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Lipid peroxidation, the most aggressive reaction in food, results in the formation of reactive organic compounds
that detrimentally impact food sensory qualities and consumers’ health. While controlled lipid peroxidation can
enhance flavors and appearance in certain foods, secondary peroxidation products lead to sensory deterioration in
a variety of products, such as oils, alcoholic beverages, and meat. Dispersive liquid-liquid microextraction
(DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME). These techniques offer
efficient and sensitive approaches to extracting and quantifying lipid oxidation products and contribute to the

understanding of oxidative deterioration in various food products.

food analysis gas-diffusion microextraction lipid peroxidation

dispersive liquid-liquid microextraction solid-phase microextraction

| 1. Introduction

Lipid peroxidation, autooxidation, or oxidative rancidity, is the most aggressive reaction in food that results in the
formation of reactive organic compounds . These compounds have an adverse effect on the sensory qualities of
food and can potentially harm consumer health W2, Lipid peroxidation is driven by the complex interaction of
polyunsaturated fatty acids (PUFA) with reactive oxygen species (ROS) (Figure 1), resembling free radical
reactions . Exposure to factors like light, heat, or metallic ions initiates the process by releasing hydrogen atoms,
forming radical carbonations. These radicals rearrange to create conjugated systems W24l Atmospheric oxygen
reacts with these conjugated dienes, generating peroxide radicals that sustain the chain reaction B4, Although
lipid peroxides are relatively stable, further degradation occurs through heat or metal ions, resulting in more stable
secondary products BlBl The extent of autooxidation varies based on factors such as storage conditions, oxygen

levels, and lipid composition, with the number of unsaturated bonds in the fatty acid influencing the susceptibility I
B[],
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Figure 1. Pathway of lipid peroxidation.

Controlled lipid peroxidation possesses positive effects, enhancing the flavors in certain products like aged cheese,
roasted coffee beans, and toasted nuts B2, However, secondary lipid peroxidation products can lead to sensory
deterioration and off flavors in various foods, including oils, alcoholic beverages, meat, milk, and dairy products &
(1011213 The susceptibility to autooxidation varies among different edible oils, with olive oil's resistance
attributed to its high phenolic content 294 Alcoholic beverages, such as wine and beer, can develop lipid
peroxidation products due to the interaction of PUFA in the raw materials with lipid peroxidation factors during
production and fermentation (1216l Yeast metabolism in alcohol fermentation can also contribute to generating

ROS, accelerating oxidative rancidity 22!, Extended periods of aging and storage, common in wines, further expose
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them to oxidative conditions [2&. Meat products, processed through grinding, cutting, and packaging, expose more
surface area to ROS, promoting lipid peroxidation, which is exacerbated by extended storage times, especially
under improper conditions 212 Additionally, food products made from meat or fish are high in protein, PUFA and
monounsaturated fatty acids (MUFA), and salt can experience protein deterioration due to primary
(hydroperoxides) and secondary (aldehydes, ketones) lipid oxidation products reacting with free proteins, peptides,
and amino acids 121129,

Excessive lipid peroxidation can have adverse health effects by producing secondary peroxidation products that
interact with biomolecules (proteins, peptides, nucleic acids, and other lipids) within cells, potentially leading to
toxic and mutagenic effects 23],

These secondary lipid peroxidation products can follow two pathways: they can break down into carbonyl
compounds like aldehydes, ketones, and alcohols 22l or undergo cyclization to form malondialdehyde, which can
then dehydrate into acrolein 29,

The International Agency for Research on Cancer (IARC) classifies certain secondary peroxidation products based
on their potential carcinogenic hazards to humans [2l. This classification (Table 1) categorizes compounds
according to their level of evidence as carcinogens into different groups: Category 1, indicating sufficient evidence
of its carcinogenicity to humans, Category 2A, suggesting they are probably carcinogenic to humans based on
limited evidence. Category 2B, indicating that they are possibly carcinogenic to humans, supported by limited

evidence, and Category 3, indicating insufficient evidence for their carcinogenicity.

