
Modification of Glucomannan as an Excipient | Encyclopedia.pub

https://encyclopedia.pub/entry/25133 1/9

Modification of Glucomannan as an Excipient
Subjects: Polymer Science

Contributor: Nuur Aanisah , Yoga W. Wardhana , Anis Y. Chaerunisaa , Arif Budiman

Glucomannan (GM) is a polysaccharide generally extracted from the tuber of Amorphophallus konjac. It consists of

mannose and glucose residues linked by β-(1-4) and exhibits hydrocolloid characteristics which can be applied as

thickening and gelling agents. However, it has poor water resistance and low mechanical strength when used as an

excipient in solid form. Several physical and chemical modifications have been carried out to improve these

drawbacks. Chemical modification involves the substitution of functional groups in GM’s structure including

esterification and etherification. It causes a decrease in its high hydrophilic film behavior and produce water-

resistant films. Physical modification involves mixing native GM with other excipients through processes involving

milling, moisture, temperature, pressure, radiation, etc. It causes variations to particle size, shape, surface

properties, porosity, density, and to functional properties such as swelling capacity and gelation ability

glucomannan  chemical modification  physical modification  excipient

1. Introduction

Solid dosage of drugs is most preferable because it provides accurate dosage and is more stable than other forms

. Common uses include uncoated and film-coated tablets and film. Production requires polymers to enable

pharmaceutical products to optimally control drug release  and to improve physicochemical properties .

Natural polymers such as glucomannan (GM) have attracted extensive attention due to their biodegradability,

nontoxicity, harmlessness, and biocompatibility.

Glucomannan (GM) is a polysaccharide typically extracted from  Amorphophallus oncophyllus 

and Amorphophallus muerelli Blume . It has the ability to thicken and form a gel; hence, this compound is widely

used in various industries, including the pharmaceutical industry as a binder , thickener , gelling agent , film

former , coating material for tablets , emulsifier , and stabilizer .

As a natural polymer, GM has properties that are superior to other polysaccharides when used as excipients for

solid preparations, especially in tablet production. GM could be the excipient of choice for direct compression—the

most efficient tablet manufacturing method—because it has desirable free-flowing and compressibility behavior 

. GM is also reported as a widely used coating material and stabilizer in the pharmaceutical industry due to its

gelling properties and particular rheological properties .

Native GM has several disadvantages for pharmaceutical applications, such as extremely high viscosity and low

mechanical strength . In addition, GM’s high-water absorption index causes poor water resistance and limits
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some potential applications . However, these shortcomings of native GM could be overcome through

chemical or physical modification to enhance its structural and functional quality.

Chemical modification involves the substitution of functional groups in GM’s structure including esterification and

etherification and elongation of the molecular chain through the formation of crosslinks and encapsulation.

Depending on the degree of substitution (DS), these modifications alter several characteristic of GM, such as

homogeneous film formation , increased tensile strength , improved thermal stability , and sustained

release .

GM can be physically modified to improve functionality without undergoing chemical changes. Physical

modifications involve mixing native GM with other excipients through processes involving milling , moisture ,

temperature , pressure , radiation , etc. Physical modifications cause variations to particle size, shape,

surface properties, porosity, density, and to functional properties such as swelling capacity and gelation ability.

These modifications directly influence disintegration and mechanical properties when used as an excipient in solid

form.

2. Structure and Physicochemical Properties of GM

GM is a natural heteropolysaccharide with a linear chain consisting of D-glucose and/or D-mannose in various

proportions linked by β-1,4 glycosidic bonds. It also has multiple branching at β-1,3 glycosidic bonds to mannose

units as shown in Figure 1  .

The molecular weight varies from 200,000 to 2,000,000 Daltons, giving it incredibly higher viscosity than any

known dietary fiber such as guar or locust bean gum . When GM sol concentration is below 0.55%, it is only

slightly affected by shear rate, indicating Newtonian fluid flow characteristics. However, at higher concentrations,

shear rate can affect viscosity, leading to shear thinning and indicating non-Newtonian pseudoplasticity . Based

on previous reports, the viscosity of konjac glucomannan solution (1.0 g/100 g) can reach ~30,000 cps .

