Microextraction Techniques in Lipid Peroxidation Product Detection

Subjects: Chemistry, Analytical

Contributor: Jorge A. Custodio-Mendoza , Ana M. Ares-Fuentes , Antonia M. Carro

Lipid peroxidation, the most aggressive reaction in food, results in the formation of reactive organic compounds that detrimentally impact food sensory qualities and consumers' health. While controlled lipid peroxidation can enhance flavors and appearance in certain foods, secondary peroxidation products lead to sensory deterioration in a variety of products, such as oils, alcoholic beverages, and meat. Dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME). These techniques offer efficient and sensitive approaches to extracting and quantifying lipid oxidation products and contribute to the understanding of oxidative deterioration in various food products.

food analysis gas-diffusion microextraction lipid peroxidation

dispersive liquid-liquid microextraction

solid-phase microextraction

1. Introduction

Lipid peroxidation, autooxidation, or oxidative rancidity, is the most aggressive reaction in food that results in the formation of reactive organic compounds ^[1]. These compounds have an adverse effect on the sensory qualities of food and can potentially harm consumer health ^{[1][2]}. Lipid peroxidation is driven by the complex interaction of polyunsaturated fatty acids (PUFA) with reactive oxygen species (ROS) (**Figure 1**), resembling free radical reactions ^[3]. Exposure to factors like light, heat, or metallic ions initiates the process by releasing hydrogen atoms, forming radical carbonations. These radicals rearrange to create conjugated systems ^{[1][2][4]}. Atmospheric oxygen reacts with these conjugated dienes, generating peroxide radicals that sustain the chain reaction ^{[3][4]}. Although lipid peroxides are relatively stable, further degradation occurs through heat or metal ions, resulting in more stable secondary products ^{[3][5]}. The extent of autooxidation varies based on factors such as storage conditions, oxygen levels, and lipid composition, with the number of unsaturated bonds in the fatty acid influencing the susceptibility ^[5].

Figure 1. Pathway of lipid peroxidation.

Controlled lipid peroxidation possesses positive effects, enhancing the flavors in certain products like aged cheese, roasted coffee beans, and toasted nuts ^{[8][9]}. However, secondary lipid peroxidation products can lead to sensory deterioration and off flavors in various foods, including oils, alcoholic beverages, meat, milk, and dairy products ^[9] ^{[10][11][12][13]}. The susceptibility to autooxidation varies among different edible oils, with olive oil's resistance attributed to its high phenolic content ^{[10][14]}. Alcoholic beverages, such as wine and beer, can develop lipid peroxidation products due to the interaction of PUFA in the raw materials with lipid peroxidation factors during production and fermentation ^{[15][16]}. Yeast metabolism in alcohol fermentation can also contribute to generating ROS, accelerating oxidative rancidity ^[17]. Extended periods of aging and storage, common in wines, further expose

them to oxidative conditions ^[18]. Meat products, processed through grinding, cutting, and packaging, expose more surface area to ROS, promoting lipid peroxidation, which is exacerbated by extended storage times, especially under improper conditions ^{[12][19]}. Additionally, food products made from meat or fish are high in protein, PUFA and monounsaturated fatty acids (MUFA), and salt can experience protein deterioration due to primary (hydroperoxides) and secondary (aldehydes, ketones) lipid oxidation products reacting with free proteins, peptides, and amino acids ^{[12][19]}.

Excessive lipid peroxidation can have adverse health effects by producing secondary peroxidation products that interact with biomolecules (proteins, peptides, nucleic acids, and other lipids) within cells, potentially leading to toxic and mutagenic effects ^{[1][2][3]}.

These secondary lipid peroxidation products can follow two pathways: they can break down into carbonyl compounds like aldehydes, ketones, and alcohols ^{[1][2]}, or undergo cyclization to form malondialdehyde, which can then dehydrate into acrolein ^[20].

The International Agency for Research on Cancer (IARC) classifies certain secondary peroxidation products based on their potential carcinogenic hazards to humans ^[21]. This classification (**Table 1**) categorizes compounds according to their level of evidence as carcinogens into different groups: **Category 1**, indicating *sufficient evidence of its carcinogenicity to humans*, **Category 2A**, suggesting they are *probably carcinogenic to humans* based on limited evidence. **Category 2B**, indicating that they are *possibly carcinogenic to humans*, supported by limited evidence, and **Category 3**, indicating *insufficient evidence for their carcinogenicity*.

 Table 1. Classification of secondary lipid peroxidation products based on their carcinogenetic and recommended

 exposure levels.

Secondary	/ Product	CAS Number	IARC Category	Tolerable Daily Intake µg/Kg bw/Day	Reference
	Formaldehyde	50-00-0	1	150	[22]
Saturate Carbonyls	Acetaldehyde	75-07-0	2B	185 ^a	[23]
	Hexanal	66-25-1	-	780 *	[24]
α,β-Unsaturated	Acrolein	107-02-8	2A	7.5	[25]
Carbonyis	4-hydroxy-2-nonenal	75899-68- 2	3	1.5 **	[26]
	4-hydroxy-2-hexenal	17427-21- 3	3	1.5 **	[26]
	Acrylamide	79-06-1	2A	NE	[27]

Secondar	y Product	CAS Number	IARC Category	Tolerable Daily Intake µg/Kg bw/Day	Reference
	Crotonaldehyde	4170-30-3	2B	-	-
	Malondialdehyde	102-52-3	3	30 **	[26]
Disarbanyla	Glyoxal	107-22-2	-	200	[28]
Dicarbonyis	Methylglyoxal	78-98-8	3	-	-
	Diace	[<u>29][30</u>]31-03	-	900 *	[28]
Furans	Dihydro-2(3H)- furanone	96-48-0 <u>31</u>]	3	-	-
	Furfural	98-01-1	3	500	[<u>29</u>]

Quantifying primary peroxidation products is chailenging due to their reactivity and volatility ^[32]. Inerefore, the measurement of secondary lipid peroxidation products is commonly used as biomarkers to monitor oxidative stress witho, detter ^[33] ioAddiiAgealty, fbestesectobtooa@attree, asymaokkyrsvafyfo@Acceptitg/ble astates theodoid attive(g/katay; of Acceptitg/ble astates theodoid attive(g/katay; of Acceptitg/ble) astates theodoid attive(g/katay; and Acceptitg/ble) astates as a to accept as a to accept

The traditional thiobarbituric acid (TBA) reactive substances (TBARS) assay has been employed to determine carbonyl compounds as lipid peroxidation products in biological and food samples ^[39]. This assay involves the reaction with TBA to form a chromophore detectable by spectrophotometric methods ^[39]. However, TBARS lack specificity due to interactions with various organic compounds ^[39]. Therefore, some applications incorporate a separation step, often via liquid chromatography (LC), before determination ^[43]. Other derivatization reagents, such as hydrazines, react with carbonyl compounds to form hydrazones, detectable spectroscopically after LC or gas chromatography-mass spectrometry (GC-MS) ^{[40][41][42]}. Phenyl hydrazine (PH) and derivatives such as 2,4-Dinitrophenylhydrazine (DNPH) and 2,3,4,5,6-pentafluorophenylhydrazine (PFPH) are commonly used for this purpose ^{[40][41][42]}.

