
Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 1/8

Integration of Security Practices in Agile
Software Development
Subjects: Computer Science, Software Engineering

Contributor: Yolanda Valdés-Rodríguez , Jorge Hochstetter-Diez , Jaime Díaz-Arancibia , Rodrigo Cadena-

Martínez

Software development must be based on more than just the experience and capabilities of your programmers and

your team. The importance of obtaining a quality product lies in the risks that can be exploited by software

vulnerabilities, which can jeopardize organizational assets, consumer confidence, operations, and a broad

spectrum of applications.

secure development secure software software process

1. Introduction

Advances in information and communication technologies allow people and organizations to have greater

connectivity . Bringing this access to the masses has specific risks associated with its use, especially considering

that we rely heavily on software systems in various daily activities we may perform . Due to that, it is relevant to

ensure various security issues ; for example, we have to expect that the software will continue to function

correctly under malicious attack .

Secure software is designed, implemented, configured, and operated to fulfill essential properties: to continue

functioning in the presence of computer attacks or mitigate damage and recover as quickly as possible . Software

developers must design, develop and deploy our systems with a secure mindset, applying strategies that minimize

the likelihood of exposure and impact to threats . However, in practice, this is different; software development is

based on adopting a reactive approach, which consists of assessing the security of applications once they have

been developed, focusing on the later stages of the software life cycle. Fixing bugs in this way helps; however, this

approach proves to be more costly when resolving software security flaws at later stages .

Thus, organizations have been forced to define and implement a set of countermeasures that allow us to secure

our information assets against casual or deliberate attacks. Yet, these seem insufficient in the face of the increase

in this type of attack worldwide, making it essential for organizations to define security policies that consider the

wide variety of attacks to which they are exposed .

The traditional response to this scenario focuses on reducing risk by standardizing information security and

defining and implementing best practices or controls.

[1]

[1][2]

[3]

[4]

[5]

[6][7]

[8]

[9][10]

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 2/8

For example, the ISO27001 , NIST , and COBIT standards propose a set of controls that must be

complied with to secure an organization’s information assets and operational continuity.

Although it has been demonstrated that the implementation of the security controls of these standards reduces

security incidents, what is really implemented is a layer or security shield on top of the existing systems, which

means the software systems themselves are not aware of the anomalous behaviors of the users, and, therefore, as

software systems, they do not have a reaction protocol for it, that is, once the standards penetrate the security

shield provided (if it exists), the software systems are exposed .

A complementary approach is the determination of the particular security requirements of each organization,

reflected as non-functional requirements of their software systems . From this point, the different phases of

the software production cycle must accommodate these requirements, which means that security aspects must be

represented as requirements; they must be considered in the design, in the development of test cases, in the

coding, and application of tests, packaging, and delivery of the product .

A software product can be vulnerable to its construction failures or provoked attacks . To reduce

vulnerabilities and make the product secure, measures such as the integration of security concepts in all its

development stages or approaches or methodologies that allow the integration of security into the software life-

cycle must be applied .

2. Security Practices in Agile Software Development

Agile software development is gaining acceptance as a flexible approach. This approach prioritizes the software’s

continuous and early delivery, changing the requirements even in advanced stages of development and adapting to

the customer’s needs . Although the agile approach is gaining more and more followers, it reveals that it has

certain security-related disadvantages.

Generally, security is not considered in any of the phases of the software development life cycle (SDLC) . At

best, it is covered through the definition of non-functional requirements; for this reason, it is either not taken into

account, or it is done at the end of the project . Security is seen as an element that increases project

development and delivery times, which goes against agile principles .

There are some software development lifecycles that are starting to consider agile principles:

Correctness by Construction (CbyC), is a highly effective method for developing software that requires critical

levels of safety and provability. The main objectives of this methodology are to minimize the defect rate and

increase resilience to change, achieved through two fundamental principles: making it very difficult to introduce

bugs and ensuring that bugs are identified and eliminated as early as possible. To achieve these goals, CbyC

seeks to ensure that software is correct from the start through rigorous safety requirements, a detailed definition

of system behavior, and a robust and verifiable design .

[11] [12] [13]

[10][14]

[15][16]

[10][17]

[18][19]

[18][20]

[21]

[22]

[23]

[24]

[25][26]

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 3/8

ViewNext, model proposed by is an agile adaptation of the S-SDLC , which incorporates security best

practices from known models along with other security tasks, based on the spiral model, is integrated into

normal software engineering life cycles. The model corrects weaknesses present in previous models and

follows a preventive approach, making it an effective alternative for secure software development. Known as

Agile and Secure Software Development Life, this model has been the subject of study in .

