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Performance in one cognitive domain, such as attentional control, is positively correlated with performance in all other

cognitive domains, such as reading comprehension, and performance in all of these domains is correlated with current

and predictive of later health outcomes. These relations suggest a common biological mechanism that contributes to

cognition and health; moreover, this mechanism has been linked to systematic and parallel declines in cognition and

health with normal aging. Mitochondrial functioning, including contributions to cellular energy production, control of

oxidative stress, immunity, and intracellular signaling (among others), is well situated to explain at least some of these

links. Indeed, mitochondrial dysfunction contributes to the cognitive declines (e.g., memory loss) associated with age-

related diseases, such as Alzheimer’s disease, but the links are broader than this. A focus on mitochondrial functioning

provides a means to better integrate research in cell biology and cognitive science, and in doing so will expand our

understanding of the fundamental biological mechanisms that underlie brain and cognitive development and functioning

and result in more sensitive assessments of age- and pathology-related changes in cognition.
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1. Cognition and Mitochondrial Functions

1.1. Cognitive Abilities

It was discovered more than a century ago that performance on perceptual (e.g., tone detection), cognitive (e.g., memory

span) and academic abilities are positively correlated, leading Spearman to conclude that “that all branches of intellectual

activity have in common one fundamental function (or group of functions)”  (p. 285), which he termed general

intelligence. The pattern of positive correlations among sensory, perceptual, and cognitive abilities is called the positive

manifold and is one of the most replicated findings in the behavioral sciences . Most of the associated studies, however,

were conducted with Western samples, leaving the universality of the pattern in question. A recent review of 97 related

studies across 31 non-Western countries and that included more than 50,000 people confirmed the positive manifold is

universal and explains 46% of the covariance among cognitive measures . In other words, about half of the variability

(i.e., individual differences) in cognitive performance is due to a mechanism that is common to all cognitive abilities and

the remaining variance is specific to that ability (e.g., reading comprehension) or is measurement error.

The relations among cognitive abilities can be placed in a hierarchy, which typically has three levels. Figure 1 shows the

two higher levels where the circles represent clusters of highly correlated abilities. For instance, executive functions refer

to the cognitive mechanisms that manage, direct, or organize other processes , and are composed of related but

distinct abilities that would be part of the lower level of the hierarchy (not shown). The lower-level components of

executive functions include working memory (the ability to hold one thing in mind while engaged in another mental

activity), inhibition (suppression of task-irrelevant information), and shifting (ability to shift from one task, back to another).

Performance in each of these areas is dependent on strong top-down attentional control .
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Figure 1. Performance on perceptual, cognitive, and academic measures are hierarchically organized, with specific

abilities (not shown) at the lowest level that are organized as clusters of related abilities (above). The key finding is that

performance is correlated across all domains and suggests there are mechanisms that are common to all forms of

cognition.

The key finding is that these second-order ability domains are positively correlated, such that individuals with higher

performance on measures of executive functions also have above-average performance on reasoning tasks and have

more general knowledge, in keeping with a mechanism or mechanisms common to all cognitive domains. There has been

an active search for these mechanisms since Spearman’s 1904 publication , and the associated proposals range from a

mathematical artifact that emerges from statistical approaches for analyzing the relations among cognitive measures ;

to basic cognitive processes, e.g., speed of processing fine-grain detail ; to systems of brain regions ; and to more

fundamental biological process, e.g., control of oxidative stress .

The bulk of recent research has focused on complex cognitive systems associated with, for instance, executive functions

and imaging studies of the underlying brain regions . The application of network analyses to the results from

these brain-imaging studies have substantively advanced our understanding of the relations between cognition and

patterns of brain activity. One potential interpretation of the results of these studies is that there is a common system of

brain regions that is engaged during all cognitive processing, such as those associated with attentional focus . Though

appealing and consistent with theories of human cognition , such studies do not directly address why these same

mechanisms are also correlated with a wide range of health outcomes  or the parallel age-related declines in cognition

and health .

These latter patterns are consistent with the existence of an even more fundamental mechanism (or mechanisms) that

links cognition to health and aging, which is sometimes called a general biological fitness factor  or body integrity .