The choice of a sample preparation method depends on various factors, including the sample's state (solid, liquid, gas), size, the analytical technique used, the type of analysis, properties of the analyte, and its initial concentration ^[44]. Traditional sample preparation methods often involve significant quantities of organic solvents, multiple steps, and result in substantial waste and time consumption ^[45]. An ideal sample preparation method should be simple, time efficient, cost effective, rugged, potentially automated, and align with the principles of *green analytical*

chemistry, with a focus on minimizing sample, solvent, and waste usage ^{[44][45]}. Furthermore, simultaneous derivatization and extraction can reduce the overall analysis time while enhancing sensitivity and specificity ^[46]. In response to these needs, novel microextraction-based methods have emerged. Microextraction involves using a small volume of an extracting phase compared to the sample volume ^{[47][48][49][50]}. While it may not achieve exhaustive extraction, it significantly increases the concentration of the analyte in the extractive phase, reducing solvent usage ^{[47][48][49][50]}. The efficiency of microextraction depends on how the analyte partitions between the matrix and the extractive phase ^[51]. Since partitioning is not affected by analyte concentration, quantification is based on the absolute amount extracted ^[52]. The affinity of the analyte for the extraction phase determines the quantity extracted ^{[51][52]}. Moreover, microextraction operates on equilibrium, where extraction time determines the system's equilibrium position ^[53]. Once equilibrium is reached, no further analyte extraction occurs ^{[51][52][53]}. Microextraction can also serve as a pre-concentration step before analysis ^{[49][50][51]}.

Microextraction techniques, including dispersive liquid-liquid microextraction (DLLME), solid-phase microextraction (SPME), and gas-diffusion microextraction (GDME), have gained prominence in the analysis of lipid peroxidation in food. These techniques provide efficient and sensitive approaches to extracting and quantifying lipid oxidation products, thereby contributing to understanding the oxidative deterioration of food products.

2. Gas Diffusion Microextraction

GDME (Figure 2) was introduced to the scientific community through the Journal of Separation Science in 2010 [48]

Immersed mode

Suspended mode

GDME is a versatile and efficient technique offering several advantages in addressing food matrices complexities. Its selective extraction capability allows the isolation of specific target compounds from complex mixtures, ensuring precise analysis even in interfering components. GDME operates through passive diffusion, with target compounds migrating from the sample matrix into an acceptor phase, usually a liquid solution containing a derivative reagent. This process involves placing the acceptor phase in the GDME module containing a microporous hydrophobic membrane, typically a 5.0 µm PTFE membrane, which supports the acceptor phase. Equilibrium is established between the sample and acceptor phases, and the acceptor phase is collected for analysis. GDME's minimal sample requirements make it well suited for limited availability, while its reduced solvent usage aligns with the trend of *green analytical chemistry* ^[45]. GDME exhibits high sensitivity, when coupled with sensitive detection methods like GC-MS or high-performance liquid chromatography-ultraviolet (HPLC-UV). This empowers the quantification of trace-level compounds in food analyses ^{[10][48][54][55][56][57][58][59][60][61][62].}

From quality control to monitoring changes during storage and processing, GDME's synergy with analytical techniques such as GC and HPLC unveils the intricacies of food composition and quality, setting its status as an indispensable tool in modern food analysis practices. Its selective enrichment capabilities enhance the detectability of compounds, making GDME valuable for trace analysis. In practice, GDME is employed for discerning volatile aroma compounds, evaluating off flavors, assessing lipid oxidation products, and analyzing a spectrum of other volatile constituents. Additionally, GDME's non-destructive nature preserves the integrity of samples for further investigations, enhancing the versatility of its applications across various food products, including solid (bread and coffee beans), liquid (beer, wine, soy sauce), and semi-liquid (vegetable oils) foods. **Table 2** presents a comparison of the methods developed for the analysis of carbonyl compounds using GDME.

 Table 2. Analytical method for determination of secondary peroxidation products by gas-diffusion microextraction (GDME).

Target			GDME			Dorivative		LOD Becovery				
Compound	Sample	Mode	V _{acceptor} soution	, t min	T ℃	Reagent	Determination	µg/L or µg/Kg	%	Ref.		
1,3- pentadione Diacetyl	Beer	Immersed	0.5	15	40	O-PDA	HPLC-UV	3.8– 4.6	-	[<u>48</u>]		
2 aldehydes & Furfural	Beer	Immersed	0.75	5	30	DNPH	HPLC-UV	1.5– 12.3	-	[<u>54]</u>		
5 aldehydes	Beer	Suspended	0.5	20	40	HBA	HPLC-DAD	1.2– 1857.7	>96%	[<u>55</u>]		
Diacetyl ¹	Wine	Immersed	0.4	20	65	O-PDA	HPLC-UV	3.8	-	[<u>56</u>]		
Acetaldehyde	Wine	Immersed	1.0	15	50	DNPH	HPLC-UV	800– 1100	-	[<u>57</u>]		

Target Compound	Sample	Mode	GDME V _{acceptor} solution	t min	T ℃	Derivative Reagent	Determination	LOD µg/L or µg/Kg	Recovery %	Ref.
Diacetyl	Wine & beer	Suspended	1.0	10	60	O-PDA	DPV	0.053	-	[<u>58</u>]
α-DCC	Wine; black tea & soy sauce	Immersed 2	0.5	10	55	O-PDA	HPLC-UV	50– 200	-	[<u>59]</u>
MDA	Vegetable oil	Suspended	0.5	30	65	TBA	HPLC- UV/FLD	250– 350	≥82%	[<u>60]</u>
4 aldehydes Acrolein & MDA	Vegetable oil	Suspended	1.0	10	60	DPNH	GC-MS	50— 100	≥95%	[<u>10]</u>
2 ketones & diacetyl	Ground bread	Suspended	0.5	15	65	O-PDA	HPLC-UV	6–12	-	[<u>61]</u>
27 carbonyl compounds ³	Green & roast coffee beans	Suspended	0.5	16	40	O-PDA	HPLC-DAD	50– 200	-	[<u>62</u>] (

2. Guéraud, F.; Atalay, M.; Bresgen, N.; Cipak, A.; Eckl, P.M.; Huc, L.; Uchida, K. Chemistry and biochemistry of lipid peroxidation products. Free Radic. Res. 2010, 44, 1098–1124.

