
Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 1/9

Performance Comparison of SQL and Graph
Databases
Subjects: Computer Science, Information Systems

Contributor: Petri Kotiranta , Marko Junkkari , Jyrki Nummenmaa

In developing NoSQL databases, a major motivation is to achieve better efficient query performance compared with

relational databases. The graph database is a NoSQL paradigm where navigation is based on links instead of

joining tables. Links can be implemented as pointers, and following a pointer is a constant time operation, whereas

joining tables is more complicated and slower, even in the presence of foreign keys. Therefore, link-based

navigation has been seen as a more efficient query approach than using join operations on tables. Existing studies

strongly support this assumption. Query complexity has received less attention. For example, in enterprise

information systems, queries are usually complex so data need to be collected from several tables or by traversing

paths of graph nodes of different types.

graph database relational database

1. Introduction

Performance is one of the motivations to use NoSQL databases instead of traditional SQL databases. With data

and queries suitable for the data model, NoSQL databases might offer significant performance benefits.

Researchers compared database systems of the traditional relational model and of the NoSQL graph model. In the

graph model, which is one of the four major NoSQL types, the data consist of nodes and edges, and it has its own

benefits when handling relationship rich data. While in SQL databases multiple tables may need to be joined for a

relational query, in graph databases relational information can be queried by navigating through the graph.

Previous studies where the performance of graph databases, especially Neo4j, was compared with the

traditional SQL databases, indicate that graph databases possess better performance than relational databases.

However, those studies mainly focused on quite simple queries. In contrast to the earlier studies, researchers

investigated the performance of database systems in situations where the query complexity increased. In a

complex query, the necessary data must be collected from several tables in an SQL database, or by traversing a

path of different types of nodes, potentially using recursion, in a graph database. Using a complex query, an

aggregated value (e.g., a count or an average) from a large data set can be calculated.

MariaDB and two versions of MySQL were selected as relational database systems. MariaDB was selected

because it is a modern database system and, to the best of the knowledge, it has not been compared to graph

database systems before. MySQL 8 was included in the present investigation in order to compare how the query

performance of complex queries differs between MySQL and MariaDB. Old MySQL 5.1 was included to observe

[1][2][3][4][5]

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 2/9

the efficiency development of relational database systems. MariaDB and MySQL 8 were initially based on MySQL

5.1. Thus, they belong to the same database system family, and their comparison is an indication of how relational

database query efficiency has developed during the last decade. In addition to using complex queries, researchers

also paid attention to factors related to efficiency. Indexing is a traditional method to improve performance and it

can be applied with both relational and graph databases. Additionally, for the selected graph database system

(Neo4J), a more efficient query execution type (call-function) was developed. Recursive queries can be optimized

in modern versions of Neo4J. Researchers considered all these optimizations in the efficiency evaluations.

In order to benchmark the database systems using complex queries, researchers designed and implemented a

new test bench that also supports complex queries. The test bench was designed for testing queries using

MariaDB, MySQL, and Neo4J. The test database relates to enterprise information systems, but it is worth noting

that the query types are general, and processing of the data is similar in many other domains. The test bench is

called Invoicing Database Test Bench and its source code is available in GitHub . The program generated a

selected amount of data for the test invoicing database schema and performed various query tests. The dataset is

public. The source code for generating the data is available in GitHub, and, thus, it is possible for anyone to repeat

these tests by installing the same test bench and generating the same data.

2. Previous Performance Related Study

An older MySQL version was included in the comparison to make the research compatible with earlier studies.

From this perspective, MariaDB is a natural choice for a modern database, because MariaDB was initially a

descendant of MySQL. Based on the popularity of databases, the DB-Engines site ranks MariaDB as 8th out of

138 of relational databases . Neo4j ranks 1st out of 32 graph databases on the same sites. DB-Engines ranks the

databases according to current popularity. Popularity is measured using six parameters. The first parameter is the

number of mentions on the websites Google and Bing. Second is the general interest which is measured by

frequency in Google Trends. Third is the frequency of technical questions in Stack Overflow or DBA Stack

Exchange. Fourth is the number of job offers in Indeed and Simply Hired. Fifth is the number of profiles in LinkedIn

in which the system is mentioned. Sixth is the relevance in social networks which is counted by the number of

tweets on Twitter, in which the system is mentioned. As all of the databases researchers studied are quite popular

and are often candidates for use in enterprises. One of the goals of this study was to identify differences in what

use case the databases should be used.