These arguments follow from the empirical results but leave unanswered the question of what biological processes

underlie general fitness or body integrity. Hill and colleagues proposed that mitochondrial functions are the cornerstone of

biological fitness , and in the next section, I elaborate on how their model can be expanded to explain the relations

between cognition, health, and aging .

1.2. Nested Mechanisms

The cognitive abilities, such as attention-demanding problem solving, that show the most decline with cognitive aging ,

and with age-related cognitive pathologies (e.g., Alzheimer’s disease) are supported by intermodular brain networks.

These networks are hierarchal in organization, with the functioning of higher-level systems dependent on the integrity of

lower-level systems, as shown in Figure 2 . In theory, the energy demands associated with the development,

maintenance, and optimal functioning of these systems increase exponentially as one moves from lower (e.g., individual

neurons) to higher (i.e., intermodular systems) network levels .
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Figure 2. Individual differences in cognition (outer ring) are influenced by the functioning of multiple brain systems, the

optimal functioning of which is dependent on the efficiency of the systems below it. Cellular energy is the lowest common

currency driving the development and expression of all biological systems and thus places upper-limit constraints on the

development and expression of all other systems, including cognition. Adapted from Geary  (p. 4).

From this perspective, energy is central to the organization, maintenance, and functioning of all complex networks ,

which places the biological substrates and mechanisms of energy production as the linchpin of brain and cognitive

functioning. The efficiency of mitochondrial energy production is a critical part of this linchpin ; in particular, the pathway

that creates the most adenosine triphosphate (ATP), that is, oxidative phosphorylation (OXPHOS) within mitochondria.

Variation in energy production might then contribute to individual differences in the functioning of cognitive systems and

age-related change in energy production is a potential mechanism contributing to cognitive aging (Section 2.2). Among

other things, deficits in the substrates (e.g., pyruvate) that fuel OXPHOS, dysfunction in electron transport and ATP

production, and variation in the latent capacity of mitochondria to increase ATP production, among other factors, can

contribute to individual differences in energy production and age-related intra-individual changes in energy production .

To put the importance of mitochondria in perspective, consider that the adult human brain consumes about 20% of the

body’s metabolic energy at rest, largely to maintain excitatory neurons in a ready state . These resources maintain

about 86 billion neurons and an estimated 164 trillion synapses ; it has been estimated that each neuron consumes

about 4.7 billion ATPs per second at rest , although this will vary with the number of synapses . The energy

requirements of individual neurons can increase 3.5-fold with the propagation of an action potential , and are

heightened further with the synchronized activity of distributed brain regions (i.e., intermodular functions) associated with

complex cognition . Energy drops could then lead to degradation of network cohesion, that is, loss of fine-tuned small-

world (intramodular) and long-range (intermodular) connections supporting core cognitive competencies.

As noted, complex cognition is supported by long-distance white matter connections between different brain regions 

, such as the integrated activity of the anterior cingulate, dorsolateral prefrontal cortex, and superior parietal cortex

during attention demanding problem solving . This executive control network contributes to the reasoning and

executive functions competencies shown in Figure 1 . Functional and resting state magnetic resonance imaging (MRI)

studies have identified other intermodular systems that are common across people, some of which are evolutionarily

conserved . An example is provided by the dorsal attention network that orients the individual to external space and

integrates visuospatial attention with sensory and motor systems, as well as more localized systems for processing

sensory information (e.g., visual information) and integrating motor responses .

Another is the default mode network that is involved in integrating the emotional and motivational state of the individual

with self-referential thoughts and memories of past experiences. The network is active during relaxed states and results in

self-relevant reflections about past memories and future goals and provides “a self-centered predictive model of the world”

 (p. 443). Although evolutionarily ancient, there are uniquely human features of the network. For instance, the

precuneus (Figure 3) is involved in feelings of agency, self-awareness, personal memories, and thinking about the world

in ways that involve the self , and other areas, such as the medial prefrontal cortex, are especially important during

conscious reflections about the self, including explicit goal-directed self-evaluations . The default mode network, in

combination with the executive and attentional control network, is involved in the explicit problem solving that enables

people to generate a conscious representation of themselves in the context of past and future social scenarios, among

other contexts . These scenario building competencies are important for navigating social dynamics .