 Repetto, M.; Semprine, J.; Boveris, A. Lipid peroxidation: Chemical mechanism, biological ¹ free and total.² 0.22 um PVDF membrane: ³ Qualitative analysis: OD limit of detection; Ref., reference; DNPH, ¹ implications and analytical determination. Lipid Peroxidation 2012, 1, 3–30.
 2,4-dinitrophenylhydrazine; HBA, 4-hydrazinobenzoic acid; O-PDA, O-phenylenediamine; α-DCC, α-dicarbonyl 4, Sun YE, Wang, WD.; Chen, HBA, 2-triobarbitunc acid, DPV, differential pulse Voltammetry. Crit. Rev. Food Sci. Nutr. 2011, 51, 453–466.

5.3: Soud-Phase Microextraction and mechanism studies of peroxy, vitamin e and anti-oxidant free radicals by pulse radiolysis. In Autoxidation in Food and Biological Systems, 1st SPME: (Simule, M.G.a Karle, stablieds); Soming or Seience to Buisine sort Media: Weakingtoby: @CcluesAstry to ext2013; opport Per26te target compounds from various sample matrices before analysis [49][51][63].

- 6. Zielinski, Z.A.; Pratt, D.A. Lipid Peroxidation: Kinetics, mechanisms, and products. J. Org. Chem. 2017, 82, 2817–2825.
- Islam, F.; Imran, A.; Nosheen, F.; Fatima, M.; Arshad, M.U.; Afzaal, M.; Ijaz, N.; Noreen, R.; Mehta, S.; Biswas, S.; et al. Functional roles and novel tools for improving-oxidative stability of polyunsaturated fatty acids: A comprehensive review. Food Sci Nutr. 2023, 11, 2471–2482.
- 8. Rendón, M.Y.; Salva, T.D.J.G.; Bragagnolo, N. Impact of chemical changes on the sensory characteristics of coffee beans during storage. Food Chem. 2014, 147, 279–286.
- 9. Pegg, R.B.; Shahidi, F. Off flavors and rancidity in foods. In Handbook of Meat, Poultry and Seafood Quality; Nollet, L.M.L., Ed.; Wiley-Blackwell: Oxford, UK, 2012; Part 2; pp. 127–139.

- Custodio-Mendoza, J.A.; Aja-Macaya, J.; Valente, I.M.; Rodrigues, J.A.; Almeider P.J.; Lorenzo, R.A.; Carroza.M. Determination of malondialdehyde, acrolein and four other products of lipid peroxidation in edible oils by Gas-Diffusion Microextraction combined with Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A 2020, 1627, 461397.
- 11. Rodrigues, F; Caldeira, M.; Câmara, J.D.S. Development of a dynamic headspace solid-phase microextraction procedure coupled to GC–qMSD for evaluation the chemical profile in alcoholic beverages. Anal. Chim. Acta 2008, 609, SI2MID holder
- 12. Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products A review. Food Sci. Biotechnol. 2005, 14, 152–163.
- Khan, I.T.; Nadeem, M.; Imran, M.; Ullah, R.; Ajmal, M.; Jaspal, M.H. Antioxidant properties of Milk and dairy products: A comprehensive review of the current knowledge. Lipids Health Dis. 2019, 18, 1–13.
- 14. Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Del Caro, M.; Gallina-Tosch G.; Compagnone, D.; Fernandez-Gutierrez, A. Evaluation of the principal distribution of the principal distribu
- 15. Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The analysis of raw Sample/sample solution spirits–a review of methodology. J. Inst. Brew. 2016, 122, 5–10.
- 16. Hernandes, K.C.; Souza-Silva, É.A.; Assumpção, C.F.; Zini, C.A.; Welke, J.E. Carbonyl compounds and faras derivatives with Magnetic stial baraluated in the brewing stages of craft been. Food Addit. Contam. Part A 2020, 37, 61–68.
- 17. Perr Direction and Measurements and
- 18. Culleré, L.; Cacho, J.; Felleira, Scheme of solid-phase microextraction (SPME) Some oxidation-related aldehydes in wine aroma. J. Agric. Food. Chem. 2007, 55, 876–881. SPME finds particular utility in extracting volatile and semi-volatile compounds from complex matrices, especially in
- SPME finds particular utility in extracting volatile and semi-volatile compounds from complex matrices, especially in 1800 and semi-volatile compounds from complex matrices, especially in 1800 and 1910 and 1910
- 20. Luczaj, W., Skrzydewska, E. DNA damage caused by lipid peroxidation products. Cell Wol. Biol. Biol. to partition between the sample matrix and the fiber coating, *adsorption*, when the analytes are absorbed onto the fiber coating, concentrating them from the sample matrix, and *desorption* of the analytes from the fiber coating to 21. World Health Organization, IABC. Monographs on the Identification of Carcinogenic Hazards to Humans. 2023. Available online: https://monographs.iarc.who.int/list-of-classifications/ (accessed
- The approximation products is well justified due to its selective extraction
- 22. Peblicipean Hobd noining a interference from the scientific panel of the s

ada**foramial/dehyalebas** samples expessive adult in gatheme and faoting ranking it paratition for food/iaddinive and divide ranking in biological, food 15 nd other samples ^{[49][63]}. Its compatibility with quantitative and qualitative analytical techniques, coupled with its ability to mitigate matrix effects, further underlines its value as a technique for accurate and 23. Center for Drug Evaluation and Research M7(R2) Addendum: Application of the Principles of the comprehensive lipid peroxidation product analysis (Table 3). ICH M7 Guideline, U.S. Food and Drug Administration. Available online:

https://www.fda.gov/media/157451/download (accessed on 25 August 2023).
Table 3. Analytical methods for determination of secondary peroxidation products by solid-phase microextraction
24. Van Andel, I.; Sleijffers, A.; Schenk, E.; Ram(SatiMB); Wolterink, G.; Vleeming, W.; van Amsterdam, J.G.C. Adverse Health Effects of Cigarette Smoke: Aldehydes Crotonaldehyde, Butyraldehyde,