Table 1. Classification of secondary lipid peroxidation products based on their carcinogenetic and recommended

exposure levels.

CAS IARC Tolerable Daily

Secondary Product Intake Reference
Number  Category ug/Kg bwiDay
Formaldehyde 50-00-0 1 150 [22]
Saturate Carbonyls Acetaldehyde 75-07-0 2B 1854 [23]
Hexanal 66-25-1 - 780 * [24]
a,B-Unsaturated Acrolein 107-02-8 2A 75 [25]
Carbonyls
4-hydroxy-2-nonenal 758929_68_ 3 1.5 ** [26]
4-hydroxy-2-hexenal 174237-21- 3 1.5 ** [26]
Acrylamide 79-06-1 2A NE [27]
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Tolerable Daily
Intake Reference
ng/Kg bwi/Day

CAS IARC

Secondary Product Number  Category

Crotonaldehyde 4170-30-3 2B - -
Malondialdehyde 102-52-3 3 30 ** [26]
Glyoxal 107-22-2 - 200 [28]
Dicarbonyls
Methylglyoxal 78-98-8 3 - -
- oased on
Diace 31-03 - 900 *
Woirerizeitzonsd) ) certain
Dihydro-2(3H)- 96-48-0 3 i i ashold of
Furans furanone [31]
Furfural 98-01-1 3 500 2]

wuanurying primary peroxiaaton proaucts IS cnalienging aue 1o meir reacuvity ana voiauinty 22, |nerefore, the
measurement of secondary lipid peroxidation products is commonly used as biomarkers to monitor oxidative stress
VARG, datlsn%ﬁoﬁddiﬂgnald,y/, foedReseaiobtonaGamwes dsvmaokiyrsvaf fobd crepityble assdes rbyaoceid adity @ ey ; of
Rmcbplatﬂecﬂiail@ﬂnt&meipa’s Tanatticll ¢édbriqoles)italveoroeergedt iny rébentnieraetidorlalf ebygrang nam o rg Cirdityice
Safleon (IPGBNpNEH e veistalaigiiedtions in food, biological, and environmental studies (2325 These methods
primarily involve spectrometry and chromatography technologies 35 A direct measurement of carbonyl
compounds offers non-destructive and specific approaches, minimizing sample contamination risks due to their
natural occurrence B2IB8IETIZE]  pirect methods for carbonyl compound analyses in food mainly employ flame
ionization detectors (FID) and electron capture detectors (ECD). However, they may have increased detection
limits due to potential analyte degradation within the detector [36I37[38] |1y contrast, indirect methods offer a way to
detect secondary peroxidation products by forming carbonyl adducts, which are determined using ultraviolet (UV),
fluorescence (FLD), and mass spectrometry (MS) [2QE2120]41][42][43]

The traditional thiobarbituric acid (TBA) reactive substances (TBARS) assay has been employed to determine
carbonyl compounds as lipid peroxidation products in biological and food samples 2. This assay involves the
reaction with TBA to form a chromophore detectable by spectrophotometric methods (2143l However, TBARS lack
specificity due to interactions with various organic compounds B9 Therefore, some applications incorporate a
separation step, often via liquid chromatography (LC), before determination 431 Other derivatization reagents, such
as hydrazines, react with carbonyl compounds to form hydrazones, detectable spectroscopically after LC or gas
chromatography-mass spectrometry (GC-MS) BI4LE2 - pheny| hydrazine (PH) and derivatives such as 2,4-

Dinitrophenylhydrazine (DNPH) and 2,3,4,5,6-pentafluorophenylhydrazine (PFPH) are commonly used for this
purpose [42[41][42]