Figure 3. Key brain areas of the default mode network that support the construction of self-centered mental

representations of the world, including potential future states. To the left is the medial (center) view of the brain and to the

right is the lateral (outer side surface) view. The numbers next to the labels are Brodmann  map coordinates.
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The functioning of each of these intermodular brain networks is in turn dependent on small-scale networks within these

brain regions and recent studies confirm the importance mitochondrial functioning, especially energy production, to the

integrity of these systems. Liu et al.  matched the dynamic integration of large-scale networks, obtained through brain

imaging, and gene-expression profiles of several participants who later died and donated their brains to the project. One

finding was that the expression of genes that influence mitochondrial functioning predicted functional connectivity between

prefrontal and parietal cortices, which include aspects of the executive control and default mode networks. This was

confirmed in a similar study, whereby genes associated with mitochondrial energy production were highly expressed in

brain regions that support long-distance intermodular networks but were less important for the functioning of small-scale

intramodular networks . In other words, the functioning of intermodular networks that integrate distributed brain regions,

as with the default mode network, is highly dependent on cellular energy production and thus disruptions in energy

production will be most evident in these systems and in the cognitive abilities that are supported by them.

2. Cognitive Aging and Health

Mitochondrial functions provide a natural link between cognition, health, and aging . One reason is the

10  mitochondria in the mammalian oocyte are randomly distributed among the cell lines that will form different physical

systems . Deleterious or salubrious mitochondrial DNA (mtDNA), as well as nuclear DNA (nDNA) that influence

mitochondrial functioning, will be distributed throughout the body, creating the potential for similarities in the relative

functioning of high-energy systems, such as the heart and brain. It is not that straightforward, however, as tissue-specific

configurations of mitochondria eventually emerge, potentially related to tissue specific expression of nuclear genes that

influence mitochondrial functioning . Still, the initial pool of mitochondria and supporting mtDNA and nDNA will be

highly similar across all physical systems and thus could easily contribute to a general fitness factor or body integrity 

. The underlying mechanisms, including mitochondrial functioning, provide a ready link between health and brain

and cognitive functioning.

The mitochondrial link extends to age-related changes in health and cognition, as Harman  proposed decades ago and

for which there is growing support . In broader context, aging may be an unavoidable consequence of the

evolution of eukaryotic cells and the ability to upregulate energy production . The benefits that contributed to the

evolution of enhanced energy production likely included more rapid somatic development early in life and advantage in

reproductive competition and parental investment in early adulthood, but come at a cost of gradual decline of the energy-

producing capacity of these same systems . The decline results from, among other things, the excess production of

reactive oxygen species (ROS) during OXPHOS and inadequate control of ROS levels. Low levels of ROS are important

for intracellular signaling but higher levels can damage DNA (especially mtDNA), cell membranes, and proteins needed

for many biochemical processes . The result is a slow, age-related degradation in mitochondrial functions,

including reduced capacity to produce cellular energy. The slow degradation of mitochondrial functions should result in

parallel declines in health and cognition with normal aging in adulthood and this appears to be the case.

In the sections that follow, I review the non-intuitive link between individual differences in cognitive abilities and individual

differences in various health indices and their relation to aging. The focus in these sections is on the evidence for a single

mechanism or group of related mechanisms that contribute to the links between health and cognition and that contribute

to age-related declines across cognitive abilities.

2.1. Cognition and Health

A positive relation between general health and cognitive ability was documented almost a century ago  and replicated

in 1992 by Lubinski and Humphreys  but was not systematically studied until the seminal work of Deary and his

colleagues . In the latter, the cognitive ability and family background of the entire school population of Scotland was

assessed (across several cohorts) at age 11 years and their health was tracked over the next 68 years (the study is

ongoing). The childhood measure included a mix of verbal, reasoning, spatial, practical, and arithmetic items and thus

provided a broad assessment of cognitive ability.

