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Licorice (Glycyrrhiza glabra) has been largely used for thousands of years in traditional Chinese medicine. Licorice

and its derived compounds possess antiallergic, antibacterial, antiviral, anti-inflammatory, and antitumor effects. G

is a triterpene glycoside complex and has been shown to possess cytotoxic effects against several cancer cell lines

such as colon, lung, leukemia, melanoma, and glioblastoma (GBM). GA, an aglycone of G, has been demonstrated

to have pro-apoptotic effects on human hepatoma, promyelocytic leukemia, stomach cancer, Kaposi sarcoma-

associated herpesvirus-infected cells, and prostate cancer cells in vitro by inducing DNA fragmentation and

oxidative stress.

Glycyrrhiza glabra-derived compounds  glycyrrhizin (G)  glycyrrhetinic acid (GA)

1. Introduction

Licorice (Glycyrrhiza glabra) has been used in traditional Chinese medicine for thousands of years. Clinically, it is

used widely to treat immune systems, respiratory, and digestive diseases , and no severe side effects

have been reported so far . In addition, Licorice-derived compounds possesses antiallergic, antibacterial,

antiviral, anti-inflammatory, and anticarcinogenic effects . These pharmacological properties aid in

inflammatory disease treatment  (Figure 1).
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Figure 1. Licorice pharmacological

properties.

The main bioactive compounds isolated from Licorice are glycyrrhizin (G) and glycyrrhetinic acid (GA) . G is a

triterpene glycoside complex and has been shown to possess cytotoxic effects against several cancer cell lines

such as colon, lung, leukemia, melanoma, and glioblastoma (GBM) . Additionally, the

incidence of liver carcinogenesis in patients with hepatitis C was clinically reduced after G administration . GA,

an aglycone of G, has been demonstrated to have pro-apoptotic effects on human hepatoma, promyelocytic

leukemia, stomach cancer, Kaposi sarcoma-associated herpesvirus-infected cells, and prostate cancer cells in vitro

by inducing DNA fragmentation and oxidative stress . In addition, several genotoxic studies have indicated

that G is neither teratogenic nor mutagenic and may possess anti-genotoxic properties under certain conditions 

. As a result, there is a high level of use of Licorice and GZ in the US with an estimated consumption of 0.027–

3.6 mg/kg/day .

However, GA oral efficacy is impaired due to its low solubility and permeability through the gastrointestinal mucosa

. It has been shown that GA administered through nanocarriers (GA-F127/TPGS-MMs) , micellar carrier

based on polyethylene glycol-derivatized GA (PEG-Fmoc-GA) , and microparticles  increase absorption

significantly . Both G and GA have been prescribed for several therapeutic purposes, such as cancer

and inflammation; however, side effects have pointed out the problem of their toxicity .

Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, has been recently used as a flavoring and skin

conditioning agent with demonstrated anti-allergic and anti-inflammatory properties . It can inhibit leukotriene
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and reduce histamine levels with an apparent lack of adverse side effects . In addition, it has been

demonstrated that DPG has anti-inflammatory, antioxidant, immunomodulatory, anti-ulcerative, and antitumoral

properties .

2. G, GA, and DPG-Mediated Anti-Inflammation Regulation

As stated previously, Licorice compounds such as G, GA, and DPG have anti-inflammatory, antioxidant, antiviral,

immunomodulatory, and antitumor properties . Inflammation is an evolutionarily conserved, tightly

regulated protective mechanism that comprehends immune, vascular, and cellular biochemical reactions. The

normal inflammatory response is temporally restricted and, in general, beneficial to the host. Chronic inflammatory

response, on the other hand, is a risk factor for the development of several diseases such as ischemic heart

disease, stroke, cancer, and diabetes mellitus, among others .

