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Cardiovascular diseases (CVDs), including asymptomatic myocardial ischemia, angina, myocardial infarction, and

ischemic heart failure, are the leading cause of death globally. Early detection and treatment of CVDs significantly

contribute to the prevention or delay of cardiovascular death. Electrocardiogram (ECG) records the electrical

impulses generated by heart muscles, which reflect regular or irregular beating activity. Computer-aided techniques

provide fast and accurate tools to identify CVDs using a patient’s ECG signal, which have achieved great success

in recent years. Latest computational diagnostic techniques based on ECG signals for estimating CVDs conditions

are summarized here. The procedure of ECG signals analysis is discussed in several subsections, including data

preprocessing, feature engineering, classification, and application. In particular, the End-to-End models integrate

feature extraction and classification into learning algorithms, which not only greatly simplifies the process of data

analysis, but also shows excellent accuracy and robustness. Portable devices enable users to monitor their

cardiovascular status at any time, bringing new scenarios as well as challenges to the application of ECG

algorithms. Computational diagnostic techniques for ECG signal analysis show great potential for helping health

care professionals, and their application in daily life benefits both patients and sub-healthy people.

electrocardiogram  classification  feature engineering  deep learning  machine learning

1. Introduction

ECG reflects the regular or irregular beating activity of heart because it records electrical impulses generated by

heart muscles. Therefore, it is crucial to extract as much meaningful clinical information as possible from ECG

signals. Doctors often make diagnoses by observing the morphological characteristics of P-QRS-T waves, which

largely depends on doctors’ experience and usually takes a long time. Computer-aided analysis based on feature

engineering has greatly improved the efficiency and accuracy in ECG analysis. ECG signals consisting of abundant

data points can be extracted a small number of features in terms of its peak amplitude, morphology, energy and

entropy distribution, frequency content, intervals between events, which can represent the behavior of the ECG

signal. These features commonly applied to ECG diagnosis include P-QRS-T features, statistical features,

morphological features, frequency-domain features and other more complex parameters, which provide effective

tools for doctors’ judgment. Advanced algorithms extract features according to the needs of the task and

automatically selects specific features to achieve precise diagnosis. As the core of ECG analysis, feature extraction

and selection play a decisive role in the performance of the algorithm.
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2. Features for Disease Diagnosis

2.1. P-QRS-T Complex Feature

ECG waveform reflects the activity of heart tissue, which is a very weak physiological low-frequency electrical

signal. The maximum amplitude is no more than 5 mv and signal frequency is in the ranges from 0.05–100 Hz.

Normal ECG waveform consists of P-wave, QRS complex, T-wave and sometimes U waves (Figure 2).

Morphological features of ECG signal include different peak amplitudes, peak intervals and QRS complex, etc. The

typical morphological features of ECG signal are summarized in Table 1. Sinoatrial node (SA) depolarization occurs

before the depolarization of atrial myocytes, so it is before P-waveform. But SA is inside the heart, and its electrical

activity is difficult to be collected on the body surface. The excitement of the SA is transmitted to the right atrium,

and then to the left atrium via the ventricular tract, forming a P-wave which represents the excitement of the two

atria. P-waveform is relatively small, with a round shape, an amplitude of about 0.25 mV and a length of 0.08~0.11

s. When atrial enlargement occurs, the conduction between the two atria will be abnormal, resulting in P-mitrale or

P-pulmonale waves. P-R interval refers to the interval from the onset of P wave to the beginning of QRS complex

on an ECG signal. In normal ECG, P-R interval is 0.12–0.2 s, which corresponds with the spread of the electrical

conduction in atrioventricular junction. A prolonged P-R interval reflects impaired atrial conduction, and maybe an

indicator of ischemic strokes . The QRS complex represents the spread of a stimulus through the ventricles. A

complete QRS complex consists of Q-, R- and S-wave. R wave is long and narrow, representing the depolarization

of the left ventricle apex . The typical duration of QRS complex is about 0.06–0.1 s. Heart rate is usually

measured by recording the number of QRS complexes in a minute. The comprehensive electric field vector of

ventricular myocytes changes many times in the process of excitation, which forms the signal with multiple

changes in size and direction. When the conduction block of the left and right bundle branches of the heart,

ventricular enlargement or hypertrophy occurs, the QRS complex will widen, deform and prolong. T wave follows

QRS complex, and is produced by repolarization of ventricular myocytes with an amplitude of 0.1–0.8 mV and lasts

for 0.05–0.25 s. The T wave is always positive and is useful for the diagnosis of certain cardiovascular diseases.

It’s common to detect abnormal T waves (e.g., inverted T waves) by chest leads on patients with pulmonary

embolism (PE). Marcinkevics. R. et al. found that the T-wave amplitude of patients with arrhythmia right ventricular

dysplasia (ARVD) was significantly different from that of normal patients . U-wave is the last unsteady and

smallest wave in the ECG, which shows a circular upward deflection. Sometimes, U-wave may not be observed

because of its small size. The formation of U wave is controversial. Generally, U-wave is thought to represent

repolarization of the Purkinje fibers. Usually, U wave has the same polarity as T wave. In clinical diagnosis,

transient U-wave inversion can be caused by local myocardial ischemia or hypertension .