The results of this study and similar ones show that cognitive ability assessed in childhood predicts health and risk of

premature mortality throughout the lifespan . In one of these analyses, the relation between age 11

cognitive ability and the odds of living to age 79 years was assessed for 70,805 participants . For each one standard

deviation increase in cognitive ability, there was a 20% reduction in the odds of dying before the age of 79. Forty-five

percent of the individuals in the bottom 20% of childhood cognitive ability survived to age 79, as compared to 65% of

individuals in the top 20%. Other analyses revealed that cognitive ability is related to diverse aspects of physical health,

ranging from handgrip strength  to risk of coronary disease .
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The relation between cognitive ability and various health measures remains with control of childhood and current

socioeconomic status . Iveson and colleagues , for instance, showed that childhood cognitive ability predicts

premature mortality independent of the SES of the family of origin, although lower family of origin SES also predicts risk of

premature mortality above and beyond cognitive ability. Moreover, the relation between cognition and health remains

positive and significant with control of health-related behaviors, such as smoking and alcohol abuse .

The proposed mechanisms underlying the relation between cognition and health include general cardiovascular fitness,

exposure to toxins (e.g., through cigarette smoking), brain metabolism, and oxidative stress , among others. In a

review of the associated literature, Deary and colleagues concluded that “This idea [body integrity], which is often rather

vaguely articulated … demands a search for other possible markers of system integrity—other measurable indicators of

bodily and brain efficiency”  (p. 63). Mitochondrial functioning is a strong candidate as a key underlying mechanism

linking health and cognition , but testing this hypothesized link is not straightforward.

If mitochondrial functioning is a critical mechanism linking health and cognition, then cognitive deficits should be common

in individuals with mitochondrial disorders. These disorders are, however, quite varied in severity and rate of progression

, and as a result, a definitive understanding of any associated cognitive deficits remains to be achieved. Current

studies suggest these deficits are especially pronounced for complex, attention-demanding, cognitive processes (e.g.,

executive functions); are more common in symptomatic (e.g., having seizures) than asymptomatic individuals; and

become progressively worse as the disease progresses .

Additional evidence for a direct link between mitochondrial functions and cognition comes from studies of disruptions to

the typically homeostatic availability of energy substrates (lipids, glucose). These disruptions can be illustrated by the over

availability of substrates resulting in obesity and physical exercise that consumes them . The key idea is that obesity-

related disruption of glucose homeostasis is associated with cognitive declines and accelerated aging that are at least in

part related to compromised mitochondrial functions and that reductions (e.g., through exercise) in excess energy

substrates improves cognition and may slow the aging process.

The many ways in which obesity can compromise mitochondrial functions are described elsewhere . A

definitive link between obesity, mitochondrial dysfunction, and cognition remains to be forged but there is suggestive

evidence, including moderate (Effect Size, ES ≈ 0.3 to 0.45) differences in components of executive functions across

obese and normal weight individuals. These patterns are likely bidirectional, with poor executive functions associated with

difficulties in regulating food intake, and eventual compromises in executive functions resulting from disruptions in

mitochondrial functions . For instance, Spyridaki et al.  found lower reasoning abilities in obese as compared to

normal weight individuals that appeared to be mediated by inflammation, one indicator of compromised mitochondrial

functioning. Prospective studies confirm a relationship between chronic inflammation that can result from and further

damage mitochondria and cognition . Interventions that restore glucose homeostasis and reduce inflammation

and mitochondrial dysfunction may improve cognitive functioning. The interventions range from substantive weight loss to

insulin administration to pharmaceutical reductions in oxidative stress to vigorous exercise . These

interventions can be helpful, but individuals differ in their responsiveness for reasons that are not fully understood.

In any case, a recent meta-analysis included estimates of longitudinal change in cognition following weight loss and the

effects that emerged in randomized controlled trials (RCT) for weight-loss interventions . The longitudinal studies

suggested weight loss and exercise are associated with moderate to strong gains in attentional control, executive

functions, and memory abilities [ESs = 0.30 to 0.66]. However, these effects could be inflated because the repeated

assessments involved in longitudinal studies often result in improved test performance without underlying cognitive gains.