Microsoft SDL Agile, it is an adaptation of the SDL Methodology (Security Development Lifecycle) that was

developed by Microsoft to integrate security into agile software development processes . The Agile SDL

methodology focuses on integrating security into each iteration of the agile software development process.

Rather than following a “wait until the end” approach to integrating security, the Agile SDL methodology

promotes the inclusion of security activities in all phases of the agile development process. Security activities

include early risk identification, defining secure user stories, performing security testing in each iteration, and

implementing security best practices in the agile development process. The Agile SDL methodology is based on

the agile software development lifecycle, which includes planning, analysis, design, implementation, testing,

and maintenance. By integrating security into each stage of this lifecycle, it is possible to ensure that the

software developed is secure and complies with security requirements.

Building Security In Maturity Model (BSIMM), is a security maturity model used to describe the practices and

processes used by leading software security organizations to develop, improve and maintain effective software

security programs . BSIMM focuses on assessing organizations’ software security programs by measuring

their maturity in 12 common security practices. This model helps organizations develop their own software

security program and provides a tool for ongoing assessment of software security maturity over time. The latest

version of the model, BSIMM10, released in 2020, addresses agile properties of software development. It

includes practices and processes relevant to agile approaches, such as continuous integration and continuous

delivery, security automation, security management in the product backlog, and security collaboration between

development teams. In addition, BSIMM10 focuses on the importance of security in the context of agile

frameworks, such as Scrum and DevOps.

The software development models share a common focus on improving software safety throughout the software

development life cycle. BSIMM and SAMM are software security maturity models that measure the maturity of

software security programs and provide guidance for improving them, although BSIMM focus specifically on agile

properties. Meanwhile, S-SDLC and McGraw’s Secure Software Development Life Cycle Process are secure

software development life cycle models that integrate security into each stage of the development process. While

S-SDLC provides general guidelines and best practices for developing secure software, McGraw’s Secure

Software Development Life Cycle Process focuses on eliminating vulnerabilities through a secure architecture from

the outset. On the other hand, Correctness by Construction is a methodology that seeks to produce correct

software from the beginning through a rigorous definition of security requirements, a solid and verifiable design,

and a preventive approach to avoid introducing errors. Finally, SDL Agile is an adaptation of Microsoft’s SDL model

that integrates security into agile software development processes. This model focuses on security automation,

security management in the product backlog, and security collaboration between development teams, fostering

[27] [28]

[29]

[30]

[31]

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 4/8

collaboration and continuous integration of security throughout the software development lifecycle. In summary,

while these models share a common goal of improving software security, each offers a unique and complementary

approach to achieving it.

Software assurance is the confidence that a system meets all its security requirements. In most of those

requirements of interest to customers and users of the software, this confidence is based on specific evidence

collected and evaluated through assurance techniques .

The techniques or mechanisms established for information security are considered rigid to respond to the changes

and advances that are presented in the changing security environment, where there is a need for a more agile

method to deal with new threats and vulnerabilities . Thus, the traditionally established security mechanisms are

no longer effective when used with software development methodologies adapted to the needs of the current

environment, such as agile methodologies .

The use of agile methodologies in software development implies, on several occasions, not considering the good

practices of secure development, whose purpose is to guarantee the fulfillment of the own security policies of the

software development .

Several authors state that developing secure software using agile methodologies is challenging. Applying security

practices in agile methodologies presents challenges because agile methodologies support requirements changes

prefer frequent deliveries, and their practices do not include security engineering activities .

The paper published by discusses defects in the requirements specification stage, which generally in security

aspects are misunderstood and incorrectly specified due to lack of security expertise. These concerns become

even more challenging in agile contexts, where lightweight documentation is generally produced. To address this

problem, the indicated article proposes an approach to review security-related aspects of web application

requirements specifications in agile contexts. The methodology considers user stories as inputs and relates them

to the OWASP (Open Web Application Security Project) security properties, which must be verified and then

generate a reading technique to help reviewers detect defects. The methodology was evaluated through three

experimental tests performed with 56 novice software engineers, measuring effectiveness, efficiency, usability, and

ease of use. The results indicate that the proposed methodology has a positive impact on the number of

vulnerability findings in terms of effectiveness and efficiency.

There seems to be a clear need for a software development model which addresses security issues at any stage of

the software life cycle and considers the benefits of agile models. In this context proposes a model that

introduces security as a crucial element in software development environments and, at the same time, leverages

agile properties.

On the other hand, Sharma et al. offers a framework for agile development that addresses security, considering

customer requirements. The implementation of this Framework has been implemented in Java to automate the

[32]

[33]

[34]

[35][36][37][38][39][40]

[36]

[41]

[23]

[42]

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 5/8

whole process, although the author points out that the suggested security activities should be tested and evaluated

in a real industrial environment.