SQL databases and Neo4j have been compared in several studies . Khan et al. compared tuned Oracle

11g and Neo4j 3.03 Community Edition . They used healthcare data, including data of patients, medication, and

medical staff. Performance of the databases was evaluated using ten different count(*) queries. Many of the

queries included some table joins. A physical database tuning technique called tablespaces was used for Oracle.

The same databases were compared without physical database tuning by Khan et al. . The physical database

tuning technique decreased the overall average query time of Oracle from 4.34 to 2.78 s. However, the overall

average query time for Neo4j in query tests was only 0.67 s. Thus, Neo4j outperformed Oracle.

[6]

[7]

[1][2][3][4][5]

[1]

[3]

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 3/9

Holzschuher et al. tested Neo4j version 1.8 performance with different backend solutions . Neo4j was

benchmarked as embedded with native object access, as a dedicated server through RESTful Web Services, with

embedded Cypher queries, with Cypher optimized for remote execution with REST, and with Gremlin queries

through REST. MySQL version 5.5.27 was also included with Java Persistence API based backend. Queries were

written using Cypher, Gremlin and SQL query languages. The test data consisted of data of persons and their

relationships. Tests included such queries as friends of friends. As the size of the database increased, the

advantages of Neo4j over MySQL became more evident. Neo4j performance stayed nearly constant when MySQL

performance dropped by factors of 5 and 7–9. Queries in Neo4j query languages Gremlin and Cypher executed

faster than queries using MySQL with JPA.

Vicknair et al. compared MySQL Community Server version 5.1.42 and Neo4j version 1.0-b11 in 2010 . The

graph database was transferred into a relational database as nodes and edges. Three types of structural and three

types of data queries were made. The first structural query found all orphan nodes and the two other structural

queries traversed the graph at depths of 4 and 128. The data queries were count(*) queries counting nodes with

certain payloads. Neo4j performed better in structural queries. However, in data queries, MySQL was more

efficient, partly due to the use of Lucene indexing in the tested Neo4j. The data contained integers, and Lucene

treated the data as text by default, so conversions were necessary and thus impacted the performance. The work

 by Vicknair et al. has been referenced in .

Batra et al. compared MySQL version 5.1.41 and Neo4j Community version 1.6 in 2012 . They used a schema

with tables user, friends, fav_movies, and actors for testing, and they tested the databases with three queries: “Find

all friends of Esha”, “Find all favourite movies of Esha’s friends” and “Find the lead actors of Esha’s friends’

favourite movies”. Queries were executed on 100 and 500 objects. Neo4j had 2–5 times faster query execution

times with a 100-objects data set and 15–30 times faster query execution with a 500-objects data set. The work by

Batra et al. was similar to that of the present study as the data were stored in an SQL database with a relational

schema unlike in the work by Vicknair et al. . The work by Batra et al. is referenced in .

There also exist previous performance studies where MariaDB is involved. Tongkaw et al. compared the

performance of MariaDB 10.0.21 and MySQL 5.6 . They used the Sysbench and OLTP software systems with

OLTP-Simple and OLTP-Seats workloads. Both databases consumed the same number of resources. However,

when increasing the number of threads in OLTP-Simple and the number of workers in OLTP-Seats, MySQL

became clearly more efficient and outperformed MariaDB. Shalygina et al. studied the Common Table Expression

capabilities of MariaDB by comparing it to Postgres . The study showed that Postgres had better results, when

only a few steps of recursion were needed. However, MariaDB was a better choice for longer-executing recursive

queries on huge amounts of data.

