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Chemoradiation therapy (CRT) is a commonly indicated treatment in the case of cancer. In combination with

surgery or alone, it offers a relief of condition or even a cure for some patients. Resistance to chemo- or

radiotherapy is the main obstacle to consistent treatment outcomes in oncology patients.
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1. Introduction

Chemoradiation therapy (CRT) is a commonly indicated treatment in the case of cancer. In combination with

surgery or alone, it offers a relief of condition or even a cure for some patients. In cases when cancer cannot be

abolished with CRT, resistance is often the case. Resistance can be a pre-existing tumor state due to a genetic

profile or presence of cancer stem cells (CSCs), cancer-associated fibroblasts (CAFs), or mesenchymal stem cells

(MSCs), or it can be acquired. Previous treatment with radiation or chemotherapy (CT) can lead to the selection of

surviving cells with a resistant phenotype and/or the transformation of surviving cancer cells into resistant cells.

This resistant phenotype allows cancer cells to escape death after future treatment and maintain a viable tumor cell

population. Various mechanisms have been described that are associated with resistance, and many are shared

between radioresistant and chemoresistant cells. Increased repair capacity, abrogation of cell cycle arrest,

apoptosis evasion, tumor heterogeneity, activation of CSCs, mutation, and tumor microenvironment (TME) are

common mechanisms leading to both radio- and chemoresistance. When anti-cancer therapy is administered,

tumor cells exert a complex response that includes a state-specific secretory profile that orchestrates

communication between cells to help them adapt. A variety of molecules, including cytokines, interleukins, mRNA,

and ncRNA, such as miRNA and lncRNA, as well as others, are released into the extracellular space and can

cause changes in the cells that uptake them and also reflect the cell-specific state.

2. Conditioned Media

To reveal the influence of TME on the development of resistance of cancer cells, experiments with conditioned

media (CM) were conducted. CM contains various paracrine factors and oncosomes that convey molecular signals

and aid in cellular communication. Among the resistance-associated secretory molecules, circular RNAs (circRNA)

and cytokines have been identified. Cytokines bind to cellular receptors and initiate a signal cascade, while
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circRNA can enter by endocytosis. circITGB6 was found to be associated with cisplatin resistance in M2

macrophages, while circATP8B4 facilitates higher viability after ionizing radiation (IR) treatment . In addition to

circRNA, interleukin-11 (IL-11), secreted by cancer-associated fibroblasts, previously treated with cisplatin, also

induced a significantly higher viability of A549 cells following cisplatin exposure by activating the IL-11R/STAT3

anti-apoptotic signaling pathway .

Other studies explored radioresistance induction and showed that CM from previously irradiated cells also showed

protective effects in the A549 cells upon additional X-ray exposure, leading to lower apoptotic rates . CM from

three types of previously irradiated lung cancer cells facilitated decreased cell death upon irradiation of sensitive

cells via increased plasminogen activator inhibitor-1 (PAI-1) that upregulated AKT and ERK1/2 pathways and

inhibited caspase-3 activity .

In vivo TME contains senescent cells that are formed after anti-cancer therapy that express the senescence-

associated secretory phenotype (SASP). Senescent cells are more resistant to exposure due to their dormant

state, polyploidy, and apoptosis evasion via senescent cell anti-apoptotic pathways, and they secrete various

cytokines such as TGFβ1, TGFβ3, IL1β, IL-6, IL-8, CXCL1, CXCL2, and CXCL5 in addition to miRNA containing

oncosomes that can promote tumor progression and confer subsequent therapy resistance . Therapeutic

approaches help to ablate senescent cells and were shown to improve treatment outcomes.

3. Diagnostic Biomarkers of Resistance

The detection of secretory factors holds potential as a diagnostic biomarker for tumor cell resistance status to

predict a therapy response. miRNAs are a promising tool in biomarker development, as they are highly stable

molecules in circulation . Minimally invasive diagnostic approaches have been made using plasma levels of some

miRNAs. miR-208a holds potential as a serum biomarker of NSCLC radioresistance, while other detected

differentially expressed miRNAs await further investigation . miR-29a-3p and miR-150-5p from blood were also

found to be reflective of NSCLC radioresistance . Eleven serum miRNAs were predictive of NSCLC patients’

resistance to RT . Various circulatory exosome-shuttled miRNAs were also predictive of chemotherapy

resistance status, as presented in a review . Candidate secretory miRNAs involved with radio- and

chemoresistance of NSCLC as an example are presented in Table 1, and they can be a starting point in the

development of a minimally invasive diagnostic panel. Other diagnostic approaches are based on liquid and tumor

biopsies, which can include miRNA from isolated oncosomes or other secretory factors, as well as intercellular

miRNA analysis. Candidate intercellular miRNAs predictive of chemo- or radioresistance status have been

proposed in numerous studies and are summarized in reviews .

Table 1. Secretory miRNA (exosomal and circulatory) involved in the radio- and chemoresistance of NSCLC. 
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Type of Resistance miRNA

Tyrosine kinase

inhibitors

mir-BART14, mir-1469, mir-16-1, mir-196, mir-4791, mir-4796, mir-548aq, mir-72, mir-

H19, mir-138-2, mir-153, mir-585, mir-4803, mir-744, mir-769 

mir-184, mir-3913 

mir-658, mir-564 

mir-1468, mir-23 

mir-136 

mir-214 

mir-210 

mir-615 

Cisplatin

mir-20a 

mir-193a 

mir-524 

mir-4443 

mir-1246 

mir-425 

mir-103a 

mir-1273a 

mir-100 

IR mir-196a 

mir-208a 
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The Human miRNA Disease Database  contains miRNA–disease associations, including cancer and others,

from 19,280 scientific articles as of today. Cancer-associated miRNA biomarkers have been validated, and a

“miRview-mets2” panel was created for the clinical identification of metastatic cancer origins, in addition to other

clinical miRNA-based tests . Creating a resistance status database would be helpful to current diagnostics in the

clinic to select a more efficient treatment regimen.