The RCTs, however, revealed that a combination of diet and exercise results in improved attentional control (ES = 0.44),

memory (ES = 0.35), language (ES = 0.21); there were no effects for executive functions, but this was assessed in only

two studies and thus the null result is not reliable.

In keeping with a direct relation between mitochondrial functions and cognition, the authors of the meta-analysis 

concluded that the cognitive gains might be related to reductions in insulin resistance and improvements in glucose

metabolism, as well as reductions in inflammation and oxidative stress, among other things.

2.2. Cognition and Aging

As noted, declines in mitochondrial functioning across adulthood are the evolutionary trade-off that comes with the ability

to ramp up energy production during development and during the reproductive demands of early adulthood . It is not

simply metabolic rate that eventually undermines mitochondrial functions (e.g., through oxidative stress and associated
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damage to mtDNA) but also mechanisms for the control of oxidative stress, among other factors . The point here is that

if mitochondrial functions contribute to the links between health and cognition, both health and cognition should decline in

parallel with normal aging in adulthood, which seems to be the case.

Psychologists have been studying age-related changes in cognition for many decades and declines in speed of executing

various cognitive processes have been repeatedly demonstrated , as have declines in more complex abilities,

such as reasoning and executive functions . Critically, these studies have revealed a common mechanism that

contributes to declines across cognitive abilities and that seems to be directly linked to biological aging . Based on

results from the Berlin Aging Study, Lindenberger and Baltes concluded that there appears to be a common mechanism

influencing age-related declines in reasoning, visual and auditory acuity, and sensory-motor skills, e.g., balance; ,

suggesting “aging changes in the physiological state of the brain”  (p. 352).

Tucker-Drob and colleagues’  meta-analysis of longitudinal studies revealed that a common factor explained about

60% of the variation in age-related changes in cognition from middle-age to old-age. In other words, there were common

processes underlying age-related declines across cognitive domains. The importance of this factor increased from middle-

age (explaining 45% of the covariation among cognitive abilities) to age 85 years (explaining 70%). Moreover, this

common factor was moderately correlated (r = 0.49) with the same mechanisms that are common to performance across

cognitive domains in young adults, as was shown in Figure 2. They concluded that “individual differences in human

cognitive abilities may have an inherent structure along which growth and decline naturally occur”  (p. 294).

There are, in addition, secular changes in the rate of cognitive aging and in various indicators of physical health that

appear to be related to the Flynn effect. The latter refers to cross-generational increases in performance on cognitive tests

throughout the 20th century . There are likely many factors that contributed to this effect. These include

increases in years of schooling that in turn make cognitive assessments more familiar to people and thus could improve

performance without substantive changes in underlying abilities. However, this is unlikely to be the whole story. The

improvements in medical care and nutrition, as well as reductions in social and economic stressors, that occurred

throughout the 20th century were associated corresponding gains in health, e.g., as indicated by gains in height; .

The secular declines in rate of cognitive aging are associated with these gains in health . In other words, secular

changes have concurrently improved people’s cognition and health and slowed the rate of cognitive aging. Although it is

not likely to be the only factor, mitochondrial functions are part of the common denominator to all of these relations 

.

Indeed, prospective studies show a relation between risk factors that are correlated with compromised mitochondrial

functioning, such as chronic inflammation, and rate of cognitive decline with aging and with health . A 10-year

longitudinal study of 45- to 69-year-olds illustrates the relation . Here, individuals with indicators of chronic inflammation

at baseline showed accelerated declines in reasoning and memory abilities relative to their healthier peers. The declines

were equivalent to an additional 1.7 years of normal age-related cognitive changes over the 10 years of the study.

Cognitive aging studies have also revealed that complex abilities, such as reasoning, decline more quickly than do more

basic processes, such as passive memory for words. These patterns are in keeping with the expected relation between

mitochondrial functions and brain and cognitive complexity described in Section 1.2. Brain imaging studies also show that

more complex brain networks, including the default mode network (Figure 3), are more susceptible to age-related declines

and pathology (e.g., Alzheimer’s disease) than are smaller-scale networks . Age-related

declines in the coherence of large-scale networks in turn are correlated with cardiovascular fitness and this is related in

part to the beneficial effects of exercise and in part to genes that influence both physical fitness and more shallow age-

related declines in network coherence . Findings such as these are important and in keeping with the general thesis

because, as described in Section 1.2, long-range brain networks are more energy dependent than are shorter range

networks and thus are more vulnerable to age-related declines in mitochondrial energy production .

