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Artificial intelligence has yielded remarkably promising results in several medical fields, namely those with a strong

imaging component. Gynecology relies heavily on imaging since it offers useful visual data on the female reproductive

system, leading to a deeper understanding of pathophysiological concepts. The applicability of artificial intelligence

technologies has not been as noticeable in gynecologic imaging as in other medical fields. However, due to growing

interest in this area, some studies have been performed with exciting results. From urogynecology to oncology, artificial

intelligence algorithms, particularly machine learning and deep learning, have shown huge potential to revolutionize the

overall healthcare experience for women’s reproductive health.
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1. Introduction

Over the past years, interest and research in artificial intelligence (AI) technologies and their applicability to medical

practice has considerably increased . AI-based systems have made their way into a range of different medical fields,

especially in those with a strong imaging component , offering exciting prospects for more efficient and effective use of

medical images .

Artificial intelligence refers to a digitalized computer system that replicates the processing of the human brain , its

intelligent behavior and critical thinking . By using computer technology, these complex models have the potential to

improve patient care by speeding up processes and increasing their accuracy and efficiency , with lower human demand

. It has proven its benefits in disease diagnosis and treatment, health management, drug research and development,

and precision medicine .

Indeed, the world is facing a quickly evolving new era with growing needs for higher quality global healthcare . As

medical activity generates ever-increasing amounts of digital images and medical records, AI algorithms appear as

candidates to handle these data efficiently.

When discussing the concept of artificial intelligence and its subsets, it is important to clarify that AI, machine learning

(ML), and deep learning (DL) are overlapping disciplines . In fact, ML uses computer algorithms automatically

developed from input training data to recognize patterns within large databases . Thus, these models appear as highly

effective tools to predict future outcomes based on new unforeseen data and decision making in various disciplines .

Additionally, the models can be refined as new data are continuously added .

Furthermore, ML techniques can be either supervised or unsupervised . A supervised algorithm uses a dataset that

contains input features, such as output target pairs, labeled at the start of training, to learn mapping and establish

meaningful relationships between the input data and the corresponding output, and creating a model that is able to

differentiate among output labels. Then, the trained model takes in new, fresh, unseen data and makes predictions or

classifications based on the knowledge from labeled examples . Thus, these models depend heavily on high-quality

labeled data. Moreover, once a model has been developed, it is tested on the new patient’s data, apart from those

included in the training data, to determine its applicability to other people or scenarios .

On the other hand, unsupervised ML models are data-driven systems that automatically learn from the relationships

between elementary bits of information associated with each variable of a dataset. Contrary to supervised ML,

unsupervised ML methods reveal associations or clusters existing within datasets and model patterns without any

predefined output data . Unsupervised learning can be particularly beneficial and complement supervised ML

approaches. As these methods can discover potentially unrecognized patterns from large databases, they can feed into

supervised algorithms, which in turn will build new models to discriminate among the classes of interest .
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Alternatively, DL is a subset of ML . Convolutional neural networks (CNNs) are a complex multilayer architecture

inspired by biological processes, since their design intends to replicate the structure and organization of the visual cortex,

where interconnected neurons process and transmit information . Therefore, they are particularly tailored to visual-

imagery-related tasks.

Thus, AI algorithms, namely DL and CNNs, hold great promise in the field of medical imaging , from image recognition,

processing, and reconstruction to automated analysis and classification . Therefore, they are of great contribution to

disciplines that rely heavily on images, and gynecology could be a player at the forefront in the development and

application of AI models .

2. Application in Gynecological Imaging

AI application in gynecology is still at an early stage when compared with other specialties. In fact, despite gynecology

being one of the areas with the largest imaging component, the impact of AI in practice is still in an embryonic phase.

Nevertheless, there is a need to understand the limitations of the available clinical imaging methods, namely clinician

workload and intra and interobserver variability, and AI has the potential to overcome these limitations while increasing

diagnostic accuracy . However, AI has a huge and recognized potential to assist in repetitive tasks, such as

automatically identifying good-quality images and identifying imaging patterns . 