	Target					SPME		Derivative		LOD	Recovery	
	Compound	Sample	Mode	t min	T ℃	Fiber	T _{desorption} °C	Reagent	Determination	μg/L or μg/Kg	%	Ref.
2	14 aldehydes & ketones	Vegetable oil	HS	30	20	DVB/CAR/PDMS	270	-	GC-FID & GC-MS	0.04– 2.24	-	[<u>64</u>]
2	4-HNE	Oils & porcine liver	DI	15	40	PDMS/DVB		DNPH	HPLC-SP	0.001- 1.42	66–87%	[<u>65</u>]
2	MDA	Cod liver oil	HS	10	RT	PDMS/DVB	200	N-MH	GC-NPD	0.74	91%	[<u>66</u>]
	Hexanal	Hazelnut	HS	10	60	CAR/PDMS	300	-	GC-FID	8.01	-	[<u>67</u>]
0	7 aldehydes	Peanut, soybean and olive oils	HS	15	50	CAR/PDMS	250	-	GC-FID	4.6 10.2	85–110	[<u>68]</u>
2	3 α,β-UC	Sunflower oil digestion phases	HS	60	50	DVB/CAR/PDMS	250	-	GC-MS	-	-	[<u>69</u>]
2	100 carbonyl compounds	Cod liver oil	HS	60	50	DVB/CAR/PDMS	220	-	GC-MS	-	-	[<u>70</u>]
2	18 VOC	Sunflower oil emulsions	HS	30	50	DVB/CAR/PDMS	250	-	GC-MS	-	-	[<u>71</u>]
	Aldehydes & 2- pentylfuran	Soybean oils	HS	55	50	DVB/CAR/PDMS	250	-	GC-MS	-	-	[<u>72</u>]
3	VOC	Peanut oil	HS	40	50	PDMS/DVB	250	-	GC-MS	-	-	[<u>73</u>]
	4 aldehydes	Roast & boiled duck	HS	40	45	CAR/PDMS	280	-	GC-MS	-	-	[<u>74</u>]

- 31. Renwick, A.G. Structure-based thresholds of toxicological concern—Guidance for application to substances present at low levels in the diet. Toxicol. Appl. Pharmacol. 2005, 207, 585–591.
- 32. Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649.
- 33. Demirci-Cekic, S.; Özkan, G.; Avan, A.N.; Uzunboy, S.; Çapanoğlu, E.; Apak, R. Biomarkers of oxidative stress and antioxidant defense. J. Pharm. Biomed. Anal. 2022, 209, 114477.

3	Target					SPME		Derivative		LOD	Recovery	
	Compound	Sample	Mode	t min	T ℃	Fiber	T _{desorption} °C	¹ Reagent	Determination	μg/L or μg/Kg	%	Ref.
	& 1 ketone											
3	3 aldehydes	Chicken patties	HS	10	60	DVB/CAR/PDMS	250	-	GC-FID	-	-	[<u>75</u>]
	Hexanal	Pig sausages	HS	30	50	DVB/CAR/PDMS	220	-	GC-MS	-	-	[<u>76</u>]
(J)	2 aldehydes & 2 dialdehydes	Cod	HS	30	50	CAR/PDMS	260	-	GC-FID	-	-	[77]
	8 aldehydes	Fish	HS	15	60	PDMS/DVB	260	PFBHA	GC-MS	1.4-6.1	79–102	[<u>78</u>]
2	6 aldehydes	Caviar	HS	30	60	DVB/CAR/PDMS	250	-	GC-MS	-	-	[<u>79</u>]
	198 VOCs	Dry cured meat	HS	30	37		260	-	GC-MS	-	-	[<u>80</u>]
	Aldehydes	Infant formula	HS	10	25	PDMS/DVB	250	-	GC-MS	-	-	[<u>81</u>]
	3 aldehydes & pentane	Infant formula	HS	45	37	CAR/PDMS	250	-	GC-FID	0.02– 1.05	-	[<u>82</u>]
1	13 Carbonyl compounds	Milk powder	HS	45	43		250	-	GC-MS	2–6	-	[83]
1	VOC	Smoked cheese	HS	45	50	CAR/PDMS	260	-	GC-MS	-	-	[<u>84</u>]
	VOC	Mozzarella	HS	15	37		220	-	GC-MS	-	-	[<u>85</u>]
1	VOC	Portuguese cheese	HS	45	50	DVB/PDMS	250	-	GC-MS	-	-	[<u>86</u>]
1	9 aldehydes	Beer	HS	60	50	PDMS/DVB	250	PFBHA *	GC-MS	-	89–114	[<u>87</u>]
	41 carbonyl compounds	Beer	HS	40	60	PDMS/DVB	250	PFBHA *'**	GC-MS	0.003– 20,000	-	[<u>88</u>]
	250 carbonyl	Beer	HS	20	45	PDMS/DVB	250	PFBAH **	GC-ITMS	0.003– 0.510	88–114	[<u>89</u>]

- 44. Ghorbani, M.; Aghamohammadhassan, M.; Chamsaz, M.; Akhlaghi, H.; Pedramrad, T. Dispersive solid phase microextraction. TrAC Trends Anal. Chem. 2019, 118, 793–809.
- 45. López-Lorente, Á.I.; Pena-Pereira, F.; Pedersen-Bjergaard, S.; Zuin, V.G.; Ozkan, S.A.; Psillakis, E. The ten principles of green sample preparation. TrAC Trends Anal. Chem. 2022, 148, 116530.
- 46. Atapattu, S.N.; Rosenfeld, J.M. Analytical derivatizations in environmental analysis. J. Chromatogr. 2022, 1678, 463348.
- 47. Kokosa, J.M.; Przyjazny, A. Green microextraction methodologies for sample preparations. Green Anal. Chem. 2022, 3, 100023.