[14][22]

[11] [15] [15]

[23]

[24] [25]

[26] [27] [28][29]

[30]

[31][32]

[33]

[34]



Modification of Glucomannan as an Excipient | Encyclopedia.pub

https://encyclopedia.pub/entry/25133 3/9

Figure 1. Structure of glucomannan.

GM is a hydrophilic polymer due to the abundance of hydroxyl and carbonyl groups in its molecular chain. The

hydrogen bonds between each molecule affect its solubility; hence, the stronger the bonds, the lower the solubility

in water. In contrast, low acetyl group branching (5–10% at the C-6 position, i.e., one branch per approximately 19

sugar residues) reduces hydrogen bonding, thereby increasing solubility; this causes high water absorption of

105.4 g/g (water/GM) . Water absorption is also affected by granule size and surface morphology—a reduction

in particle size will increase surface wrinkle density, which culminates in higher hydration rates .

The formation of gel is by hydration of water; this can be accelerated by heating and vigorous stirring. GM also

forms synergistic gels in a thermally reversible reaction with other polysaccharides, such as xanthan gum , κ-

carrageenan , and gum tragacanth , which increase the mechanical strength and decrease syneresis. This is

presumably due to agglomeration or physical entanglement and dynamic hydrogen bonds with other

polysaccharides .

In recent years, GM has attracted special attention from researchers and the food industry due to its bioactive,

biodegradable, and hydrophilicity properties. This high-molecular-weight polymer is known as a hydrocolloid and

interacts strongly with water . Hydrocolloids are used in the food industry because of their thickening, gelling,

stabilizing, texture-modifying, and film-forming properties.

3. Chemical Modification

Native GM forms very high viscosity solutions, where the intrinsic viscosity of 1% can reach 30,000 cps, and so it

has potential as a good film-forming agent . However, a very viscous external gel layer on the surface of

particles immediately after dispersion prevents water penetration and drug dissolution, and thus its application is

limited as a carrier for immediate drug release . As a film, it has poor water resistance due to the large number

of free hydroxyl and carboxyl groups distributed along the backbone, and it exhibits high moisture absorption. As a

result, native GM has the weaknesses of poor water resistance and low mechanical strength .

Several structural modifications of GM have been performed to enhance its structural and functional qualities,

including oxidation  and etherification by addition of acetyl  and carboxymethyl 

 moieties on hydroxyl groups of GM. Chemical modification with different degrees of substitution (DS)

give different physical and mechanical properties. DS is largely affected by the amount of sodium hydroxide and by

different dispersion media. Higher degrees of substitution contribute to lower viscosity and particle size, denser

network structure, and better tablet strength .

GM is an ideal candidate for appropriate modification by chemical functionalization. Each of the glucose–mannose

units have reactive hydroxyl groups, which are the major sites for chemical modification. In addition, several

studies discovered that chemically modified GMs can be used for the sustained release of drugs . Among

various modification methods such as acetylation , carboxymethylation and oxidation ,
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carboxymethylation is the most common and suitable for solid and film dosage . The effects of

carboxymethylation on GM (CMGM) are described as follows:

3.1. Increased Solubility

Chemical modification of CMGM affects solubility; carboxymethylation with NaOH catalyst substitutes chloroacetic

acid with a hydroxyl group, which partially replaces hydroxyl and acetyl groups with carboxymethyl .

Incorporation of a carboxymethyl group appears as an extending chain structure that reduces hydrogen bonding

between the polymer chains and increases the water-binding capacity, as shown in Figure 2 below.

Figure 2 CMGM synthesis pathway.

Modification to CMGM improves solubility because excess substitution by carboxymethyl groups breaks extensive

hydrogen bonds, leading to a drastic decrease in crystallinity and an increase in solubility . Modification also

changes the amount of acetyl located randomly at the C-6 position of the sugar unit. The increase in solubility is

due to the incorporation of water-soluble carboxylate groups during deacetylation (Figure 1). Additionally, changes

in water-binding properties are caused by reduction and/or loss of crystal structure in the granules, making them

mostly amorphous and more hygroscopic .

However, based on several studies, the smaller the degree of substitution, the lower the hydrophilicity due to the

increase in the contact angle from θ = 48.1°  to θ = 97.3 ± 4.2° . Water solubility is also lower in CMGM than

in GM. This is because the particles in both are all amorphous; hence, carboxymethylation does not reduce and/or

eliminate the crystalline structure inside GM granules, but, rather, alters its granular surface structure, which might

affect moisture adsorption .