2.1. Artificial Intelligence Advancements in Cervical Cancer

Cervical cancer is highly prevalent, with a cumulative worldwide incidence of 13.3 cases per 100,000 women-years, which

is increased in low-income countries . Additionally, it is associated with a mortality rate of 7.2 deaths per 100,000

women-years . Furthermore, cervical cancer can be easily treated if detected at its early stages . In daily practice,

cervical cancer screening is based on human papillomavirus (HPV) testing and cytological examination. Therefore, it

depends heavily on the pathologist’s experience, which also is less accurate and has high interobserver variability.

Colposcopy is also a critical component of cervical cancer detection. However, because of the increased workload, visual

screening leads to misdiagnosis and low diagnostic accuracy . Several authors have advocated the potential of AI-

powered cytological examination and colposcopy image analysis, identifying abnormal cells or lesions, thus strengthening

cervical cancer screening and diagnostics . This see-and-treat approach allows for earlier and effective treatment of

lesions using minimally invasive procedures, such as thermocoagulation, reducing the malignancy and associated

mortality , while reducing the need for unnecessary biopsies. Table 1 summarizes the most recent evidence about AI

models in colposcopy.

The first to study the implementation of an AI model in cervical cancer diagnosis was Mehlhorn and colleagues, namely

during colposcopy exams. In 2012, the group developed a computer-assisted diagnostic (CAD) device based on image-

processing methods to automatically analyze colposcopy images. The CAD system revealed a diagnostic accuracy of

80%, with a sensitivity of 85% and a specificity of 75%, in differentiating normal or cervical intraepithelial neoplasia grade

1 (CIN1) from high-grade squamous intraepithelial lesions (HSILs)(CIN2 or CIN3) in colposcopy exams . A second

study by the same group confirmed the benefit of the CAD application during colposcopy exams’ evaluation,

demonstrating an increase in diagnostic accuracy when the exam was evaluated by a less-experienced gynecologist .

A Greek group developed and trained a clinical-decision support system (CDSS) based on an artificial neural network to

correctly triage 740 women before referral to colposcopy; this was based on the cytological diagnosis and the expression

of various biomarkers . Women detected with cervical intraepithelial neoplasia grade 2 or worse (CIN2+) were chosen

to undergo colposcopy. The CDSS presented a sensitivity of 89.4%, a specificity of 97.1%, a positive predictive value of

89.4%, and a negative predictive value of 97.1%. This system has the potential to reduce the referral rate for colposcopy

when applicated in clinical practice.

Sato et al. were the first to develop a preliminary DL model based on a Keras neural network with 485 images from 158

individuals who underwent colposcopy . The CNN tried to classify colposcopy images and predict post-procedure

diagnoses. Patients were classified into three groups: severe dysplasia, carcinoma in situ (CIS), and invasive cancer (IC).

Rather than evaluating the performance of a given AI-based model itself, the authors wanted to establish its feasibility and

usefulness in clinical practice as quick and efficient way to obtain an accurate preoperative diagnosis that could help

doctors in the decision-making process. The model reached 50% accuracy in this dataset.

Asiedu et al. extracted color and textural-based features from visual inspection with acetic acid and lugol’s iodine, and

then used the data to train a support vector machine (SVM) model to distinguish cervical intraepithelial neoplasia (CIN)

from normal and benign tissue . The proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%,

78.6%, and 80.0%, respectively, achieving better performance than expert physicians using the same dataset. In the
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same year, Miyagi et al. developed a CNN for classification of cervical squamous intraepithelial lesions from colposcopy

images of 330 patients, 97 with low-grade squamous intraepithelial lesions (LSILs) and 213 with HSILs, who underwent

colposcopy and lesion biopsy . The CNN differentiated HSILs from LSILs with higher accuracy (82.3% vs. 79.7%) and

specificity (88.2% vs. 77.3%), although with slightly lower sensitivity (80.0% vs. 83.1%). A study by the same group in

2020 included the results of human papilloma virus (HPV) testing . The trained CNN revealed an accuracy of 94.1%,

higher than gynecologists’ 84.3% global accuracy. This study was one of the first to include additional variables in order to

increase the diagnostic accuracy of the CNN.