Л	Townst					SPME		_ Derivative_		LOD	Deserver		
4	Compound	Sample	Mode	t min	T ℃	Fiber	T _{desorption} °C	Reagent	Determination	μg/L or μg/Kg	% Recovery	Ref.	
	compounds												
4	6 carbonyl compound	Beer	HS	60	55	DVB/CAR/PDMS	250	TFEH **	GC-MS	0.03– 0.5	90–105	[<u>16</u>]	ิวท
5	6 carbonyl compound	Craft beer	HS	60	55	DVB/CAR/PDMS	250	TFEH **	GC-MS	0.03– 0.5	90–105	[<u>90</u>]	d green
-	18 carbonyl compound	Wine	HS	45	40	DVB/CAR/PDMS	250	-	GC-ITMS	0.62– 129.2	19—190	[<u>91]</u>	
0	80 VOC	Wine	HS	30	40	DVB/CAR/PDMS	240	-	GC-MS	-	-	[<u>92</u>]	
5	6 carbonyl compound	Syrah wines	HS	45	55	DVB/CAR/PDMS	250	TFEH	GCxGC- TOFMS	0.5–5.2	90–106	[<u>93</u>]	m lipids _ ilq₁uli⊲ lof
	3 aldehydes	Must & wine	HS	45	55	DVB/CAR/PDMS	250	TFEH	GC-qMS	0.1–0.8	90–102	[<u>94]</u>	i ptoa tive
5	38 carbonyl compound	Port wine	HS	20	32	PDMS/DVB	250	PFBHA	GC-MS	0.006– 0.089	88–119	[<u>95</u>]	
	45 carbonyl compound	Wine	HS	20	40	PDMS/DVB	250	PFBHA	GC-MS/MS	-	71–146	[<u>96</u>]	pounds
5	9 aldehydes	Spirits and alcoholic beverages	DI	15	20	PDMS	250	PFBHA	[<u>102</u>] GC-ECD	0.05– 0.5	-	[<u>97]</u>	in 2006, types of
	VOC & SVOC	Beer, wine & whisky	HS	60	30	PDMS CAR/PDMS DVB/CAR/PDMS	250 260 260	-	GC-MS	-	- -	[<u>104</u>][[<u>11</u>]	105 heric hytes of wetom
5	20 aldehydes	Green pomace distillates	HS	40	55	PDMS/DVB	250	PFBHA	GC-MS	0.0007– 0.02	76–110	[<u>98]</u>	bippethe
	107 VOC	Cider	HS	30	50	DVB/CAR/PDMS	250	-	GC-MS	-	-	[<u>99</u>]	ng quick
5	53 carbonyl compounds	<i>Huangjiu</i> (alcoholic beverage)	HS	35	45	DVB/CAR/PDMS	250	PFBHA	GC-MS/MS	-	71–146	[<u>100</u>]	otion
5	2 α-DCC	Soybean paste, red pepper past, soy sauce, wine, beer,	HS	20	85	DVB/CAR/PDMS	240	TFEH	GC-MS	0.7–1.1	92–104	[<u>101</u>]	-UV

and characterization of the extracted compounds by MS/MS detection. Anal. Bioanal. Chem. 2012, 403, 1031–1037.

- 58. Ramos, R.M.; Gonçalves, L.M.; Vyskočil, V.; Rodrigues, J.A. Voltammetric determination of trace amounts of diacetyl at a mercury meniscus modified silver solid amalgam electrode following gasdiffusion microextraction. Talanta 2017, 169, 203–208.
- Santos, C.M.; Valente, I.M.; Gonçalves, L.M.; Rodrigues, J.A. Chromatographic analysis of methylglyoxal and other α-dicarbonyls using gas-diffusion microextraction. Analyst 2013, 138, 7233–7237.

