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Boron (B) is a chemical element with atomic number 5. It has two isotopes, B and B, with a relative abundance

of 20% and 80%, respectively, giving an atomic weight of 10.81. Together with Silicon and Germanium, B is

considered a metalloid because it has intermediate properties between metals and non-metals. Its requirement for

plant growth has been known for one century. Plants take up B mainly in the form of boric acid and its deficiency

causes a plethora of symptoms. The biological functions of B are associated with its capacity to form borate cross-

links with polysaccharides, glycoproteins and glycolipids. 

boron  ligands  cell wall  cell membranes  plant development

1. Boron and the Cell Wall: The Only Demonstrated Primary
Role

The attention of ‘boronists’ very soon focused on the cell wall. Katherine Warrington already indicated that B is

fixed by the plant , and later, Skok provided evidence that B’s role was related to the complexing capacity of

borate ions . Mazurek & Perlin described boric acid/borate complexes with diols containing compounds , and

Loomis & Durst reported that 90% of B is associated with the cell wall fraction . Years later, Matoh et al. raised

the amount of B in the cell wall up to 98% , and Hu & Brown localized B associated with cell wall pectin and

proposed that “…B plays a critical, although poorly defined, role in the cell wall structure of higher plants” .

That poorly understood role of B in the cell wall began to be defined when Findeklee & Goldbach showed that the

elasticity of the cell wall is reduced under B-deficiency , which pointed to a B function in anchoring cell wall

macromolecules and to the capacity of borate cross-linking two chains of rhamnogalacturonan II (RGII) through

diol-ester bonds . Matoh et al. found later that such RGII-dimer (dRGII) was ubiquitous in the cell wall of higher

plants . Finally, O’Neill et al. convincingly demonstrated that the growth of Arabidopsis thaliana dwarf mutants

mur1 relies on the presence of apiose-borate complexes mediating the dimerization of RGII . Although RGII is

a minor part of the pectin fraction , more than 90% appear dimerized, which is critical for plant growth.

Specifically, this dRGII-borate complex is important to determine pore size and cell wall mechanic properties

influencing cell wall expansion and, therefore, plant growth .

Although the basic structure of RGII and the B-mediated dRGII-B are highly conserved in vascular plants, some

variability has been described among different plant species . The relative abundance of the pectin fraction is

lower in monocots than in dicots, likely explaining its lower B requirement . Primitive plants contain traces of
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dRGII-B also with the same conserved structure, which suggests that genes involved in RGII biosynthesis

appeared early in the evolution of land plants and that RGII dimerization was crucial for such evolution .

2. The Fine-Tuning of Boron Homeostasis. Does It Support
Other Primary Roles of This Micronutrient?

Being the structural role the only demonstrated primary role of B in plants, it is proposed that many of the B

deficiency symptoms result from the drastic changes in the cell wall structure and properties resulting from the

decrease in dRGII-borate complexes . Even more, the rapid cell death after inducing B deficiency has been

attributed to defects in newly forming cell walls . Nevertheless, it should not preclude the possibility that other

primary functions of B may exist, particularly those related to the maintenance of membrane activities or/and

regulation of developmental events, perhaps influencing cell signalling and transduction pathways .

Although there is still a lack of convincing evidence supporting those mechanisms underlying alternative roles of B

in plant cells, the discovery of different transporters involved in B uptake and inner transport may support that this

micronutrient´s role goes beyond being a cell wall structural element.

Indeed, although most B is associated with RG-II in land plants , it can be found in the cytosol and vacuole  or

associated with the plasma membrane . Independently of the concentration of B in soils, its concentration in

cell walls is kept almost constant, while B cytosolic levels vary with soil concentrations. This has resulted in the

interesting hypothesis that a minimal level not bound to RG-II is needed to avoid several early B-deficiency

symptoms  and that the reaction of the non-RG-II-linked B with other ‘ligands’ might be responsible for roles of B

beyond the cell wall .