The anti-inflammatory effects of G and GA have long been reported. G has exerted anti-inflammatory actions by

inhibiting the generation of reactive oxygen species (ROS) by neutrophils, the most potent inflammatory mediator

at the site of inflammation . Moreover, G has enhanced interleukin (IL)-10 production by liver dendritic cells in

mice with hepatitis . GA has presented anti-inflammatory and anticarcinogen effects on several tumor cell lines

such as human hepatoma (HLE), promyelocytic leukemia (HL-60), stomach cancer (KATO III), and prostate cancer

(LNCaP e DU-145) by both DNA fragmentation and gene deregulation required for oxidative stress control 

.

3. G, GA, and DPG-Mediated Crosstalk between Inflammation
and Oxidative Stress Pathways

Oxidative stress consists of an imbalance of endogenous pro-oxidant and antioxidant activities, characterized by

excessive formation of high ROS and reactive nitrogen species (RNS) . Small amounts of ROS are synthesized

physiologically and act on cell homeostasis; however, in the disease context, the excessive synthesis of ROS

disrupts the antioxidant defense system, causing cellular apoptosis . This condition is commonly associated with

oxidative changes such as lipid peroxidation, protein carbonylation, carbonyl adduct, nitration, and DNA impairment

as well as the induction of inflammatory processes, leading to several diseases . Cyclooxygenase type 2

(Cox-2) and inducible nitric oxide synthase (iNOS) enzymes, responsible for the release of pro-inflammatory

mediators, prostaglandin E2 (Pge-2), and nitric oxide (NO), play relevant roles in oxidative and acute inflammatory

processes .

The high mobility group box 1 (Hmgb1) cytokine plays an important role in the pathologic process of endothelial

permeability under oxidative stress . DPG and G have presented antioxidant effects due to their negative

modulation of Hmgb1 in the DSS-induced colitis mice model . It has been shown that G inhibits Hmgb1-cytokine

secretion by blocking the Cytochrome C release and caspase-3 activity, consequently inhibiting apoptosis in

inflammation-related stroke rat models . In addition, the G compound decreases the iNOS, TNF-α, IL-1β, and
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IL-6 expression levels by the modulation of p38 mitogen-activated protein kinases (p38-MAPK) and c-Jun N-

terminal kinase (p-JNK) signaling pathways in brain vascular cells  and by preventing oxidative stress and

apoptosis through the inhibition of p38-MAPK, p-JNK, and NF-κB signaling pathways in lung cells .

Accordingly, the G compound can inhibit oxidative stress and inflammatory response by attenuating the activity of

the Hmgb1 and NF-κB signaling pathways, with decreased levels of malondialdehyde (MDA) and cytokines (TNF-

α, IL-1β and IL-6) in lung cells . Moreover, G increases glutathione-S-transferase (GSTs) levels, decreases

MDA, and negatively regulates the expression of TNF-α, IL-6, iNOS, and monocyte chemotactic protein-1 (MCP-1)

in liver cells . G compound has been shown to suppress NF-κB pathway through inhibiting the toll-like receptor 4

(TLR4) in renal cells  and reducing the formation of intracellular ROS. Moreover, an activation of the

AMP/nuclear factor erythroid-2-related factor-2 (NRF2) pathways in vitro was observed, positively regulating the

antioxidant enzymes, HO-1, NQO-1, and GCLC and negatively regulating TNF-α, IL-1β, and IL-6 .

According to descriptions, GA also suppresses oxidative stress and neuroinflammation induced by A1C13 through

TLR4/NF-κB signaling pathway inhibition . In accordance, one study has observed that GA was able to

attenuate oxidative stress and neuroinflammation induced by rotenone reducing the activation of the ionized

calcium-binding adapter molecule-1 (Iba-1), preventing glutathione depletion, lipid peroxidation inhibition, and

attenuation of the induction of COX-2 and iNOS . In addition, a restored mitochondrial complex I and IV, a

reduction in the generation of ROS, the release of Cytochrome C, and ultimately cell apoptosis inhibition after

exposure to GA in brain tissue of adult Sprague Dawley Rats were observed .