6 c	Target Compound	Sample	Mode t	SI T °C	PME Fiber	Derivativ T _{desorption} Reagen °C	t ^e Determination	LOD µg/L or µa/Ka	Recovery % Ref.	s, J
		distilled liquor		-				F-5/5		
61	. Ferreira	, R .C.; F	amos, R.	M.; Gor	nçalves, l	M.; Almeida, P	.J.; Rodrigues	s, J.A.	Application c	f ga
	diffusion	meroe	xtraction t	o solid :	samples	using the chrom	atographic de	etermir	nation of α-di	keto,
C	AR bread	as a ca	se study.	Analyst	2015, 14	10, 3648–3653.				-
617	-nneordeira	T- Val	ente I M	Santo	s.1R R	odriques JA C)ualitative car	honvl	nrofile in coff	PP
VC	olatieans th	nrotigh C		lt G1QA	Q-MS/MS	6 for coffee preli	minary charac	teriza	tion. Food Re	es. I
	2018, 10)7,=\$36-	-543.	ait solvent						
63	. Câmara	, 5.; P	erestrelo,	R.; Ber	enguer, (C.V.; Andrade, C	.F.; Gomes, T	.м.; о	layanju, B.; I	Pere
	J.A. Gre	en/extra	action tech	nniques	as advar	nced sample pre	eparation appr	oache	s in biologica	al, fo
	and en	en	tal matric	es: A re	view. Mo	esules 2022, 27	7, 2953.			
64	. Jeleń, 🖥	H; Obu	uchowska	, M.; Za	wirska	zojtasiak, R.; Wa	asowicz, E. He	eacsp	ice solid-pha	ise
	microex	raction	use for th	echara	cterizatio	n of volatile com	apoguades in ve	getabl	e oils of diffe	rent
	sensory	quality.	J. Agric. F	ood Ch	nem. 200	0, 48, 2360–236	67.			
65	. Uchida	T.; Goto	h, N.; Wa	da, S. N	/lethod	r analysis of 4-h	iydroxy-2-(E)-	noner	al with solid-	pha
	microex	raction.	Lipids 20	02, 37,	621-6					
66	Euijoka	Tr · Shih	amoto T	Improv		- Taldahyda assay	usina heads		alid-nhase	
00	microext	traction	and its an	plicatio	n to the n	easurement of	the antioxida	nt acti	/itv of	drop
	phytochi	sample solu emicais	^{ition} Agric.	Food C	hem. Sot	95, 55 5, 4708–47	13.		- y -	
67	Dastorol	li S · \/a	ulzacchi 9	: · Dodr		· Simoneau C	Solid-nhaso m	vicroo	traction mot	hod
07	the dete	rminatio	" Figure'4: n of hexa	Schèilte nal in h	'UPdi s pers azelnuts	sive"Ilquid=fiquid mi as an indicator (ਟੀਰੀਏxੀਸੈਟੋਈਰੋਜ (Ľ of the interacti	on of	active packa	ging
D	LINALERIA	savatheliq	eed aronne	Some	yinsseetio	edicielati, Gauta	apazig06or23igi	1.2 37 6i c	And the to	the
କ୍ଷ	oportion of	donor-a	nd accepto	<u>c</u> phases	Therefor	e the most import	ant parameters	of Pill	ME are the se	lection
e>	ktraction communication	pnditions	and the to	hoice of	f dispersion	e solvents for an	alvtes extracti alvsis of alde	Rvdes	appropriate is	lispe
SC	olvent musi	2014, 12	ible with the	e extrac	tion phase	e and the aqueou	s phase to crea	ate fine	droplets in th	e sa
m	atrices, thu	is enhand	ing the inte	eraction I	between th	ie two phases, res	ulting in high ex	tractio	n efficiency.	~ ir
09 ті	. Guicuec	enetanui	nuvitro die	en, r., Pestina i	puits, ivi.	, Branuon, E.D.,	RUUISIIA, F.F Ressibility of 4		Nanu, M.⊓., ww.2~laalaaaa	d-an
m	enelateda	Nideavda	JUDER DIGER	hin 1 <u>404</u> 10	izael ails:	ateracerone, ace ateration composition		ah <i>a</i> A0ti	ashondacha	usuu Mer
e	(12000n 50	angait5-	and Band	chromat	ographic	behavior. In clas	sical DLLME.	chlorin	ated solvents	SUC
-cł	lokoform,	carbon to	etrachloride	s, chloro	benzene	or_dichlorometha	ne_are_the_m	ist con	monly_used	extra
70 S0	. Guilleri, plventsHo	wever ti	anton, I., s aese solve	nts are	n, J., Ca toxic and	harmful tethe e	ace compositi gvironment ov	er rec	ant years DL	LME
e١	olyedo utili	zing leas		cting sol	vents, suc	th as ionic liquids ((IL) or less den	se extra	actant solvents	tha
a	queous pha	ase, such	as alcohol	s [<u>104][10</u>	<u>5][106</u>]. Ionio	c liquids (IL) exhib	it unique propei	rties, in	cluding negligi	ble v
7 <u>1</u>	essure, mi	Scibility	vitlang-ek	and orga	anic solve	nts, good solubility	onen V Effec	td ^{of} si	BME extracti	Ras,
	conditio	ns and h	iumidity o	n the re	lease of	νοιατιιε ιιριά οχιά	ation product	s trom	spray-dried	

temenalsienstabilitydacideesp201f4, 11:67en1vir0nment. Additionally, they efficiently absorb and transfer microwave

_energy and are formed by a central molecule that combines organic cations and several anions [106][107] 72. Martin-Rubio, A.S.; Sopelana, P.; Guillen, M.D. The key role of ovalbumin in lipid bioaccessibility

and oxidation product profile during the in vitro digestion of slightly oxidized soybean oil. Food Furthermore, DLLME can be coupled in a single step of in situ derivatization and extraction of analytes of interest Func. 2019, 10, 4440–4451. and even combined with other extraction techniques, such as GDME or ultrasound-assisted extraction (UAE).

78addieu 4 Xpr,e3iemt Qa, LiumpAristonaorgtha.;nWangs Xie WangedWarWangna Bys Charnges nidarolatile xoutampoprodus at usinge Babul Meil during the roasting process for production of aromatic roasted peanut oil. J. Food Sci.

2011, 76, C404–C412.

Table 4. Analytical method for determination of secondary peroxidation products by dispersive liquid-liquid74. Liu, Y.; Xu, X.L.; Ouyang, G.F.; Zhou, G.H. Changes in volatile compounds of traditional Chinese
microextraction (DLLME).Nanjing water-boiled salted duck during processing. J. Food Sci. 2006, 71, S371–S377.

7				D	LLME					LOD	_		anh
	Target Compound	Mode	Disperser	Extracting Solvent	T min	T T Reagent		Determ.	μg/L or μg/Kg	Rec. %	Ref.	црі	
7	Formaldehyde	Beverages	MW- IL-	ACN	IL 3453W	1.5	-	DNPH	HPLC- UV	0.12	85– 95	[<u>108</u>]	ere
	Acrylamide	Brewed coffee	-	ACN	DCM	-	-	-	UPLC- MS/MS	900	97— 106	[<u>109</u>]	63.
7	PCB and acrylamide	Milk/Coffee	IL	[HeOHMIM] [Cl]	[BMIM] [NTf2]	-	-	-	HS- GC- ECD- MS	-	-	[<u>110</u>]	pid
	MDA, acrolein, 4- HNE	Beverages	US	ACN	CH ₃ CI	5	60 °C	DNPH	GC- MS	50– 200	94— 102	[<u>111</u>]	23,
7	Formaldehyde	Milk	IL	MeOH	IL 3453W	0.75	45 °C	ACAC	UV	100	91– 103	[<u>112</u>]	lore
8	Acrylamide	Coffee, chocolate, roasted nuts, French fries, cereals, biscuits, chips, bread, and caramelized fruit	SSA	SUPR (SDS/TBA	AS-2 Br/AICI3)	2		-	UV	0.2	93– 96	[<u>113]</u>	1, 1 vic, cure :84. s in .02
	Acrylamide	Nuts and seeds	-	PCE	EtOH	3	-	Xanthydrol	GC- MS	0.6	95	[<u>114]</u>	

82. García-Llatas, G.; Lagarda, M.J.; Romero, F.; Abellán, P.; Farré, R. A headspace solid-phase microextraction method of use in monitoring hexanal and pentane during storage: Application to liquid infant foods and powdered infant formulas. Food Chem. 2007, 101, 1078–1086.