The choice of a sample preparation method depends on various factors, including the sample’s state (solid, liquid,
gas), size, the analytical technique used, the type of analysis, properties of the analyte, and its initial concentration
[44] Traditional sample preparation methods often involve significant quantities of organic solvents, multiple steps,
and result in substantial waste and time consumption 22, An ideal sample preparation method should be simple,

time efficient, cost effective, rugged, potentially automated, and align with the principles of green analytical
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chemistry, with a focus on minimizing sample, solvent, and waste usage 443l Furthermore, simultaneous
derivatization and extraction can reduce the overall analysis time while enhancing sensitivity and specificity 48, In
response to these needs, novel microextraction-based methods have emerged. Microextraction involves using a
small volume of an extracting phase compared to the sample volume (7481491501 - \while it may not achieve
exhaustive extraction, it significantly increases the concentration of the analyte in the extractive phase, reducing
solvent usage (4714814911501 The efficiency of microextraction depends on how the analyte partitions between the
matrix and the extractive phase 21, Since partitioning is not affected by analyte concentration, quantification is
based on the absolute amount extracted B2, The affinity of the analyte for the extraction phase determines the
quantity extracted 2152l Moreover, microextraction operates on equilibrium, where extraction time determines the
system’s equilibrium position 2. Once equilibrium is reached, no further analyte extraction occurs [L2]53],

Microextraction can also serve as a pre-concentration step before analysis (4213511,

Microextraction techniques, including dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction
(SPME), and gas-diffusion microextraction (GDME), have gained prominence in the analysis of lipid peroxidation in
food. These techniques provide efficient and sensitive approaches to extracting and quantifying lipid oxidation

products, thereby contributing to understanding the oxidative deterioration of food products.

| 2. Gas Diffusion Microextraction

GDME (Figure 2) was introduced to the scientific community through the Journal of Separation Science in 2010
i8]

Acceptor solution

—  GDME module

—— membrane —

Sample/sample solution

~ Magnetic stir bar

Immersed mode Suspended mode

Figure 2. Scheme of gas-diffusion microextraction (GDME).
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GDME is a versatile and efficient technique offering several advantages in addressing food matrices complexities.
Its selective extraction capability allows the isolation of specific target compounds from complex mixtures, ensuring
precise analysis even in interfering components. GDME operates through passive diffusion, with target compounds
migrating from the sample matrix into an acceptor phase, usually a liquid solution containing a derivative reagent.
This process involves placing the acceptor phase in the GDME module containing a microporous hydrophobic
membrane, typically a 5.0 um PTFE membrane, which supports the acceptor phase. Equilibrium is established
between the sample and acceptor phases, and the acceptor phase is collected for analysis. GDME’s minimal
sample requirements make it well suited for limited availability, while its reduced solvent usage aligns with the trend
of green analytical chemistry 8. GDME exhibits high sensitivity, when coupled with sensitive detection methods

like GC-MS or high-performance liquid chromatography-ultraviolet (HPLC-UV). This empowers the quantification of
trace-level compounds in food analyses [LA481(541[551[56][57][58][59][60]61][62]

From quality control to monitoring changes during storage and processing, GDME’s synergy with analytical
techniques such as GC and HPLC unveils the intricacies of food composition and quality, setting its status as an
indispensable tool in modern food analysis practices. Its selective enrichment capabilities enhance the detectability
of compounds, making GDME valuable for trace analysis. In practice, GDME is employed for discerning volatile
aroma compounds, evaluating off flavors, assessing lipid oxidation products, and analyzing a spectrum of other
volatile constituents. Additionally, GDME’s non-destructive nature preserves the integrity of samples for further
investigations, enhancing the versatility of its applications across various food products, including solid (bread and
coffee beans), liquid (beer, wine, soy sauce), and semi-liquid (vegetable oils) foods. Table 2 presents a comparison

of the methods developed for the analysis of carbonyl compounds using GDME.