The uptake of B by plants was considered an unregulated passive process until the discovery of the presence of a

complex transport system that was acting to maintain B homeostasis . Today, B passive diffusion through the

plasma membrane is considered to occur only for B uptake from soil to roots , but it is accompanied by transport

mediated by channels  that have also been described in growing shoot tissues  and in reproductive organs

. In summary, plants sense internal and external conditions of B and rapidly regulate the expression of

channels of the NIP (Nodulin26-like Intrinsic Protein) subfamily of MIPs (MAJOR INTRINSIC PROTEIN) family and

transporters of the Borate Exporter family (BOR) to control B homeostasis . In Arabidopsis, AtNIP5;1 is

responsible for facilitating the uptake of B from soil to roots , and the exporter BOR1, which is localized toward

the stele, is key for xylem loading under low-B conditions , and BOR2 seems to export B from the symplast to

the apoplast to ensure efficient RG-II cross-linking . Meanwhile, BOR4 is induced under high-B concentrations

and is involved in the exclusion of B, enhancing B toxicity tolerance .

Additionally, other borate channels have been described to be expressed in different tissues and at particular

developmental stages. AtNIP6;1 is expressed mainly in the node region of shoots and is involved in xylem-phloem

translocation of B to growing leaves ; AtNIP7;1 seems to be required for pollen development ; and AtNIP4;1

and AtNIP4;2 expressions are related to pollen tube elongation . Moreover, evidence that X Intrinsic Proteins (-

[17]

[11]

[18]

[19][20][21]

[9] [22]

[23][24]

[25]

[26]

[27]

[28]

[29] [30]

[31][32]

[33]

[34]

[35]

[36]

[37]

[30] [32]

[38]



Boron | Encyclopedia.pub

https://encyclopedia.pub/entry/41704 3/18

XIPs), another subfamily of MIPs, can facilitate B transport to young tissues has also been reported . Altogether,

the complex mechanism of B uptake and translocation must guarantee continuous supply to grow cell walls, but, at

the same time, it is preferentially distributed to developing meristems, which supports that B is not a merely

structural element but plays a potentially key role in developmental processes.

Reinforcing the importance of B for plant development, orthologs and paralogs of Arabidopsis BORs and NIPs

have been described in many plant species . Sequences similarities indicate that these

transporters belong to conserved gene families that show developmental stage-dependent expression patterns in

different tissues to reach B requirements that ensure the proper execution of blueprints for the plant building .

3. Boron and Cell Membranes

Before demonstrating B function in RGII crosslinking, researchers focused their attention on cell membranes

describing that B deficiency impairs membrane transport, membrane-associated enzymatic activities, or membrane

composition, and interestingly, during the last years, the evidence of B roles as a linker element in the cell

membrane and endomembranes has re-emerged.

Robertson & Loughman demonstrated a reduced absorption of phosphate under B deficiency , and Goldbach

showed that phosphate and glucose uptake and efflux rates were decreased under B-limiting conditions . Also,

K-Cl stimulated ATPase , and ATP-dependent H  pumping and vanadate-sensitive ATPase activities were

demonstrated to be inhibited by B deficiency . In all cases, these effects were quickly reverted by B addition,

suggesting that the membrane properties rely on B nutrition. Furthermore, B has also been involved in redox

activities and the maintenance of membrane potential .

A structural role of B in the membrane was proposed by several researchers to explain a large number of reported

effects of B on membrane processes. For instance, the fluidity of liposomes prepared from low B treated cells of

sunflower was lower than in liposomes coming from B-sufficient cells ; deficiency reduced both total lipid and

phospholipid contents in roots and leaves of Lycopersicon esculentum (tomato) and Abelmoschus esculentus

(okra) , and Cakmak et al. (1995) showed increments of solutes´ leakage under B deficiency . Altogether,

these findings indicate that B could primarily affect membrane function by playing a structural role that protects

membrane integrity. This is supported by Tanada analyses that showed a major part of B localized in membranes

. Nevertheless, although membranes harbour glycans as good candidates for binding B, the difficulty identifying

B complexes formed with membrane components does not allow us to discard that the observed effects are

secondary events of the affected cell wall.

At the end of the 20th and the beginning of the 21st Century, new techniques, and new biological models for plants,

animals, and prokaryotes, have allowed the development of new approaches to unravel membrane-related B

functions. For instance, the use of phenylboronic acid (PBA) as a competitor for B-binding sites caused the

disassembly of transvacuolar cytoplasmic strands and cell collapse , suggesting either a structural role of B in

the cytoskeleton or, more likely, a disruption of cytoskeletal proteins anchored to membrane glycolipids or/and
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glycoproteins. Also, following a similar experimental procedure, it was shown that PBA induced abnormal

internalization of PIN1, blocking auxin transport and generating abnormal Arabidopsis embryo early development,

which supported that PBA competes with B for membrane proteins .