7. Yanuriati, A.; Marseno, D.W.; Rochmadi Harmayani, E. Characteristics of glucomannan isolated
from fresh tuber of Porang (Amorphophallus muelleri Blume). Carbohydr. Polym. 2017, 156, 56–
63.

8. Septiawan, A.R.; Darma, G.C.; Aryani, R. Preparation and Characterization of Glucomannan from
Porang Bulbs (Amorphophallus muelleri Blume.) as a tablet binder. Pros. Farm. 2021, 7, 508–
515.

9. Cui, T.; Liu, R.; Wu, T.; Sui, W.; Zhang, M. Influence of konjac glucomannan and frozen storage on
rheological and tensile properties of frozen dough. Polymers 2019, 11, 794.

10. Du, X.; Li, J.; Chen, J.; Li, B. Effect of degree of deacetylation on physicochemical and gelation
properties of konjac glucomannan. Food Res. Int. 2012, 46, 270–278.

11. Zhang, Y.; Li, J.; Lindström, M.E.; Stepan, A.; Gatenholm, P. Spruce glucomannan: Preparation,
structural characteristics and basic film forming ability. Nord. Pulp Pap. Res. J. 2013, 28, 323–
330.

12. Wang, K.; Fan, J.; Liu, Y.; He, Z. Konjac glucomannan and xanthan gum as compression coat for
colonic drug delivery: Experimental and theoretical evaluations. Front. Chem. Eng. China 2010, 4,
102–108.

13. Long, X.Y.; Luo, X.G.; Zou, N.W.; Ma, Y.H. Preparation and in vitro evaluation of Carboxymethyl
konjac glucomannan coated 5-aminosalicylic acid tablets for colonic delivery. Adv. Mater. Res.
2011, 152–153, 1712–1715.

14. Wu, K.; Zhu, Q.; Qian, H.; Xiao, M.; Corke, H.; Nishinari, K.; Jiang, F. Controllable hydrophilicity-
hydrophobicity and related properties of konjac glucomannan and ethyl cellulose composite films.
Food Hydrocoll. 2018, 79, 301–309.

15. Guo, Y.; Wu, M.; Li, R.; Cai, Z.; Zhang, H. Thermostable physically crosslinked cryogel from
carboxymethylated konjac glucomannan fabricated by freeze-thawing. Food Hydrocoll. 2022, 122,
107103.

16. Ai, T.; Shang, L.; He, C.; Teng, Y.; Ren, C.; Zhou, P.; Wang, L.; Li, J.; Li, B. Development of multi-
layered gastric floating tablets based on konjac glucomannan: A modified calcium supplement
with enhanced bioavailability. Food Funct. 2019, 10, 6429–6437.

17. Zhu, G.-Q.; Zhang, Y.; Liu, J.-H. Studies on drug release from aminophylline konjac glucomannan
matrix tablet. China J. Chin. Mater. Med. 2007, 32, 2236–2239.

18. Liu, J.; Zhang, L.; Wang, C.; Yuan, P.; Xin, Y. Study on novel colon position pulsatile capsule and
its release in vitro. China J. Chin. Mater. Med. 2010, 35, 3127–3130.

19. Cuña, M.; Alonso-Sande, M.; Remunãn-López, C.; Pivel, J.P.; Alonso-Lebrero, J.L.; Alonso, M.J.
Development of phosphorylated glucomannan-coated Chitosan nanoparticles as nanocarriers for

[2][3][5][13][48]

[2][48][49][58]

[59]

[50]

[14] [54]

[50]



Modification of Glucomannan as an Excipient | Encyclopedia.pub

https://encyclopedia.pub/entry/25133 5/9

Ohya et al. reported a dicarboxy–glucomannan derivative capable of increasing the solubility of GM in water and

interacting with other positively-charged polymers .

3.2. Reduced Viscosity

The concentration and type of polymer in coating solutions affects viscosity . High viscosity sols produce

nonuniform films due to low diffusivity, giving a “solid skin” that retards solvent evaporation and causes

hydrodynamic instability. The solid skin is under mechanical tension and might break, thereby causing variations in

film thickness . Consequently, moderate viscosity is desirable for film formation. For utilization as a coating

material, several studies suggest viscosity lower than 700 cps . The viscosity of the coating solution can be

increased by using polymers with high molecular weight (Mw), such as GM, which averages 200,000 to 2,000,000

Daltons , giving it the highest intrinsic viscosity compared to other polysaccharides at approximately 30,000

cps at a concentration of 1% .