Table 2. Analytical method for determination of secondary peroxidation products by gas-diffusion microextraction

(GDME).
GDME . LOD
Target Derivative S Recovery
Sample Vacceptor t T Determination pg/L or . Ref.
Compound Mode s(ﬁﬂ P min °C Reagent uglKg
e 3.8-
pentadione Beer Immersed 0.5 15 40 O-PDA HPLC-UV 4;6 - (48]
Diacetyl ’
2 aldehydes 15-
& Beer Immersed 0.75 5 30 DNPH HPLC-UV . - (54]
12.3
Furfural
1.2- [55]
5 aldehydes Beer Suspended 0.5 20 40 HBA HPLC-DAD 18577 >96%
Diacetyl a Wine Immersed 0.4 20 65 O-PDA HPLC-UV 3.8 - (6]
Acetaldehyde .0 Immersed 1.0 15 50  DNPH HPLC-UV ?286 . 571
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GDME LOD

Target Derivative " Recovery
Sample Vacceptor t T Determination pg/L or . Ref.
Compound Mode scﬁﬂ P min °C Reagent uglKg %
. Wine & [58]
Diacetyl beer Suspended 1.0 10 60 O-PDA DPV 0.053 -
Wine;
a-DCC blacktea Immersed 5 45 55 o.ppA HPLC-UV 50~ - (591
& soy 200
sauce
Vegetable HPLC- 250- o [60]
MDA ol Suspended 0.5 30 65 TBA LD 50 >82%
4 aldehydes
Acroleing ~ Ve9CPIe o chended 1.0 10 60  DPNH GC-MS 50— g5y, WO
oil 100
MDA
2ketones&  Ground o g 05 15 65 O-PDA HPLC-UV 6-12 . (6]
diacetyl bread
Green &
27 bonyl =
carbonyl - roast o\ ended 05 16 40 O-PDA  HPLC-DAD 20 . 2 n. Rev.
compounds coffee 200
beans
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Compound

& 1 ketone

3
aldehydes

Hexanal

2
aldehydes
&2
dialdehydes

8
aldehydes

6
aldehydes

198 VOCs

Aldehydes
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aldehydes
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VOC
VOC
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41 carbonyl
compounds
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Dry cured
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Infant
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Beer

Beer

Mode mtin
HS 10
HS 30
HS 30
HS 15
HS 30
HS 30
HS 10
HS 45
HS 45
HS 45
HS 15
HS 45
HS 60
HS 40
HS 20

T
°C

60

50

50

60

60

37

25

37
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50

37

50

50

60

45

SPME
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DVB/CAR/PDMS

DVB/CAR/PDMS

CAR/PDMS

PDMS/DVB

DVB/CAR/PDMS

PDMS/DVB

CAR/PDMS

CAR/PDMS

DVB/PDMS

PDMS/DVB

PDMS/DVB

PDMS/DVB
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220

260

260

250

260

250

250

250

260

220

250

250

250

250

T ~ Derivative
dei"é”““ Reagent

PFBHA

PFBHA *

PFBHA

*rkk

PFBAH

*%

Determination pgiL or

GC-FID

GC-MS

GC-FID

GC-MS

GC-MS

GC-MS

GC-MS

GC-FID

GC-MS

GC-MS

GC-MS

GC-MS

GC-MS

GC-MS

GC-ITMS

LOD

Hg/Kg %

1.4-6.1  79-102

0.02—
1.05

2-6

89-114

0.003—-
20,000

0.003-
0.510

88-114

solid phase microextraction. TrAC Trends Anal. Chem. 2019, 118, 793-809.
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'019,
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E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530.

Chromatogr. 2022, 1678, 463348.

Atapattu, S.N.; Rosenfeld, J.M. Analytical derivatizations in environmental analysis. J.
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Anal. Chem. 2022, 3, 100023.
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6 carbonyl Beer
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HS 45
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HS 20
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HS 20

°C
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55
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20
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50
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PDMS/DVB

PDMS/DVB

PDMS

PDMS
CAR/PDMS
DVB/CAR/PDMS
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