2.3. Mitochondrial Deficits and Cognition and Aging

Studies of mitochondrial contributions to neuronal growth and functioning and their contributions to age-related

pathologies, such as Alzheimer’s and Parkinson’s diseases, provide mechanistic insights into how mitochondria contribute

to cognition and link cognition, health, and aging . As an example, decline in the integrity of the

hippocampal-dependent learning and memory system is a feature of normal aging, is accelerated in Alzheimer’s disease

, and can be linked to changes in mitochondrial functioning . Sustained presynaptic firing in hippocampal neurons

and synaptic plasticity associated with learning and memory are dependent on several mitochondrial functions. At

synaptic boutons, mitochondria contribute to the synthesis of neurotransmitters, provide the ATP needed for the repetitive

cycling of synaptic vesicles, and modulate the intracellular Ca  levels that promote release of neurotransmitters after
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being triggered by an action potential . Mitochondria are also motile and can move from one synapse to the next

and in this way provide dynamic adjustments such that more active synapses are supplied with sufficient ATP to maintain

increases in activity levels .

All of these mechanisms and others have been implicated in age-related changes in cognition, age-related brain

pathologies, in deterioration in health more broadly, and are associated with the earlier-described deficits that emerge with

chronic excess energy substrates . For instance, with progressive heart failure there is disrupted intracellular

Ca  modulation and mitochondrial Ca  overload that results in increased permeability of the mitochondrial inner

membrane and increased production of cell damaging ROS. The latter further disrupts Ca  modulation that in turn

contributes to further heart damage . As noted, presynaptic mitochondrial dysfunctions contribute to normal cognitive

aging, as well as the expression of neurological diseases ; these are associated with increases in oxidative stress,

decreases in ATP production, and declining Ca  buffering mechanisms . These in turn are exaggerated in highly

active brain regions, including the hippocampus and at synaptic boutons .

Devine and Josef  argued that synaptic degeneration might precede the onset of neurodegenerative diseases, such

as Alzheimer’s disease, and is closely related to deteriorating mitochondrial functioning, see also . Amyloid-  (A )

plaques (misfolded peptides) are a feature of Alzheimer’s disease and their accumulation undermines mitochondrial

Ca  modulation and ATP production. The accumulation of intracellular tangles of tau, a protein that can become

misfolded, occurs along with A  plaques and disrupts mitochondrial functioning directly and impedes mitochondrial

transport within neurons. One result is fewer mitochondria at synaptic boutons and premature elimination of synapses

.

Aspects of mitochondrial functioning are sensitive to estradiol (E ) and thus may contribute to sex differences in

cardiovascular and brain health, differences that can change with the onset of menopause and reductions in

E  concentrations . Estradiol appears to enhance glucose transport, and upregulates antioxidant defenses that in turn

will reduce the rate of age-related accumulation of damage due to oxidative stress . Estradiol also increases

mitochondrial tolerance of the Ca  overload that is a critical aspect of the above-noted synaptic functions . These

protective benefits are lost with aging. One compensatory response appears to be the catabolism of myelin to produce

ketone bodies as an energy supply that in turn contributes to white matter deterioration in females and increased risk of

neurodegenerative diseases .

2.4. Summation

Overall, there is consistent evidence for links between cognition and health and that these same links contribute to parallel

declines in cognition and health with normal aging in adulthood and with risk of age-related pathologies. These same links

are sensitive to wide-scale secular changes in nutrition, prevalence of parasitic and infectious diseases, educational

experiences, and social and economic stressors. No doubt, there are many contributing factors, but one factor that is

known to influence and be sensitive to all of them is mitochondrial functioning . Studies of the mechanisms through

which mitochondrial functions contribute to the links between cognition, health, and aging will lead to a fuller appreciation

of the biological systems that support human cognition, as well as the discovery of biomarkers of risk of cognitive decline

.
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