A large amount of information relating B with membrane glycans has come from the research performed on the

legume-rhizobia symbioses . This symbiotic interaction triggers the development of a new organ, the root

nodule, that follows a unique process of organogenesis characterized by events in which exists an intense

membrane synthesis. It is estimated that the membrane synthesis rate is about 30 to 50-fold higher than in other

plant-growing organs . Matching with the analyses reported by Tanada, the content of B in nodules is higher

than in roots or shoots, likely because it is demanded by such an amount of membrane synthesis . Therefore,

the legume-rhizobia symbioses is a very suitable model to investigate the role of B in membrane-located

processes. The bacteria proliferate inside the nodule and differentiate into N -fixing bacteroids enclosed by a plant-

derived peribacteroid membrane (PBM), which differentiates a glycocalyx composed of new glycolipids and

glycoproteins  involved in bacteria-plant cell surface interactions important to ensure the success of the

symbiosis . Some of those components are either abnormally glycosylated  or not detected  in B-deficient

nodules, resulting in cell cycle and the cell division-cell differentiation transition misregulation that leads to a

tumour-like development . Recently, an abnormal N-glycosylation during early development under B deficiency

has been described in pea nodules, Arabidopsis roots, and Dario rerio . Like in nodules, aberrant root apical

meristem in Arabidopsis and a failure of zebrafish organogenesis occurred. Although the described aberrant

development could be due to defects in the cell wall structure, the effects observed in the animal model support a

primary role of B in membranes, likely related to the synthesis and stability of glycan moieties of glycoproteins and

glycolipids. As mentioned above, cis-diol-containing sugar residues, harboured by the cell glycocalyx in

membranes and matrices, are potential candidates to be ligands of B. Several of them have already been identified

.

4. Boron and Developmental Events

Back in 1985, Lovatt published an interesting hypothesis stating that the evolution of the xylem resulted in the

acquisition of the essentiality of B for apical meristem activity and conferred the advantage of preventing B toxicity

, coinciding with the recent consideration of Lewis that affirmed that B is a toxic element for vascular plants .

Lovatt suggested that a threshold concentration of B must reach meristematic cells to promote division and

subsequent expansion to ensure growth, preventing the accumulation of B in meristems to a toxic concentration.

The evolution of the xylem ensured a gradient of B, lowering its concentration in the growing cells in the elongation

zone and reaching a critical minimum content in the meristematic cells to elicit mitosis. The hypothesis was

supported by the fact that B is toxic to most organisms at relatively very low concentrations, being vascular plants

the most tolerant, and by observing that DNA synthesis, cell division, and elongation are inhibited under B

deprivation and soon reversed after B supply. The review also proposed that regulation of cell division by B may be

potentially common to other organisms than vascular plants.
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More recent studies have shown that induced B deficiency or loss of function mutations on B translocators alters

cell cycle regulatory pathways, cell differentiation, and the development of vegetative and reproductive structures

. Particularly, responses to deficiency described in those and other studies recently reviewed 

suggest that B can induce molecular pathways that determine meristem fate and place B nutrition as a key

regulator of developmental processes.

Indeed, the earliest defects following B-starvation are growth arrest and aberrant meristem formation . This

growth arrest can be attributed to defects in cell elongation or differentiation due to abnormal cell wall architecture

, although evidence of cell division inhibition has also been reported. Actually, at the initial steps of B

nutrition research, the works performed by Sommer and Sorokin supported that B deficiency caused root tip

malformations and impairment of cell division . And as mentioned above, using PBA to mimic B-deficiency, it

was shown that root apical meristem (RAM) formation was disrupted in embryos as early as the first asymmetric

cell division of the hypophysis appeared , placing B as crucial for embryo formation. Furthermore, Poza-Viejo et

al. reported a reduction of cell division 4h after transferring Arabidopsis seedlings to severe B deficiency media due

to inhibition of the G1-DNA replication phase transition . Cell division inhibition was accompanied by a later loss

of identity of the quiescent centre (QC) that could be attributed to the down-regulation of CCS52A2 that controls

QC and the maintenance of surrounding stem cells .

As previously stated, the interaction of legumes with soil rhizobia triggers an interesting process of plant

organogenesis in which cell division, cell elongation, and cell differentiation must be finely regulated .