GA can suppresses lipopolysaccharide (LPS)-induced oxidative stress, inflammation, and apoptosis through

activation of the extracellular signal-regulated kinase (ERK) pathway, and inhibition of the NF-κB in renal cells .

GA also suppresses oxidative stress and inflammation through activation of the NRF-2 and HO-1 pathways and IκB

and NF-κB p65 signaling inhibition in cardiac cells .

In the liver tissue of rats, GA inhibits NTiO2-induced apoptosis by superoxide dismutase (SOD) and glutathione

peroxidase (GPx) activation . Moreover, it has been shown that GA can inhibit caspase-3 and -9 at mitochondria

in HepG2 cells, positively and negatively regulating Bcl-2 and Bax proteins expression, respectively  (Table 1).

Table 1. Summary of studies showing the autoinflammatory and anti-tumoral effects of G, GA, and DPG.
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Model Compound (Dose) Mechanism Reference

In vitro (KATO III and
HL-60)

G (1 to 10 mg/mL) Antitumor activity ↑ apoptosis

In vitro (HLE, KATO III,
and HL-60)

G (0.1 to 1 mg/mL) Antitumor activity ↑ apoptosis

In vitro (DU-145 and
LNCaP)

G (1 to 20 mM) Antitumor activity ↑ apoptosis
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Model Compound (Dose) Mechanism Reference

In vitro (Caco3, HT29,
and RAW 264.7)

In vivo (Acute lung injury
mice model)

DPG (300 µM)
DPG (3 and 8

mg/kg/day)

↓ TNF-α, IL-1β, and IL-6, as well as HMGB1
receptors, RAGE and TLR4

In vitro (neutrophils)
G (0.05, 0.5, and

5.0 µg/mL)
↓ ROS

In vivo (Con A-induced
hepatitis)

Ex vivo (liver dendritic
cells)

G (2 mg/mouse)
G (0.1 mg/mL)

↑ IL-10 and ↓ liver inflammation

In vitro (U251) GA (1, 2, 4 mM)
Anticancer effect ↓ proliferation and ↑ apoptosis

possibly related to the NF-κB mediated
pathway

In vitro (U87MG and
T98G)

DPG (0.1 to 2 mM)
Anticancer effect ↓ proliferation and ↑

apoptosis. ↓ NF-κB pathway

In vivo (DSS-induced
colitis mice model)

DPG (8 mg/kg/day)

↓ colitis, at the earlier stages, ↓ inflammation
though AMPK-COX-2-PGE. At later times ↓

iNOS and COX-2 in HMGB1-dependent
manner

In vivo (mechanical
thrombectomy rat model)

G (2, 4 and 10
mg/kg/day)

↓ HMGB1 and its downstream inflammatory
factors,

and ↓ oxidative stress

In vivo (Focal cerebral
I/R injury rat model)

G (4 mg/kg/day)
↓ HMGB1 and ↑ apoptosis through the

blockage of the JNK and p38

In vivo (Sepsis-induced
acute lung injury rat

model)

G (25 and 50
mg/kg/day)

↓ inflammatory responses, oxidative stress
damage, and apoptosis though ↓ NF-κB, JNK,

and p38 MAPK

In vivo (Acute lung injury
mice model)

G (20 and 40
mg/kg/day)

↓ LPS-induced lung injury via blocking
HMGB1/TLRs/NF-κB pathway

In vitro (RAW 264.7 and
bone marrow
monocytes)

G (25 to 100 µM)
↓ RANKL-induced osteoclastogenesis and

oxidative stress through ↑ AMPK/Nrf2 and ↓
NF-κB and MAPK

In vivo (Parkinson rat
model)

GA (50 mg/kg/day)
↓ dopamine neuron loss and ↓ Iba-1 and GFAP

↑ antioxidant enzyme activity, ↓ lipid
peroxidation, ↓ pro-inflammatory cytokines

In vivo (Vascular
dementia rat model)

GA (20 mg/kg/day)
↓ release of cytochrome-c and

↑ Bcl2, and ↑ the endogenous antioxidants
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