References

1. Faheem, M.; Shah, S.B.H.; Butt, R.A.; Raza, B.; Anwar, M.; Ashraf, M.W.; Ngadi, M.A.; Gungor,
V.C. Smart grid communication and information technologies in the perspective of Industry 4.0:
Opportunities and challenges. Comput. Sci. Rev. 2018, 30, 1–30.

2. Lee, M.; Yun, J.J.; Pyka, A.; Won, D.; Kodama, F.; Schiuma, G.; Park, H.; Jeon, J.; Park, K.; Jung,
K.; et al. How to respond to the fourth industrial revolution, or the second information technology
revolution? Dynamic new combinations between technology, market, and society through open
innovation. J. Open Innov. Technol. Mark. Complex. 2018, 4, 21.

3. Liou, J.C.; Duclervil, S.R. A survey on the effectiveness of the secure software development life
cycle models. In Innovations in Cybersecurity Education; Springer: Berlin/Heidelberg, Germany,
2020; pp. 213–229.

4. McGraw, G. From the ground up: The DIMACS software security workshop. Secur. Privacy IEEE
2003, 1, 59–66.

5. Castellaro, M.; Romaniz, S.; Ramos, J.C.; Feck, C.; Gaspoz, I. Aplicar el Modelo de Amenazas
para incluir la Seguridad en el Modelado de Sistemas. In Proceedings of the V Congreso
Iberoamericano de Seguridad Informática—CIBSI, Bogota, Colombia, 22–24 January 2016;
Volume 16.

6. Hernández Yeja, A.; Porven Rubier, J. Procedimiento para la seguridad del proceso de
despliegue de aplicaciones web. Rev. Cuba. Cienc. Inform. 2016, 10, 42–56.

7. Pecka, N.S. Making Secure Software Insecure without Changing Its Code: The Possibilities and
Impacts of Attacks on the DevOps Pipeline. Ph.D. Thesis, Iowa State University, Ames, IA, USA,
2022.

8. Konstantinidou, C.A.; Lang, W.; Papadopoulos, A.M.; Santamouris, M. Life cycle and life cycle
cost implications of integrated phase change materials in office buildings. Int. J. Energy Res.
2019, 43, 150–166.

9. Symantec. Symantec. Internet Security Threat Report. Available online:
https://www.symantec.com/security-center/threatreport (accessed on 23 February 2023).

10. Diéguez, M.; Cares, C. Anticipation models (anti-models) for a proactive cyber defence. In
Proceedings of the IX Congreso Internacional de Computación y Telecomunicaciones, Lima,
Peru, 11–13 October 2017; pp. 247–254.

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 6/8

11. ISO. ISO/IEC27001. Information Security Management. Available online:
https://www.iso.org/standard/82875.html (accessed on 23 February 2023).

12. ISO. NIST, Cybersecurity. Available online: http://www.iso.org/iso/catalogue_detail?
csnumber=54533 (accessed on 20 February 2023).

13. ISACA. Control Objectives for Information and Related Technologies (Cobit). Available online:
http://www.isaca.org/KnowledgeCenter/cobit/Pages/Products.aspx (accessed on 21 February
2023).

14. Ključnikov, A.; Mura, L.; Sklenár, D. Information security management in SMEs: Factors of
success. Entrep. Sustain. Issues 2019, 6, 2081.

15. Meridji, K.; Al-Sarayreh, K.T.; Abran, A.; Trudel, S. System security requirements: A framework for
early identification, specification and measurement of related software requirements. Comput.
Stand. Interfaces 2019, 66, 103346.

16. Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE: Security threat oriented requirements engineering
methodology. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 191–203.

17. Mishra, N.; Pandya, S. Internet of things applications, security challenges, attacks, intrusion
detection, and future visions: A systematic review. IEEE Access 2021, 9, 59353–59377.

18. López-Rodríguez, S.A.; García-Peña, V.R. Metodologías de desarrollo de software seguro con
propiedades agiles. Polo Conoc. 2021, 5, 1027–1046.

19. Filus, K.; Domańska, J. Software vulnerabilities in TensorFlow-based deep learning applications.
Comput. Secur. 2023, 124, 102948.

20. Kumar, R.; Goyal, R. On cloud security requirements, threats, vulnerabilities and
countermeasures: A survey. Comput. Sci. Rev. 2019, 33, 1–48.

21. Sinha, A.; Das, P. Agile methodology vs. traditional waterfall SDLC: A case study on quality
assurance process in software industry. In Proceedings of the 2021 5th International Conference
on Electronics, Materials Engineering & Nano-Technology (IEMENTech), Kolkata, India, 4–5 May
2021; pp. 1–4.