Stanescu compared the performance of SQL Server 2009 and Neo4j 4.0. Four datasets were used consisting

of 350,000, 700,000, 1,400,000 and 2,100,000 entries. A schema with multiple relations between entities was used.

Five different query tests were performed with the different datasets. All the queries addressed relations between

[2]

[4]

[4] [1][2][3]

[5]

[5]

[4] [5] [2]

[8] [9]

[10]

[11]

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 4/9

entities, so joins or matches between relationships were used. The results show that as query complexity and

dataset complexity grew, Neo4j performed faster than the SQL Server.

Sholichah et al. compared MySQL and Neo4j. Four queries were used. Three of the queries were tested with

datasets containing 10, 100, 500, 1000 and 10,000 records. The fourth query was used to infer the databases’

ability to handle unstructured data. In these tests, MySQL was in general faster and used less memory as the

query complexity and number of records increased. Both databases were able to handle unstructured data.

Cheng et al. compared RocksDB 5.8, Hbase 2.2, Cassandra 3.11, Neo4j 3.4.6 and MySQL 5.7. Four relational

datasets from TPC-H benchmark were used as well as four real graph datasets. Different types of query workloads

were tested, including atomic relational queries such as projection, aggregation, join and order by, TPC-H

workloads, and different graph query algorithms. The conclusion of the tests was that relational databases

outperformed graph databases with workloads that mainly consisted of group by, sort, aggregation operations and

their combinations. Graph databases outperformed relational databases with workloads that mainly consisted of

multiple table joins, pattern matching, path identification and their combinations.

3. Test Settings

The relational database has 10 tables. The basic tables customer, invoice, target, work, worktype and item

represent entities of the application domain. These tables contain the customer information, customer’s invoices,

the target (or project) where the work is performed, a listing of each work, and a listing of different worktypes with

different prices and information about the items used for each work. Relationships between the entities are stored

in relationship tables of worktarget, workinvoice, useditem and workhours. These represent many-to-many

relationships between entities. Below image shows the database structure as a relational database schema.

Arrows illustrate how the tables are associated with each other. For example, the arrow from the invoice to the

customer means that customer_id in the invoice table refers to an id in the customer table.

[12]

[13]

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 5/9

Figure 1. Database structure in relational format.

In the graph database schema, entities are represented as nodes, and relationships as directed edges. Two edges

are used to represent many-to-many relationships. Customer, invoice, target, work, and worktype entities are

represented as nodes. Relationships PAYS from the customer to invoice, and CUSTOMER_TARGET from the

customer to the target, and PREVIOUS_INVOICE from an invoice to another are represented by directed edges,

the last being a recursive relationship. WORK_TARGET, WORK_INVOICE, WORKHOURS and USED_ITEM are

each represented by two edges. Below image represents the database structure in a graph format. The attributes

of nodes and edges are not illustrated.

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 6/9

Figure 2. Graph database structure.

The test data follows the schemata of the databases given in previous figures. The used dataset was generated

using the test program . Table below shows the numbers of rows/objects generated for the dataset. For each row

in the relationship tables of useditem, workhours, workinvoice and worktarget, two respective edges were

generated for the Neo4j graph database, as a many-to-many relationship was expressed as a bidirectional

relationship, i.e., two edges. The size of relational databases is 214 Mt and the size of Neo4J is 1,12 Gt.

Table 1. The numbers of the generated rows/objects in SQL and Neo4j.

[6]

Table/Object Rows in SQL Object in Neo4J

Customer 10,000 10,000 nodes

Invoice 100,000 100,000 nodes

Item 100,000 100,000 nodes

Target 100,000 100,000 nodes

Work 10,000 10,000 nodes

Workhours 100,000 200,000 edges

Workinvoice 1,000,000 2000,000 edges

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 7/9

4. Query Tests

The query tests contain queries with different complexities. A query task represents an information need to be

fulfilled using a query to the database, and it is implemented in SQL and Cypher queries. Each task involves the

following two Cypher queries: basic form and optimized/CALL forms. The query tasks are ordered from simple to

complex starting from the work price and the work price with items ending in the invoice prices, and invoice prices

for a given customer. Finally, recursive queries combine all the related invoices.