In 2020, Yuan and colleagues worked on a database composed of 22,330 cases, including 10,365 normal cases, 6357

LSIL cases, and 5608 HSIL cases . Based on a dataset of three frames per case, they developed a ResNet CNN for

differentiating between normal images and dysplastic lesions (LSILs or HSILs). The CNN revealed 85% sensitivity, 82%

specificity, and 93% accuracy. Also, they created a U-Net CNN capable of delimitating squamous lesions (LSILs or HSILs)

in acetic acid and iodine images. The model had 84.7% sensitivity in acetic acid images and 61.6% in lugol’s iodine

images. These lesion delimitation models are of utmost importance for guiding colposcopy-based biopsies. Finally, the

group developed a MASK-R CNN model to detect HSILs. The model detected HSILs with 84.7% sensitivity in both acetic

acid and iodine images, accurately identifying lesions that benefit from treatment.

A Chinese group carried out a study to develop and validate a Colposcopic Artificial Intelligence Auxiliary Diagnostic

System (CAIADS) using digital records of 19,435 patients, including colposcopy images and pathological results, which

was considered the gold standard . Agreement between CAIADS-graded colposcopy and pathology findings was

higher than in expert-interpreted colposcopy (82.2% vs. 65.9%). The CAIADS model was able to increase its diagnostic

accuracy after considering patients’ related factors (such as previous cytology results). The new model also revealed a

superior ability to predict biopsy sites, with a median mean-intersection-over-union (mIoU) of 0.758.

In 2021, Fu et al. intended to create a model incorporating the results of HPV typing, cytological examination, and

colposcopy analysis . First of all, they acquired colposcopy images and created a multiple-image-based DL model

using a multivariable logistic regression (MLR), presenting an area under the curve (AUC) of 0.845. Then, the results of

the cytology test and HPV test were used to build an ML model, with an AUC of 0.837. Finally, they built a cross-modal

integrated model using ML, through combining the multiple-image-based DL model and the Cytology–HPV joint diagnostic

model. The authors proved the synergetic benefits of the ensembled model, presenting a higher AUC of 0.921. A

ShuffleNet-based cervical precancerous lesion classification method based on colposcopy images was developed by

Fang and colleagues . The image dataset was classified into five categories, namely normal, cervical cancer, LSILs

(CIN1), HSILs (CIN2/CIN3), and cervical neoplasm. In this dataset, the colposcopy images were expanded to reduce the

impact of uneven distribution between the lesions’ categories, Additionally, the ShuttleNet network was compared with

other CNNs (like the RestNet or the DenseNet). The new CNN model presented a global accuracy of 81.23%, with an

AUC of 0.99. A recent study by Chen et al. collected images from 6002 colposcopy examinations of normal cervixes and

those with LSILs and HSILs . A new model based on EficcientNet-B0 using Gate Recurrent Unit was developed in

order to accurately identify HSILs. The CNN revealed a sensitivity of 93.6%, specificity of 87.6%, and accuracy of 90.6%

in distinguishing between HSILs, LSILs, and normal-cervix images.

Additionally, the diagnosis of cervical cancer can also be guided using magnetic resonance imaging (MRI). Urushibara et

al. designed a study including 418 patients, 177 patients with pathologically confirmed cervical cancer and 241 patients

without cancer, who underwent MRI between 2013 and 2020 . They compared the performance of a DL architecture,

called Xception, with experienced radiologists in the diagnosis of cervical cancer on sagittal T2-weighted images. The

CNN presented higher sensitivity (88.3% vs. 78.3–86.7%) and accuracy (90.8% vs. 86.7–89.2%), with similar specificity.