22. Futcher, L.; von Solms, R. SecSDM: A usable tool to support IT undergraduate students in secure
software development. In Proceedings of the HAISA, Crete, Greece, 6–8 June 2012; pp. 86–96.

23. De Vicente Mohino, J.; Bermejo Higuera, J.; Bermejo Higuera, J.R.; Sicilia Montalvo, J.A. The
application of a new secure software development life cycle (S-SDLC) with agile methodologies.
Electronics 2019, 8, 1218.

24. Fowler, M.; Highsmith, J. The agile manifesto. Softw. Dev. 2001, 9, 28–35.

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 7/8

25. Croxford, M.; Chapman, R. Correctness by construction: A manifesto for high-integrity software. J.
Def. Soft. Eng. 2005, 5–8.

26. Abundis, C.J.B. Metodologías para desarrollar software seguro. Recibe. Rev. Electron. Comput.
Inform. Biomed. Electron. 2013, 3, 1–6.

27. Lindo, A.C. AC Modelos de Desarrollo Seguro del Software. 2023. Available online:
https://web.fdi.ucm.es/posgrado/conferencias/AndresCaroLindo-slides.pdf (accessed on 23
February 2023).

28. Hudaib, A.; AlShraideh, M.; Surakhi, O.; Khanafseh, M. A survey on design methods for secure
software development. Int. J. Comput. Technol. 2017, 16, 7047–7064.

29. Núñez, J.C.S.; Lindo, A.C.; Rodríguez, P.G. A preventive secure software development model for
a software factory: A case study. IEEE Access 2020, 8, 77653–77665.

30. Microsoft. SDL—Agile Requirements. 2023. Available online: https://learn.microsoft.com/en-
us/previous-versions/windows/desktop/ee790620(v=msdn.10)?redirectedfrom=MSDN (accessed
on 27 February 2023).

31. BSIMM. BSIMM Frameworks. 2023. Available online: https://www.bsimm.com/ (accessed on 27
February 2023).

32. Chechik, M.; Salay, R.; Viger, T.; Kokaly, S.; Rahimi, M. Software assurance in an uncertain world.
In Proceedings of the Fundamental Approaches to Software Engineering: 22nd International
Conference, FASE 2019, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2019, Prague, Czech Republic, 6–11 April 2019; pp. 3–21.

33. Tawalbeh, L.; Muheidat, F.; Tawalbeh, M.; Quwaider, M. IoT Privacy and security: Challenges and
solutions. Appl. Sci. 2020, 10, 4102.

34. Beznosov, K.; Kruchten, P. Towards agile security assurance. In Proceedings of the 2004
Workshop on New Security Paradigms, Virtual, 20–23 September 2004; pp. 47–54.

35. Tøndel, I.A.; Jaatun, M.G.; Cruzes, D.S.; Williams, L. Collaborative security risk estimation in agile
software development. Inf. Comput. Secur. 2019, 27, 508–535.

36. Oueslati, H.; Rahman, M.M.; ben Othmane, L. Literature review of the challenges of developing
secure software using the agile approach. In Proceedings of the 2015 10th International
Conference on Availability, Reliability and Security, Toulouse, France, 24–28 August 2015; pp.
540–547.

37. Bhasin, S. Quality assurance in agile: A study towards achieving excellence. In Proceedings of
the 2012 Agile India, Bengaluru, India, 17–19 February 2012; pp. 64–67.

38. Newton, N.; Anslow, C.; Drechsler, A. Information security in agile software development projects:
A critical success factor perspective. In Proceedings of the 27th European Conference on

Integration of Security Practices in Agile Software Development | Encyclopedia.pub

https://encyclopedia.pub/entry/51094 8/8

Information Systems (ECIS), Uppsala, Sweden, 8–14 June 2019.

39. Rindell, K.; Ruohonen, J.; Holvitie, J.; Hyrynsalmi, S.; Leppänen, V. Security in agile software
development: A practitioner survey. Inf. Softw. Technol. 2021, 131, 106488.

40. Kramer, J.D. Developmental test and requirements: Best practices of successful information
systems using agile methods. Def. AR J. 2019, 26, 128–150.

41. Villamizar, H.; Kalinowski, M.; Garcia, A.; Mendez, D. An efficient approach for reviewing security-
related aspects in agile requirements specifications of web applications. Requir. Eng. 2020, 25,
439–468.

42. Sharma, A.; Bawa, R. Identification and integration of security activities for secure agile
development. Int. J. Inf. Technol. 2020, 14, 1117–1130.

Retrieved from https://encyclopedia.pub/entry/history/show/115519