Particularly crucial is the activation by CCS52A of the transition from mitosis to endoreduplication to gain polyploidy

required for cell elongation prior to bacteria invasion . Interestingly, CCS52A is also downregulated during early

organogenesis of B-deficient nodules, leading to failure of cell elongation and cell differentiation . Both in the QC

and in nodule cells, expression of CCS52A(A2) promotes ubiquitination and proteolysis of the anaphase-promoting

complex, resulting in cell polyploidy. This is crucial to maintain QC identity and mitotic activity of surrounding stem

cells of RAM and to induce nodule cell elongation, bacterial invasion/spreading, and cell differentiation,

respectively.

Development of reproductive organs is often more sensitive to B deficiency than vegetative growth ; therefore, it

is not surprising that specific mechanisms of B homeostasis are induced at a particular moment in which shoot

meristems transition from vegetative to floral development . Apparently, BRAHMA (BRM) protein, which is

degraded in response to high B , maintains the juvenile phase . The transition to a mature phase prior to

reproductive development may be the consequence of the reduction in BRM activity in response to the B

translocation increase driven by B transporters .

Altogether, it seems that this micronutrient could play central roles in molecular regulatory pathways of the embryo

and post-embryo plant development.

5. Boron, Cell Signaling Mechanisms, and Gene Expression
Regulation
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Recent studies using microarrays or RNAseq have provided increasing evidence supporting B nutrition’s effect on

the regulation of gene expression affecting metabolism, cell wall, and membrane integrity and function, stress

response, or micronutrient homeostasis . As summarized in the following lines, almost every

signalling and transduction pathway is activated in response to B deficiency, which allows us to hypothesize that

the micronutrient may be involved in cell signalling. Nevertheless, many experimental data support that most of the

responses are linked to the effect on cell walls. Briefly, based on our and other author´s studies, Kobayashi et al.

 proposed that the disturbed pectin network decreases the tensile strength of the cell wall leading to an increase

of turgor pressure that stretches the cell membrane triggering a stress response that resembles hypersensitive

responses to pathogens. Transduction of such mechanical signal involves a rapid influx of Ca , ROS production,

and MAPK cascades that result in auxin/ethylene-mediated cessation of growth and cell death . This

is supported by the fact that blocking Ca  channels in B-deprived cells largely inhibited the expression of stress-

responsive genes  or adding antioxidant reagents can prevent the death of B-deficient cells  by restoring cell

elongation. Similarly, blocking ethylene biosynthesis or perception or using mutants defective in ethylene or auxin

response can restore B deficiency molecular responses . Furthermore, destabilization of the cell wall under Ca

deficiency but not under other nutrient deficiencies such as K or Mg that are also involved in pectin cross-linking

triggers a similar response . On the contrary, preincubating B-deficient cells with a supplement of extra Ca

increases cell wall strengthening, attenuating the expression of B-deficiency-responsive genes . Similarly, the

addition of Ca partially restored the impaired development of B-deficient legume nodules  and the expression of

75% of genes affected by stress .

In roots, Ca influx, ROS production, and cell death occur preferentially in the elongation zone . In line with this,

maize mutants affected in the synthesis of B transporters, which are involved in the transition to the reproductive

phase, develop defective inflorescences with reduced RG-II dimerization, which is largely restored by adding B into

the media . Therefore, failure of meristem formation and functioning can also be explained by the

mechanosensitive response to B deficiency. But is that all?

Based on the comparison among different gene expression profiles, the mechanosensitive hypothesis proposes a

pathogen-like response under B deficiency. However, B-deficiency disturbs cell wall structure, and it is expected

that the upregulation of genes is involved in cell wall functioning. Nevertheless, while genes related to the cell wall

structure, included in different transcriptomic analyses, are upregulated after pathogen attack , they appear

downregulated under B deficiency , suggesting that B might be required to induce the expression of cell wall

synthesis and assembly-related genes . Using the legume nodule model, the first visible symptoms of B

deficiency appear early after root inoculation with rhizobia , and although pathogenesis-related proteins were

synthesized , oxidative damage was not detected even 3 weeks post-inoculation . At this developmental

stage, cell death is not observed, but it appears an abnormal cell division resembling tumour behaviour ,

indicating an early failure of development and suggesting that B deficiency is not necessarily associated with cell

death. Furthermore, low-B results in abnormal embryonic development in animals , also leading to a tumour-like

amorphous structure when B deprivation occurs at the early cleavage stage . Interestingly, boric acid can inhibit

cell proliferation in different cancer cell lines . Such implications of B nutrition in animal
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physiology/development, together with the organogenesis failure in plants and animals, claim for alternative or/and

additional sensing/response mechanisms to low B conditions.