The development of AI models in cervical cancer diagnosis can also be accomplished at the histological level. In fact, in

2019, Sompawong and colleagues applied a Mask Regional Convolutional Neural Network (Mask R-CNN) to analyze

cervical cells using liquid-based histological slides and screening for abnormal nuclear features . The proposed

algorithm achieved an accuracy of 91.7%, sensitivity of 91.7%, and specificity of 91.7%. In the same year, a group of

Indian pathologists trained a CNN to identify abnormal features from liquid-based cytology (LBCC) smears, using 2816

images—816 presenting abnormal features, indicating LSILs or HSILs, and 2000 normal images, containing benign

epithelial cells and reactive changes . The referred model yielded a sensitivity of 95.6%, with 79.8% specificity. In

addition, its high negative predictive value of 99.1% makes it a potentially valuable tool for cervical cancer screening. The

technological development was accompanied by a multicenter observational study that evaluated the performance of AI-

assisted cytology for the detection of CIN or cancer . The group used 188,542 digital cytological images to train a

supervised DL algorithm. The DL model detected 92.6% of CIN 2 and 96.1% of CIN 3, showing an equivalent sensitivity

but higher specificity compared to skilled senior cytologists.
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In fact, a validated AI-assisted cytology system, called Landing CytoScanner , was enrolled in a cohort study including 0.7

million women . Women with abnormal results in both AI-assisted and manual readings were diagnosed using

colposcopy and biopsy. The outcomes were of histologically confirmed CIN of grade 2 or worse (CIN2+). The agreement

rate between AI and the manual reading was 94.7% and the kappa value was 0.92. The large number of images analyzed

contributed to the robustness of this experiment. Given its ability to exclude most normal cytology, with increased

sensitivity compared with manual cytology readings, the results support the AI-based cytology system for primary

screening of cervical cancer in a large-scale population. More recently, a Chinese group studied the diagnostic

performance of an artificial intelligence-enabled liquid-based cytology (AI-LBC) in triaging women with HPV . AI-LBC

achieved sensitivity for the detection of CIN2+ comparable to that of experienced cytologists (86.49% vs. 83.78%), but

significantly higher in specificity (51.33% vs. 40.93%). Similar results were observed for CIN3+. Moreover, the AI-LBC

reduced colposcopy referral by 10%, compared with cytologists, making the process more effective by reducing the

number of false positives in the cytological evaluation. Even though there are positive conclusions, prospective designs

are needed to test the triaging performance of the developed model.

In order to increase the diagnostic accuracy of cervical lesions, new image methods have been evaluated. High-resolution

endomicroscopy (HRME) consists of a fiber optic fluorescence microscope capable of acquiring nuclear images in vivo. In

2022, Brenes et al. used a dataset of images from over 1600 patients to train, validate, and test a CNN algorithm to

diagnose CIN2+ cases from HRME images . The proposed method consistently outperformed the current gold-

standard methods, achieving an accuracy of 87%, with a sensitivity of 94% and specificity of 58%. By incorporating the

HPV status, specificity increased to 71%.

Finally, AI-models can also provide prognostic information, guiding therapeutic decision. In 2019, Matsuo et al. compared

the performance of a DL model with four survival-analysis models, including the Cox proportional hazard regression

model, the mainstay for survival analyses in oncologic research in predicting survival in women with cervical cancer .

The study included 768 women, with a median follow-up time of 40.2 months. The new model exhibited superior

performance, outperforming the prediction models for overall survival, but with similar results in predicting progression-

free survival. The prognostic information given using DL algorithms was also evaluated in a retrospective study evaluating

157 women who developed recurrent cervical cancer among 431 women with cervical cancer diagnosed between January

2008 and December 2014 . Predictions of 3- and 6-month survival after recurrence were compared between the

current approach (linear regression model) and their experimental approach (DL neural network model). The DL model

inputs included some clinical and laboratorial parameters and achieved significantly better prediction for 3-month (AUC

0.747 vs. 0.652) and 6- month (AUC 0.724 vs. 0.685) survival. Better predictions of limited life expectancy in women with

recurrent cervical cancer pave the way for even more personalized clinical decisions, thus helping clinicians to individually

adjust the level of care provided.

Table 1. Summary of Studies about AI implementation in colposcopy. Sn, sensititivy; Sp, specificity; AUC, area under the

curve; CIN, cervical intraepithelial neoplasia; HSIL, high-grade squamous intraepithelial neoplasia; LSIL, low-grade

squamous intraepithelial neoplasia; N, normal; VIA, visual inspection with acetic acid; VILI, visual inspection lugol iodine.

NK—not known.
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375 frames
(VIA)

Normal:

39
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CIN 3: 19

Yes

Color
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annotation in
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85 75 80
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