Tautomerism Detected by NMR
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Tautomerism is typically the relocation of a light atom, often hydrogen, at the same time as a rearrangement of the
electronic structure. Typical examples are acetylacetone and acetone. This entry gives a short introduction to how to detect
and describe a tautomeric equilibrium using Nuclear Magnetic Resonance (NMR). Typical parameters used are chemical
shifts (*H,23C,15N,1°F and 170) one-bond coupling constants and isotope effects on chemical shifts.
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| 1. Introduction

Tautomerism is typically the relocation of a light atom, often hydrogen, at the same time as a rearrangement of the
electronic structure. Typical examples are acetylacetone and acetone. In the latter molecule a keto-enol equilibrium is
present (Figure 1), but the enol form is in a very low amount and not “visible”.
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Table 1. Chemical shifts of thioacetylacetone from Ref. 2.

oCS 0CSH 6CO 6COH 60H O0SH
A 217 186 15.2
B 163 198 62
C 158 193 3.32
1. Estimated by comparison with model compounds

It is of course important to know the chemical shifts of the two tautomers. Chemical shifts for one of the two can normally

be obtained from solid state NMR spectra. 2 Model compounds have also been suggested, but in that case the
monitoring atom has to be far from the site of tautomeric action. “ The chemicals shifts of both tautomeric species may be
estimated from theoretical calculations (see later).



| 3. %F Chemical Shifts

The very large chemical shift range of 1°F makes it well suited for detecting of tautomeric equilibria. A good example is
fluorosubstituted o-hydroxyazo compounds (see Figure 5). 4

Figure 5. Only one tautomer is shown. For deuterium isotope effects on *°F chemical shifts see later.
Other examples are fluorosubstituted fuchsones and benzaurins & or fluoro-X-benzofurans. [

Also 13C-19F coupling constants may be used in the characterization of tautomeric systems.l This is building on the fact
the one-bond C-F coupling depend strongly on the double character of the C-F bond.

| 4. 170 Chemical Shifts

The 170 resonances suffer from broad lines, but this is normally compensated by the very large chemical shift range. [
Examples of b-diketones and 1,8-dihydroxy2-acetyl, 3,6-dimethylnaphthalene are given in Ref. £

| 5. Coupling Constants

A much used parameter is the 1J(N,H) in nitrogen containing compounds with an NH motif. This type of coupling is
typically around 90 Hz. 19 13(N,H) can be used in all compounds containing an NH group taking part in tautomerism. A
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Figure 6. o-Hydroxy Schiff bases.

typical examples is “ o-hydroxy Schiff bases” see Figure 6. 1%
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A typical problem to consider is NH exchange with the surrounding leading to too small coupling constants. Temperature
studies may be helpful in eliminating this problem. For cases in which suitable model compounds are not available,
1J(N,H) can be predicted based on calculated NH bond lengths. 14

| 6. Isotope Effects on Chemical Shifts

Two types of isotope effects on chemical shifts, primary and secondary can be applied. They are defined as follows in
case of deuterium as the isotope : primary , PAH(D) = 3H-3D and secondary, "AX(D) = 3X(H)-8X(D). n is the number of
bonds between the deuterium and the atom in question, X. The most common isotope to be used is deuterium, as also
indicated in the definition. In case of an equilibrium, the isotope effects are different from the so called intrinsic isotope
effects, which are found in “static” cases.

6.1. Equilibrium Isotope Effects
The definition of the equilibrium isotope effects is expressed as:

AXpp) X (8Cy- 8Cp7)  in which AXyp is the change in the equilibrium upon deuteriation. The full equation was given
early on by Bordner et al. 121 :

AC(D) = (dCA-3Cg) X (a-ap) +[ap x ACA(D)i+ (1- ap) x ACg(D) |] Eq.1



The first term in this equation corresponds to the equilibrium isotope effect, whose magnitude depends on the change in
the position of equilibrium (a - ap ) due to substitution of H by D and on the difference in the magnitude of the chemical
shifts of the given carbon in the A and B forms. The second term represents the direct effect of the isotopic substitution
on the chemical shifts (intrinsic isotope effect, AC(D);). The equilibrium term is a consequence of the potential energy
diagram Figure 7. Deuteriation will in a double well potential lead to a change in the equilibrium. This means that the
chemical shift difference comes into play multiplied with the change in the equilibrium upon deuteriation (see Eq. 1)
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Figure 7. Potential energy diagrams including zero point energies for H and d species for a tautomeric equilibrium of o-
hydroy Schiff bases.