The existence of a putative B sensor molecule in plants able to detect external B concentration remains still

unknown. Certainly, the loss of cell wall integrity that can alter turgor pressure could be the cellular signal triggering

the B stress response. In agreement with such a hypothesis, the literature offers other possible sensing

mechanisms associated with soluble, not necessarily external, B. Regarding B deprivation sensing mechanisms, a

computational model for B distribution in roots localized the highest concentration of soluble B around the QC,

which might be likely used to keep RAM activity . Also, the fact that the 5′-untranslated region (UTR) of NIP5;1

responds to the increase in cytosolic B promoting mRNA degradation  led to the assumption of a sensor

mechanism acting in the cytosol resulting in the development of biosensors of cytosolic B . Interestingly, this 5′-

UTR response to B seems to function also in animal cells . Additionally, there are different cell wall receptors

that act in response to stresses regulating cell wall dynamics . Also, the arabinogalactan-proteins (AGP) have

been proposed as sensors of soluble periplasmic B because, as researchers described later, they contain sugar

residues susceptible to interaction with B . Afterwards, the signal would be conveyed to the nucleus, and

several cell signalling transduction pathways can be implicated. In agreement with this hypothesis, Dumont et al.

demonstrated that the inhibition of root cell elongation induced by the fucose analogue 2-fluoro 2-L-fucose (a

chemical inhibitor of RG-II biosynthesis) was partially restored by boric acid supplementation without rescuing RG-

II synthesis nor dimerization . These observations suggest that B itself, rather than the RG-II dimer, is an

essential component of the cell wall integrity-sensing mechanism that controls cell elongation, perhaps due to its

ability to bind to the cis-diol motifs of signalling molecule(s).

The potential role of phytohormones in the regulation of B stress responses has been widely studied. By applying

pharmacological approaches combined with reverse genetics using mutant lines affected in hormone synthesis or

hormonal perception/transduction pathways, it was described that B deprivation alters plant development affecting

synthesis, transport, or/and reception of auxins , ethylene , cytokinins , brassinosteroids

, jasmonic acid , and the cross-talk among hormones . Thus, phytohormone regulatory pathways are

considered crucial in regulating cell signalling in B nutrition, although other cell signalling mechanisms common in

plants and animals must also be important.

As previously mentioned, blocking sites of B binding with PBA led to cytoskeleton disruption , and levels of actin

and tubulin increased in response to short-term B starvation due to the altered cytoskeleton polymerization .

Therefore, B might be involved in signalling through a cascade of signals via the cell wall-plasma membrane-

cytoskeleton continuum , through endocytosis of signalling elicitors. Supporting this hypothesis, the abundance

of homogalacturonan and RGII rapidly increased in cell walls shortly after B-deprivation in Zea mays, and their

endocytosis was also inhibited . In animals, the maintenance of the membrane-cytoskeleton continuum and,

hence, endocytosis-mediated signalling also support the essentiality of B in the development of these organisms.

Also, the fact that the increase of cytosolic Ca  (cytCa ) is a rapid response to B deficiency could explain why B

may be involved in signalling through transduction pathways activated by Ca  , which could also be extended
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to animals. Many abiotic and biotic stresses induce an increase of cytCa  following the activation of cyclic

nucleotide-gated Ca  channels (CNGCs) . A plasma membrane-localized CNGC was found to be upregulated

in Arabidopsis in response to B deficiency . Therefore, it has been proposed that membrane sensors of B-

deficiency could induce activation of CNGCs resulting in Ca  increments that could activate Ca-related proteins,

such as calmodulin (CaM). Ca-CaM regulates then different transcription factors and B-responsive genes .

Right after discovering that B is part of a signalling molecule in bacteria (AI-2 quorum-sensing autoinducer) that

interacts with the sensor protein LuxP , another tentative working hypothesis to explain the possible function of

B is that it is a cellular signal itself or that it is implicated in a soluble B-complex that interacts with different

transcription factors. In line with this, Kasajima et al. described that WRKY6 is a transcription factor involved in

response to B deficiency in Arabidopsis , which also plays an important role in embryogenesis . Besides, B

could interact with -hydroxyl groups (OH) of amino acid residues (as serine or threonine) of different transcription

factors, as in the bacterial LuxP. However, there is no evidence to date of this type of binding.
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