Several methods have obtained GM with low Mw, for example, depolymerization, such as deacetylation, and

carboxymethylation with strong bases to break the glycosidic bonds . The viscosity of GM at 25 °C decreased

significantly from 4660 cps to <500 cps after modification .

Deacetylation through carboxymethylation changes the structure from semi-flexible straight chains to elastic

microspheres that decrease inherent viscosity (Figure 3) . As a comparison, substitution of carboxymethylation

groups in cellulose also affects viscosity. At a concentration of 1%, cellulose and carboxymethyl cellulose (CMC)

have viscosities of 240 cps and <100 cps, respectively.

Figure 3. Effect of carboxymethylation on the structure of GM.

3.3. Increased Tensile Strength

Generally, the presence of more -COO- groups due to carboxymethylation of the CMGM backbone improves gel

strength by forming more crosslinks, while a high DS also increases mechanical strength . The introduced

COO− group can efficiently bind more water, which can act as a plasticizer to improve elongation of the film . As

the DS of CMGM increases, formed pore size decreases and the tissue structure becomes denser, indicating

stronger interaction at higher DS . This high density also increases tablet strength , but an excessive

amount of CMGM causes charge repulsion, thereby weakening its mechanical properties .
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3.4. Improved Thermal Stability

CMGM maintains the gel network through hydrogen bonding upon heating to 95 °C for 2 h, implying excellent

thermal stability . Carboxymethylation increases the thermal stability of GM in a DS-dependent manner. Based

on thermogravimetric analysis (TGA), GM is degraded in three stages. TGA recorded a change in mass due to

moisture removal from 60–200 °C. Meanwhile, from 200–300 °C, great weight loss was recorded in GM, CMGM

(DS 0.28), and (DS 0.7), with values of 64.16%, 49.73%, and 43.17%, respectively. In the final stage of

decomposition at a temperature of 300–500 °C, there was a greater decrease in mass change in GM than in

CMGM due to thermal degradation .

4. Physical Modification

Co-processing is a technique for mixing two or more excipients at the sub-particle level to synergistically enhance

functionality and mask undesired properties without undergoing chemical changes . This method can change

fundamental characteristics such as particle size and shape, morphology, porosity, density, and surface area, which

affects flowability, compressibility, compactibility, and ultimately influences the disintegration and mechanical

properties of tablets . Some examples of GM processed together with other excipients are shown in Table 2 for

various applications, especially controlling drug release through crosslinking and/or formation of dense hydrogen

bonds.

Table 1. Co-processed GM with other excipients.
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Combination of
Excipients Co-Processed Application Mechanism Ref.

GM and HPMC K
100 LV

Microwave on
level 5 (350

W) for 30 min

Matrix for gastro-retentive
tablets forming a porous
channel that allows the

polymer mixture to absorb
more water and expand,

followed by prolonged drug
release

Hydrogen bonds in single
polymers have low energy, but
the simultaneous formation of
interlinked hydrogen bonds

between polymer components
provides significant interaction

strength, resulting in a matrix that
floats quickly and maintains the
integrity of the polymer mixture

under acidic conditions.

GM and lactose
Wet

granulation

Filler–binder for direct
compression of effervescent

tablets

GM has a high viscosity and
strong adhesive properties, thus

providing good tablet binding
effectiveness. GM has poor

solubility in water, so it is
combined with lactose as a

water-soluble ingredient and to
improve the poor flowability of

lactose.
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5. Future Recommendations

GM is a polysaccharide that has promise as an excipient for solid dosage forms, especially for direct compression

due to its free-flowing nature and compressibility. Some applications of chemically or physically modified GM have

been reported. Chemical modification is suggested to modify the solubility, viscosity, and mechanical properties of

GM, while physical modification of GM is suggested to modify swelling ability and drug release from the matrix.

Although chemical and physical modifications of GM have been studied, compared to other polysaccharides such

as chitosan or alginate, the studies are not wide or deep enough. The mechanisms behind the effects of

modifications on pharmaceutical characteristics, such as the relationship between structure and
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