The Limbach group has used an approach based on bond valences. See e.g. Ref. 13
Reviews dealing with equilibrium isotope effects can be found. LHL4I1S]16][17][18]
6.2. Primary Deuterium Isotope Effects

The sign of the primary deuterium isotope effect can be used to estimate hydrogen bond strength. Positive primary
isotope effects are for weak to medium strong isotope effects, whereas a negative isotope effects was claimed to be an
indicator of a strong hydrogen bond. & However, if equilibrium is occurring positive as well as negative effects may
occur. 1

| 7. Secondary Deuterium Isotope Effects
7.1. Deuterium Isotope Effects on 13C Chemical Shifts

Secondary deuterium isotope effects have a characteristic S-shaped dependence if plotted vs. the mole fraction as
illustrated in Figure 8. 29 |t is also obvious that at the maximum and minimum the changes will be minimal, whereas they
will be large and of different sign at the edges (small and large mole fractions).

154

"AC(OD)

0.0 4

-0.5

T T T T T
0.0 0.2 04 06 0.8 1.0
The molar fraction, X.

Figure 8. Plot of two-bond deuterium isotope effects of 13C chemical shifts vs. mole fraction. From Ref. 20 with

Permission from Wiley-VCH.
7.2. Lifting Degeneracy in Symmetrical Systems

13C NMR. Deuterium isotope effects on 13C chemical shifts can in a very elegant way be used to detect an equilibrium.
The technique was originally invented in the study of carbonium ions. 2 A typical example of this technique is seen in
Figure 9. The origin of the effect is the difference in CH stretching frequencies of the aldehyde, 2770 cm™® and the enol
type, 3020 cm™.
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Figure 9. Lifting of degeneracy by deuterium substitution. 22

180 has been used as the isotope in order to distinguish between double well and symmetric hydrogen bond potentials in
compounds having strong intramolecular hydrogen bonds between carboxylic acid and carboxylate groups. Figure 10. [23]
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Figure 10. 0 labelled maleic anion.

What is the characteristics of equilibrium isotope effects? They can be measured at nuclei far from the site of isotope
substitution and can be very large. In case of thioacetylacetone (Figure 4) deuteriation at the OH;SH position leads to 13C
isotope effects at the “CS” carbon as large as -10.5 ppm depending on temperature. 2 Furthermore, as seen from Eq. 1
they will in those cases that they are larger than the intrinsic ones be proportional to the chemical shift difference between
the nuclei in question (the chemical sift differences can be estimated from DFT calculations of NMR nuclear shieldings).

An example of the latter is shown in Table 2.

Table 2. Calculated 13C nuclear shieldings for the Schiff base 2-(N-methyl-a-iminoethyl)-3,5-dibromophenol (Figure 6 with
R= CHjz and R’= 3,5-dichloro)

C-a C-1 C-2 C-3 C-4 C-5 C-6 Cc-1 Cst
OH-form -11.0 13.9 -29.1 -9.0 -5.7 11.3 0.3 9.7 0.3
NH-form -28.9 55 9.3 13.5 0.3 1.0 0.8 -10.9 -1.9

From the above table we can predict that all carbons except C-4, C-6 and Cst will show large equilibrium isotope effects.

In addition, the ratio between isotope effects can be expressed in those cases in which the equilibrium isotope effects

dominate:
AC-1/ AC-2 = (5C-1p- 3C-1p7)! (3C-2- 5C-2p7)
This shows the ratio between isotope effects for C1 and C2 of the two tautomers called M and PT.

An illustration is given in Figure 11 for a series of o-hydroxy Schiff bases (Figure 5). o
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Figure 11. Ratios between deuterium isotope effects on 13C chemical shifts for C-1 and C-2 for a series of o-hydroxy
Schiff bases. Taken from Ref. [ with permission from the American Chemical Society.

7.3. Deuterium Isotope Effects on 1°F Chemical Shifts

These have been demonstrated in o-hydroxyazo compounds (see Fig. 6). However, in the benzene derivative case no
tautomerism is taking place ,the isotope effect is only 0.011 ppm, whereas in similar naphthalene derivatives the effects
in the equilibrium case is 0.077 ppm or 0.123 ppm For the azo group in 1- respective 2-position. 24

7.4. Deuterium Isotope Effects on 170 Chemical Shifts
These isotope effects are large at both oxygens involved (Figure 12). &
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Figure 12. Deuterium isotope effects on 1O chemical shifts. Only one of the tautomers is shown.

| 8. Determination of Equilibrium Constants

As NMR parameters, chemical shifts and coupling constants, are average ones, the equilibrium constants can be
determined, if we have determined the corresponding parameters for the two tautomers. Furthermore, as described in
Figure 8 the mole fractions can be determined from deuterium isotope effects on 13C chemical shifts.



