women. Free Radic. Biol. Med. 2020, 153, 112–121. - 55. Kreis, R.; Hofmann, L.; Kuhlmann, B.; Boesch, C.; Bossi, E.; Hüppi, P.S. Brain metabolite composition during early human brain development as measured by quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Reson. Med. 2002, 48, 949–958. - 56. Wijtenburg, S.A.; Gaston, F.E.; Spieker, E.A.; Korenic, S.A.; Kochunov, P.; Hong, L.E.; Rowland, L.M. Reproducibility of phase rotation STEAM at 3T: Focus on glutathione. Magn. Reson. Med. 2014, 72, 603–609. - 57. Choi, I.Y.; Lee, P.; Denney, D.R.; Spaeth, K.; Nast, O.; Ptomey, L.; Roth, A.K.; Lierman, J.A.; Sullivan, D.K. Dairy intake is associated with brain glutathione concentration in older adults. Am. J. Clin. Nutr. 2015, 101, 287–293. - 58. Lopez, Y.; Price, A.N.; Puts, N.A.J.; Hughes, E.J.; Edden, R.A.E.; Mcalonan, G.M.; Arichi, T.; Vita, E. De Neurolmage Simultaneous quantification of GABA, Glx and GSH in the neonatal human brain using magnetic resonance spectroscopy. Neuroimage 2021, 233, 117930. - 59. Marsman, A.; Lind, A.; Petersen, E.T.; Andersen, M.; Boer, V.O. Prospective frequency and motion correction for edited 1H magnetic resonance spectroscopy. Neuroimage 2021, 233, 117922. - 60. Mikkelsen, M.; Saleh, M.G.; Near, J.; Chan, K.L.; Gong, T.; Harris, A.D.; Oeltzschner, G.; Puts, N.A.J.; Cecil, K.M.; Wilkinson, I.D.; et al. Frequency and phase correction for multiplexed edited MRS of GABA and glutathione. Magn. Reson. Med. 2018, 80, 21–28. - 61. Mikkelsen, M.; Saleh, M.G.; Near, J.; Chan, K.L.; Gong, T.; Harris, A.D.; Oeltzschner, G.; Puts, N.A.J.; Cecil, K.M.; Iain, D. Correcting frequency and phase offsets in MRS data using robust spectral registration. NMR Biomed. 2020, 33, e4368. - 62. Prisciandaro, J.; Mikkelsen, M.; Saleh, M.G.; Edden, R.A. An evaluation of the reproducibility of 1 H-MRS GABA and GSH levels acquired in healthy volunteers with J-difference editing sequences at varying echo times. Magn Reson Imaging 2020, 65, 109–113. - 63. Satoh, T.; Yoshioka, Y. Contribution of reduced and oxidized glutathione to signals detected by magnetic resonance spectroscopy as indicators of local brain redox state. Neurosci. Res. 2006, 55, 34–39. - 64. Terpstra, M.; Marjanska, M.; Henry, P.G.; Tkáč, I.; Gruetter, R. Detection of an antioxidant profile in the human brain in vivo via double editing with MEGA-PRESS. Magn. Reson. Med. 2006, 56, 1192–1199. - 65. Lapidus, K.A.B.; Gabbay, V.; Mao, X.; Johnson, A.; Murrough, J.W.; Mathew, S.J.; Shungu, D.C. In vivo 1H MRS study of potential associations between glutathione, oxidative stress and anhedonia in major depressive disorder. Neurosci. Lett. 2014, 569, 74–79. - 66. Shungu, D.C.; Weiduschat, N.; Murrough, J.W.; Mao, X.; Pillemer, S.; Dyke, J.P.; Medow, M.S.; Natelson, B.H.; Stewart, J.M.; Mathew, S.J. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed. 2012, 25, 1073–1087. - 67. Lin, Y.; Stephenson, M.C.; Xin, L.; Napolitano, A.; Morris, P.G. Investigating the metabolic changes due to visual stimulation using functional proton magnetic resonance spectroscopy at 7 T. J. Cereb. Blood Flow Metab. 2012, 32, 1484–1495. - 68. Terpstra, M.; Vaughan, T.J.; Ugurbil, K.; Lim, K.O.; Schulz, S.C.; Gruetter, R. Validation of glutathione quantitation from STEAM spectra against edited 1H NMR spectroscopy at 4T: Application to schizophrenia. Magn. Reson. Mater. Phys. - Biol. Med. 2005, 18, 276-282. - 69. Mueller, S.G.; Trabesinger, A.H.; Boesiger, P.; Wieser, H.G. Brain glutathione levels in patients with epilepsy measured by in vivo 1H-MRS. Neurology 2001, 57, 1422–1427. - 70. Napolitano, A.; Longo, D.; Lucignani, M.; Pasquini, L.; Rossi-Espagnet, M.C.; Lucignani, G.; Maiorana, A.; Elia, D.; De Liso, P.; Dionisi-Vici, C.; et al. The ketogenic diet increases in vivo glutathione levels in patients with epilepsy. Metabolites 2020, 10, 504. - 71. Cheong, I.; Marjańska, M.; Deelchand, D.K.; Eberly, L.E.; Walk, D.; Öz, G. Ultra-High Field Proton MR Spectroscopy in Early-Stage Amyotrophic Lateral Sclerosis. Neurochem. Res. 2017, 42, 1833–1844. - 72. Chiang, G.C.; Mao, X.; Kang, G.; Chang, E.; Pandya, S.; Vallabhajosula, S.; Isaacson, R.; Ravdin, L.D.; Shungu, D.C. Relationships among cortical glutathione levels, brain amyloidosis, and memory in healthy older adults investigated in vivo with 1H-MRS and Pittsburgh compound-B PET. Am. J. Neuroradiol. 2017, 38, 1130–1137. - 73. Durieux, A.M.S.; Horder, J.; Mendez, M.A.; Egerton, A.; Williams, S.C.R.; Wilson, C.E.; Spain, D.; Murphy, C.; Robertson, D.; Barker, G.J.; et al. Cortical and subcortical glutathione levels in adults with autism spectrum disorder. Autism Res. 2016, 9, 429–435. - 74. Chittyn, K.M.; Lagopoulos, J.; Hickie, I.B.; Hermens, D.F. Risky alcohol use in young persons with emerging bipolar disorder is associated with increased oxidative stress. J. Affect. Disord. 2013, 150, 1238–1241. - 75. Hermens, D.F.; Lagopoulos, J.; Naismith, S.L.; Tobias-Webb, J.; Hickie, I.B. Distinct neurometabolic profiles are evident in the anterior cingulate of young people with major psychiatric disorders. Transl. Psychiatry 2012, 2, e110–e118. - 76. Brennan, B.P.; Jensen, J.E.; Perriello, C.; Pope, H.G.; Jenike, M.A.; Hudson, J.I.; Rauch, S.L.; Kaufman, M.J. Lower Posterior Cingulate Cortex Glutathione Levels in Obsessive-Compulsive Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 116–124. - 77. Duffy, S.L.; Lagopoulos, J.; Hickie, I.B.; Diamond, K.; Graeber, M.B.; Lewis, S.J.G.; Naismith, S.L. Glutathione relates to neuropsychological functioning in mild cognitive impairment. Alzheimer's Dement. 2014, 10, 67–75. - 78. Wood, S.J.; Berger, G.E.; Wellard, R.M.; Proffitt, T.M.; McConchie, M.; Berk, M.; McGorry, P.D.;
Pantelis, C. Medial temporal lobe glutathione concentration in first episode psychosis: A 1H-MRS investigation. Neurobiol. Dis. 2009, 33, 354–357. Retrieved from https://encyclopedia.pub/entry/history/show/53109