83. Clarke, H.J.; Mannion, D.T.; O'Sullivan, M.G.; Kerry, J.P.; Kilcawley, K.N. Development of a headspace solid-phase microextraction gas chromatography mass spectrometry method for the

			DLLME						LOD	_		se	
	Target Compound	Sample	Mode	Disperser	Extracting Solvent	T min	T ℃	Derivative Reagent	Determ.	μg/L or μg/Kg	Rec. %	Ref.	
8	Acrylamide	Potato chips	UAE	PCE	EtOH	2	-	Xanthydrol	GC- MS	0.6	97	[<u>115</u>]	ial 3.
8	Acrylamide	Cereal products	-	PCE	EtOH	1	-	Xanthydrol	GC- MS	0.6	95	[<u>116</u>]	s and
	Acrylamide	Bread	UAE	PCE	MeOH	1	-	Xanthydrol	GC- MS	0.54	98	[<u>117</u>]	t
8	4 aldehydes Acrolein & MDA	Vegetable oil	US	ACN	CH ₃ CI	5	60	DPNH	GC- MS	50— 100	≥95%	10	, ,

characterization of Portuguese Queijo de Nisa PDO cheese. Food Res. Int. 2022, 162, 112011.

87. Vesely, P.; Lusk, L.; Basarova, G.; Seabrooks, J.; Ryder, D. Analysis of aldehydes in beer using

solid-phase microextraction with on-fiber derivatization and gas chromatography/mass

LOD, limit of detection: Determ., determination: Rec. recovery: Ref., reference; MW, Microwave; IL, Ionic liquid; IL spectrometry. J. Agric. Food Chem. 2003, 51, 6941–6944. 3453W, Trihexyltetradecylphosphonium Chloride; DNPH, 2,4-dinitrophenylhydrazine; DCM, Dichloromethane; 8°CB, also Norhanin Ale & Chuttervi P. Mo R. el Kalux da de Rel veru vis F. Bitr Destandin daten unt as chan el si seno extraction: PCE: Etracherivation and headspace a signature and the second action of the second action of the second action and the second action active action and the second active a (2. Chromatography and mass spectrometry. J. Chromatogr. A 2009, 1216, 5061–5068.

89. Moreira, N.; Meireles, S.; Brandão, T.; de Pinho, P.G. Optimization of the HS-SPME-GC-IT/MS

5. Combined Microextraction of the high eshounds determination in beers.

Talanta 2013, 117, 523–531.

Recent advancements in analytical sample preparation reflect a growing trend of integrating diverse extraction 90. Hernandes, K.C.; Souza-Silva, E.A.; Assumpção, C.F.; Zini, C.A.; Welke, J.E. Validation of an techniques to enhance aspects such as separation, cleanup, detection limits, enrichment factors, and the handling analytical method using HS-SPME-GC/MS-SIM to assess the exposure risk to carbonyl of complex sample matrices. The combination of microextraction methods to assess both organic and inorganic compounds and furan derivatives through beer consumption. Food Addit. Contam. Part A 2019, targets has proven valuable within the realm of modern analytical chemistry 36, 1808–1821. concurrent execution of target extraction, pre-concentration, and cleanup stages, effectively shortening the overall

9 pro Rection and an analytic and the principle of the pr

a supmipantulas inevenues iby a here deal a superior of the second of the superior of the supe

adorbsomatographyrical trapllmass spectremetryn bargerica Fored Chensiti201 Grosefi 2076-1228 Byzing a

wide range of samples [119] 92. Butkhup, L.; Jeenphakdee, M.; Jorjong, S.; Samappito, S.; Samappito, W.; Chowtivannakul, S.

HS-SPME-GC-MS analysis of volatile aromatic compounds in alcohol related beverages made Custodio-Mendoza and colleagues introduced a novel approach involving simultaneous GC-MS analysis of MDA, with mulberry fruits. Food Sci. Biotechnol. 2011, 20, 1021–1032. acrolein (ACRL), formaldehyde, acetaldehyde, propanal, and pentanal, utilizing suspended GDME combined with

93LLAABO^{19L}. The Nigolilenker: idvarauces to be izial state Walkpold Evalatives of toperesessand lysis posed

liminagoeration contrates grapheation. Levels of an ange abec and gravic gamp our dounce in the Singulation and sounds,

especial table determination and assessment of the reposed with the response merid and the termination of the second s

Chem. 2017, 230, 594-603.

To address this, Custodio-Mendoza et al. employed a multi-step strategy. They commenced with GDME under 94. Ferreira, D.C.; Hernandes, K.C.; Nicolli, K.P.; Souza-Silva, É.A.; Manfroi, V.; Zini, C.A.; Welke, optimized conditions: a 10 min extraction at 60 °C using 1 mL of DNPH (0.5 g/L in 2 M HCl) solution as the J.E. Development of a method for determination of target toxic carbonyl compounds in must and