The tasks were chosen as they represent typical information needs that would be executed in the chosen test

databases. Finding and calculating invoice related information the primary use for a database, and this is what all

the test queries demonstrated. Querying all the information required for invoices leads to complex queries. Simpler

queries were included in order to see how databases perform with different complexities of queries.

Calculating the invoice prices is one of the most important query tasks. The schema does not store invoice prices

explicitly. The price must be calculated based on the amount of workhours and the items used. The “price of work”

and the “price of work with items” are the subqueries for calculating this price. The queries calculating invoice

prices for a given customer add customer information into this task. The recursive queries find all the recursively

related invoices given the top-level invoice.

The results of tests are given in tables below. Each query result contains an average time for the query in

milliseconds. First table contains the results for the queries related to Tasks 1, 2, 3 and 4. Second table contains

the result of recursive queries for Task 5. Second table does not contain results for MySQL 5.1 because MySQL

5.1 does not support those queries. The results are illustrated and further analyzed in the following subsections.

Indexed (ind) is the same query on an indexed database. Notably, the performance ranking of different systems

varied for different tasks and settings, with the exception that MySQL was always slower than MariaDB.

Table 2. Query performance of the MySQL, MariaDB and Neo4J.

References

1. Khan, W.; Ahmad, W.; Luo, B.; Ahmed, E. SQL Database with physical database tuning technique
and NoSQL graph database comparisons. In Proceedings of the 2019 IEEE 3rd Information
Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu,
China, 15–17 March 2019; pp. 110–116.

2. Holzschuher, F.; Peinl, R. Performance of graph query languages: Comparison of cypher, gremlin
and native access in Neo4j. In Proceedings of the Joint EDBT/ICDT 2013 Workshops, Genova,
Italy, 18–22 March 2013.

3. Khan, W.; Shahzad, W. Predictive performance comparison analysis of relational & NoSQL graph
databases. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 523–530.

4. Vicknair, C.; Macias, M.; Zhao, Z.; Nan, X.; Chen, Y.; Wilkins, D. A comparison of a graph
database and a relational database: A data provenance perspective. In Proceedings of the 48th
Annual Southeast Regional Conference, Oxford, MI, USA, 15–17 April 2010; pp. 1–6.

5. Batra, S.; Tyagi, C. Comparative analysis of relational and graph databases. Int. J. Soft Comput.
Eng. (IJSCE) 2012, 2, 509–512.

6. GitHub. InvoicingDBTestBench Repository. Available online:
https://github.com/homebeach/InvoicingDBTestBench (accessed on 13 December 2020).

7. DB-Engines. Available online: https://db-engines.com/ (accessed on 20 June 2022).

8. Tongkaw, S.; Tongkaw, A. A comparison of database performance of MariaDB and MySQL with
OLTP workload. In Proceedings of the IEEE Conference on Open Systems (ICOS), Langkawi,
Malaysia, 10–12 October 2016.

9. Difallah, D.E.; Pavlo, A.; Curino, C.; Cudre-Mauroux, P. Oltp-bench: An extensible testbed for
benchmarking relational databases. Proc. VLDB Endow. 2013, 7, 277–288.

10. Shalygina, G.; Novikov, B. Implementing common table expressions for MariaDB. In Proceedings
of the 2nd Conference on Software Engineering and Information Management (SEIM-2017), St.
Petersburg, Russia, 21 April 2017.

11. Stanescu, L. A Comparison between a Relational and a Graph Database in the Context of a
Recommendation System. In Proceedings of the 16th Conference on Computer Science and
Intelligence Systems, Online, 2–5 September 2021.

12. Sholichah, R.; Jayanty, M.I.; Andry, A. Performance Analysis of Neo4j and MySQL Databases
using Public Policies Decision Making Data. In Proceedings of the 7th International Conference
on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang,
Indonesia, 24–25 September 2021.