3.1. Therapeutic Approaches

Since the resistance-mediating effects of oncosomes were characterized, the inhibition of their secretion,

biogenesis, or uptake was attempted in combination with anticancer therapy that led to tumor sensitization and

higher antineoplastic efficiency in multiple in vitro studies, as summarized in a review . The administration of

exosome inhibitors heparin and simvastatin can help alleviate the detrimental effects of the oncosome injection

derived from resistant cells in mice . Alkylation of TME also reduces oncosome release, and intraperitoneal

injections of proton pump inhibitors in combination with chemotherapy in mice led to decreased plasma exosome

levels; however, no differences in tumor weight were noted due to selected time intervals .

Upon the discovery of secretory regulatory RNA factors conveying chemo- and radioresistance, approaches were

made to up- or downregulate them in vivo. Injections of exosomes containing mir-214 antagomir sensitized lung

tumors in mice, pre-treated with oncosomes from gefitinib-resistant PC9 cells . As an example, antisense

oligonucleotide targeting allowed for the knockout of circITGB6 in vivo with intraperitoneal injections, and in

combination with cisplatin treatment, it led to significantly lower ovarian circITGB6-transfected tumor size and

increased survival in mice compared to cisplatin alone . Knockdown of IL-11 in mice with lung cancer also led to

better effects of cisplatin treatment . Inhibition of a paracrine factor PAI-1 in mice with lung cancer by oral

administration of tiplaxtitnin successfully sensitized tumors to radiation therapy and led to a significantly decreased

tumor volume .

The animal studies discussed above provide a valuable model for the in vivo investigation of therapeutic

opportunities and successful outcomes proceeding further to clinical trials. Preliminary investigations were carried

out on cell cultures, while 3D cultures were also used to simulate tumor formation in vitro. Recent neo-organoid

developments are a very promising treatment based on cell integration into a 3D scaffold with the following

implantation into the body. Neo-organoid implantation with Matrigel-imbedded MSCs overexpressing IL-12 led to

significantly better results, as compared to non-genetically modified MSCs with 67% of mice with breast cancer

xenografts being completely tumor free 55 days after treatment .

Such approaches pave the way to abrogate the subset of resistance-acquiring cancer tumor cells via the

acquisition of secreted factors. However, the question remains open as to how kill the resistant and CSCs that are

also present as a subset of a heterogenous tumor in this model. Today, the major directions in CSC-targeted

therapy research include immunotherapy, inhibition of key signaling pathways, inhibition of DNA repair, and

awakening quiescent CSCs . Studies of differentially expressed intracellular miRNAs between resistant and

sensitive cancer cells point out the miRNA control of cancer cells’ response to IR or CT, and its direct manipulation
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can be used to sensitize the tumor prior to therapy. Table 2 presents a summary of the candidate deregulated

miRNA of resistant NSCLC cells as an example of possible therapeutic targets.

Table 2. Most commonly differentially expressed miRNA of radio- and chemoresistant NSCLC cells. IR—ionizing

radiation; EGFR-TKI—epidermal growth factor receptor tyrosine kinase inhibitors; 5FU—5-fluorouracil.

miRNA Number of References Type of Resistance

mir-21 13

IR 

Cisplatin 

EGFR-TKI 

5FU 

Cisplatin and paclitaxel 

Cisplatin and docetaxel 

Cisplatin, docetaxel, and IR 

mir-145 10

IR 

Cisplatin 

EGFR-TKI 

Docetaxel 

Pemetrexed 

Paclitaxel 

Cisplatin and pemetrexed 

mir-200c 6 ALK-TKI 

EGFR-TKI 

Paclitaxel 
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miRNA therapeutic approaches for the treatment of cancer are gaining attention, with some of them in clinical trials

already . Several biopharmaceutical companies are developing and implementing miRNA-based

therapeutics and are trying to overcome the challenges associated with tumor tissue specificity, off-target activity

due to miRNA pleiotropic nature, and toxicity with novel drug delivery systems and combinations with other

medications . Targeting resistance-conferring miRNA for tumor sensitization in combination with RT or CT

also has a potential to overcome resistance and provide more satisfactory therapeutic results (Figure 1). One of

the ways to implement it was attempted with intra-tumoral injections of exosomes derived from MSCs transfected

with selected miRNAs to sensitize cancer cells to CT, as summarized in a review .

miRNA Number of References Type of Resistance

Vincristine, cisplatin, and MDR 

mir-17 6

Cisplatin 

Paclitaxel 

EGFR-TKI 

mir-34a 5

Cisplatin 

Gefitinib 

mir-326 5

Cisplatin 

Matrine 

Gefitinib 

mir-200a 5

Cisplatin 

TKI 

mir-200b 5 Docetaxel 
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Figure 1. Development of tumor chemo- and radioresistance. Abbreviations: IR—ionizing radaiation; CT—

chemotherapy; RT—radiotherapy; CRT—chemoradiotherapy.

Abolishment of senescent cells improves anti-cancer therapy results and can involve senolytic agents, such as

chimeric antigen receptor T cells against uPAR marker and proteolysis-targeting chimera technology, in addition to

other natural and targeted senolytic compounds that cause senescent cell death . Senomorphic agents

block SASP effects without causing senescent cell death . Senotherapeutics are used as an adjuvant therapy

to ablate senescent cells formed after CT or RT and lead to a better response in some patients; however, the

treatment outcomes are not consistent .
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