- acceptus using HSrs PME and Mass and anten preliming and an ang a complete the second and the second and a complete the second and the second DNMetherolat2019wa2,tra08fe1r20.to a tube containing 4 mL of ultrapure water to undergo DLLME. A mixture of acetonitrile (0.75 mL) and 70 µL chloroform was injected into the aqueous phase and subjected to sonication at 60 95. Moreira, N.; Araujo, A.M.; Rogerson, F.; Vasconcelos, I.; De Freitas, V.; de Pinho, P.G. for 5 min. This combination of techniques resulted in a cleaner extract with enhanced selectivity and sensitivity. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl °C Various solvents including isooctane, hexane, and chloroform were evaluated for optimal extraction. compounds in Port wines. Food Chem. 2019, 270, 518–526. 96erifiækgbbyaDoli.Met.;f&äuthrecSsplvetti, &changevsæk,adpplvlættiviethoDeverbipvineutrofighFerlijcAnteomatedrs, signifiethold IdSeSiRMEtector/IS/NSSafor theaDeterneinattione of iOd an Autivelistantion vdspiect/approach wasGrieonovAppgoaldasonlonpgoareoRobuistness and/Productsvity/inithesDenotizgicateArcely/tizarlaction time, opticinempisterhold Attinien Epadd Chemeff 202/2 ness. This advancement not only surmounted a significant analytical challenge but also refined sensitivity and analysis speed. The processing and storage of edible oils can lead to 97. Wardencki, W.; Sowiński, P.; Curyło, J. Evaluation of headspace solid-phase microextraction for oxidation, generating volatile compounds like hydrocarbons, aldehydes, alcohols, and ketones. Thus, quantifying the analysis of volatile carbonyl compounds in spirits and alcoholic beverages. J. Chromatogr. A these products serves as potential markers for food quality in the oxidative state. Notably, the method was 2003, 984, 89–96. successfully applied to the quantification of forty-eight samples of vegetable oil, spanning categories such as extra 98rdii PBRZE VAZ REIREd Coliversip Silve-Berfalle, M. End Perreveled. Dieterminatione of reveabed the asesence of acronentatheoropeazari derivationes imprapementates contrates by Haros PME of Mas. Ealed of Mareover, makendialdenode levets levets to decrease in oils enriched with antioxidants or virgin oils. This comprehensive generoach demonstrated the cotential for powstelinica escription as sessment in darious oil type ted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem. J. 2019, 148, 643-651.
- 100. Yu, J.; Zhou, Z.; Xu, X.; Ren, H.; Gong, M.; Ji, Z.; Liu, S.; Hu, Z.; Mao, J. Differentiating Huangjiu with Varying Sugar Contents from Different Regions Based on Targeted Metabolomics Analyses of Volatile Carbonyl Compounds. Foods 2023, 12, 1455.
- 101. Lim, H.H.; Shin, H.S. In-solution derivatization and detection of glyoxal and methylglyoxal in alcoholic beverages and fermented foods by headspace solid-phase microextraction and gas chromatography–mass spectrometry. J. Food Compos. Anal. 2020, 92, 103584.
- 102. Rezaee, M.; Assadi, Y.; Hosseini, M.R.M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 1116, 1–9.
- 103. Yan, H.; Wang, H. Recent development and applications of dispersive liquid-liquid microextraction. J. Chromatogr. A 2013, 1295, 1–15.
- 104. Jain, R.; Singh, R. Applications of dispersive liquid–liquid micro-extraction in forensic toxicology. TrAC Trends Anal. Chem. 2016, 75, 227–237.
- El-Deen, A.K.; Elmansi, H.; Belal, F.; Magdy, G. Recent advances in dispersion strategies for dispersive liquid-liquid microextraction from green chemistry perspectives. Microchem. J. 2023, 191, 108807.

- 106. Rykowska, I.; Ziemblińska, J.; Nowak, I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. J. Mol. Liq. 2018, 259, 319–339.
- 107. Marcinkowska, R.; Konieczna, K.; Marcinkowski, Ł.; Namieśnik, J.; Kloskowski, A. Application of ionic liquids in microextraction techniques: Current trends and future perspectives. TrAC Trends Anal. Chem. 2019, 119, 115614.
- 108. Xu, X.; Su, R.; Zhao, X.; Liu, Z.; Li, D.; Li, X.; Zhang, H.; Wang, Z. Determination of formaldehyde in beverages using microwave-assisted derivatization and ionic liquid-based dispersive liquid– liquid microextraction followed by high-performance liquid chromatography. Talanta 2011, 85, 2632–2638.
- 109. Galuch, M.B.; Magon, T.F.S.; Silveira, R.; Nicácio, A.E.; Pizzo, J.S.; Bonafe, E.G.; Maldaner, L.; Santos, O.O.; Visentainer, J.V. Determination of acrylamide in brewed coffee by dispersive liquid– liquid microextraction (DLLME) and ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Food Chem. 2019, 282, 120–126.
- 110. Zhang, C.; Cagliero, C.; Pierson, S.A.; Anderson, J.L. Rapid and sensitive analysis of polychlorinated biphenyls and acrylamide in food samples using ionic liquid-based in situ dispersive liquid-liquid microextraction coupled to headspace gas chromatography. J. Chromatogr. A 2017, 1481, 1–11.
- 111. Custodio-Mendoza, J.A.; Caamaño-Fernandez, C.; Lage, M.A.; Almeida, P.J.; Lorenzo, R.A.; Carro, A.M. GC–MS determination of malondialdehyde, acrolein, and 4-hydroxy-2-nonenal by ultrasound-assisted dispersive liquid-liquid microextraction in beverages. Food Chem. 2022, 384, 132530.
- 112. Nascimento, C.F.; Brasil, M.A.; Costa, S.P.; Pinto, P.C.; Saraiva, M.L.M.; Rocha, F.R. Exploitation of pulsed flows for on-line dispersive liquid–liquid microextraction: Spectrophotometric determination of formaldehyde in milk. Talanta 2015, 144, 1189–1194.
- 113. Altunay, N.; Elik, A.; Tuzen, M.; Lanjwani, M.F.; Mogaddam, M.R.A. Determination and extraction of acrylamide in processed food samples using alkanol-based supramolecular solvent-assisted dispersive liquid-liquid microextraction coupled with spectrophotometer: Optimization using factorial design. J. Food Compos. Anal. 2023, 115, 105023.
- 114. Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Hadian, Z.; Ghasemi, J.; Mohammadi, A. Investigation and determination of acrylamide in 24 types of roasted nuts and seeds using microextraction method coupled with gas chromatography–mass spectrometry: Central composite design. J. Food Meas. Charact. 2020, 14, 1249–1260.
- 115. Zokaei, M.; Abedi, A.S.; Kamankesh, M.; Shojaee-Aliababadi, S.; Mohammadi, A. Ultrasonicassisted extraction and dispersive liquid-liquid microextraction combined with gas chromatography-mass spectrometry as an efficient and sensitive method for determining of acrylamide in potato chips samples. Food chem. 2017, 234, 55–61.

- 116. Nematollahi, A.; Kamankesh, M.; Hosseini, H.; Ghasemi, J.; Hosseini-Esfahani, F.; Mohammadi, A. Investigation and determination of acrylamide in the main group of cereal products using advanced microextraction method coupled with gas chromatography-mass spectrometry. J. Cereal Sci. 2019, 87, 157–164.
- 117. Norouzi, E.; Kamankesh, M.; Mohammadi, A.; Attaran, A. Acrylamide in bread samples: Determining using ultrasonic-assisted extraction and microextraction method followed by gas chromatography-mass spectrometry. J. cereal sci. 2018, 79, 1–5.
- 118. Moreda-Piñeiro, J.; Moreda-Piñeiro, A. Recent advances in combining microextraction techniques for sample pre-treatment. TRAC Trends Anal. Chem. 2015, 71, 265–274.
- 119. Sajid, M.; Płotka-Wasylka, J. Combined extraction and microextraction techniques: Recent trends and future perspectives. TRAC Trends Anal. Chem. 2018, 103, 74–86.

Retrieved from https://www.encyclopedia.pub/entry/history/show/114868