Table/Object Rows in SQL Object in Neo4J

Worktarget 1,000,000 2,000,000 edges

Worktype 100,000 100,000 nodes

UsedItem 100,000 200,000 edges

Pays - 100,000 edges

Customertarget - 100,000 edges

Previousinvoice 100/1000 100/1000 edges

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 8/9

Table 3. Query performance in recursive queries.

5. Conclusions

The present study compared relational database systems (MariaDB and two versions of MySQL) and a graph

database system (Neo4j) efficiency using queries with different com- plexities. The results support earlier studies

where graph database systems outperformed relational database systems with structurally simple datasets and

simple queries. However, with more complex queries new relational database systems outperformed Neo4j.

The significantly better performance of new relational database systems compared to MySQL 5.1 is not surprising

as the tested MariaDB and MySQL 8.0.29 versions are 10 years newer, and many developments have occurred

during that time. Although MariaDB is based on old MySQL, it offers a different feature set and is completely open

source. One significant change after MySQL 5.1.41 is a change in the default storage engine from MyISAM to

13. Cheng, Y.; Ding, P.; Wang, T.; Lu, W.; Du, X. Which category is better: Benchmarking relational
and graph database management systems. Data Sci. Eng. 2019, 4, 309–322.

Retrieved from https://encyclopedia.pub/entry/history/show/60775

 MySQL 5 MySQL 8 MariaDB Neo4J Neo4J CALL

Task 1 (Short Query)

Avg 576 464 486 162 149

Avg, ind 453 459 472 173 149

Task 2 (Long Query)

Avg 6550 5337 5549 1868 1776

Avg, ind 5190 5257 5293 1968 1831

Task 3 (Aggregate Query)

Avg 276,935 7674 7242 212,171 209,816

Avg, ind 251,138 7615 7117 215,053 205,198

Task 4 (Aggregate Query with defined key)

Avg 3,938,500 5212 59 33 57

Avg, ind 3,891,082 5227 57 26 55

 MySQL 8 MariaDB Neo4J Neo4J Optimized

Recursive Query, 100 entities

Avg 7850 9152 73 42

Avg, ind 1 1 72 42

Recursive Query, 1000 entities

Avg 79,037 92,917 331,338 2146

Avg, ind 2 4 208,573 2127

Performance Comparison of SQL and Graph Databases | Encyclopedia.pub

https://encyclopedia.pub/entry/25168 9/9

InnoDB in version 5.5. InnoDB is used as a default storage engine of MariaDB. The study indicates the extent to

which relational database query performance has improved during the last one and half decade.

Neo4j outperformed modern relational database systems in most of the query tasks. Using the best settings of

database systems, Neo4J was often at least three times faster than modern relational databases. However, in the

task where an aggregated value was calculated for the given entity, Neo4J was 200 times faster than MySQL

8.0.29. In this task, the most essential difference between modern databases also appeared. MariaDB was over 90

times faster than MySQL 8.0.29. In the most complex query task, MariaDB was 29 times faster than Neo4j when

indices were used and Neo4J query was optimized. In the same setting, MySQL 8.0.29 was 27 times faster than

Neo4J. The role of optimization and indexing played an essential role in performance, especially in the long

recursive query. Without indexing, basic Neo4J was the slowest, but the optimized query was the fastest. Indexing

changes the situation, i.e., relational database systems outperformed Neo4J. MySQL 8.0.29 performed best. It was

over 1000 times faster than the optimized Neo4J query and over 100,000 times faster than basic Neo4J.

The general conclusion is that on the basis of tests with the data set and queries, it cannot be generally concluded

which of the database systems possesses the best query efficiency. In other words, the efficiency depends on the

complexity of data and queries. Furthermore, query optimization and indexing may play important roles. This

means that when choosing a database for an application domain, the query needs must be analyzed carefully

beforehand. The results in the present study show how a relational database system is still a good alternative when

it comes to performance compared with an NoSQL graph database.