Table 1. ECG features and the normal values for a healthy adult.

Features Description Amplitude Duration
Disease

diagnosis
Reference

[1]

[2]

[3]

[4]
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R-R

interval

The interval between two

successive R-waves of the QRS

complex

ventricular rate

  0.6–1.2 s

Paroxysmal

atrial fibrillation

Congestive

heart failure

P wave Atrial depolarization 0.25 mV
0.08–0.11

s

Atrial fibrillation

Atrial

hypertrophy

P-R

interval

The time between the onset of

atrial depolarization and the onset

of ventricular depolarization

 
0.12–0.2

s
Stroke

QRS

complex
Ventricular depolarization

1.60 mV for

R peak

0.06–0.1

s

Ventricular

enlargement

Heart failure

Tachycardia

Acute Coronary

Syndrome

ST-

segment

The interval between ventricular

depolarization and repolarization
 

0.05–

0.155 s

Myocardial

ischemia or

infarction

T wave Ventricular repolarization

0.1–0.8 mV

 

0.05–0.25

s

Myocardial

infarction

Pulmonary

embolism

[5][6]

[7]

[1]

[8][9][10]

[11]

[6][12][13]
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U wave
The last phase of ventricular

repolarization

May not be

observed

because of

its small

size

Unknown Unknown

QT

interval

The time is taken for ventricular

depolarisation and repolarisation
 

0.35–0.44

s

Hypokalemia

ventricular

arrhythmias

Figure 2. Cardiac electrical conduction system and the electrocardiogram signal.

Segments and intervals of the ECG signal reflect each stage and cardiac cycle of heart contraction, which should

be completed within a specific period for a healthy person. The abnormal period indicates something wrong with

the heart . R-R interval is the time elapsed between two consecutive R waves of the QRS signal. It is usually

employed to assess ventricular rate. During sinus rhythm, patients with short-term risk of paroxysmal atrial

fibrillation (PAF) tend to show higher RR interval variability . Q-T interval refers to the time from the beginning of

QRS to the end of T wave, representing the total time required for ventricular depolarization and repolarization. It is

worth noticing that P-R interval is different from the P-R segment, which is the time between the end of the P-wave

and the beginning of the QRS wave. The P-R interval reflects the time delay between atrial and ventricular

activation, which indicates whether impulse conduction from the atria to the ventricles is normal. The proper feature

selection of ECG waveform can be used in some specific disease diagnosis. S-T segment refers to the period

between the end of QRS complex and the start of T wave. During the S-T segment, the myocytes of the left and

right ventricles are in the excitation period, so the contribution of the combined electric field vector formed by the

two is very small in the body surface ECG, and the signal in S-T segment is at the baseline level. When a segment

of myocardium is ischemic or necrotic, the ventricular potential difference still exists after the completion of

depolarization, which is manifested as S-T segment shift on the ECG waveform . The typical disease that is

associated with S-T segment is the myocardial infarction (MI), which is commonly known as a heart attack, occurs

[4]

[14]

[15]

[5]

[11]
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when the blood supply to the portion of the heart is blocked, causing some heart cells to die. The corresponding

ECG signal is depicted in the elevated ST segment, increased Q wave amplitude and inverted T wave.

3. Dimensionality Reduction

High dimensionality of the feature space can provide much more detailed information of ECG signal. However, the

higher the number of data, the more computational cost. Some of the features may be correlated, resulting in a

large number of irrelevant variables, which will significantly affect computational efficiency due to the large

redundant data . Hence, it is vital to remove some correlated features while improving the accuracy and

efficiency of classification. Dimensionality reduction makes data analysis much simple and fast, thus improving the

performance of clustering algorithms with reduced features. Usually, the dimensionality reduction is accomplished

based on either feature selection or feature extraction.

2.1. Feature selection

Feature selection tries to select a subset of the original feature set, which efficiently describes the input data and

makes weak correlation among these features . Therefore, the focus of feature selection is to find appropriate

standards or algorithms to evaluate the contribution of features to the results, thus reducing the dimension of

features for improving the model generalization ability and reducing overfitting. Feature selection usually involves

three ways, including filters, wrappers and embedded (Figure 3).

Filter-based feature selection applies a selected metric to find irrelevant attributes and filters out the redundant

data[95]. The selection process is independent of the training process. Filter-based methods rank the features as a

pre-processing step before the learning algorithm, and select those features with high ranking scores. The score is

computed by measuring the variance between the expected value of the information and the observed value. The

evaluation metric of filter usually is used to analyze the internal features of the feature subset, which includes

correlation, distance, information gain, and so on. In practice, filter-based feature selection can be initially screened

by expert knowledge, then filtered by filtering methods. The characteristics that have been proven to be relevant to

a particular disease or physiological response are often directly selected in feature selection. Besides, it is a

common method to calculate a score for each feature column. Columns with poor feature selection scores are

ignored. Filter-based feature selection provides a variety of performance criteria for assessing the information

value, such as correlation coefficient, mutual information, Kendall correlation, Spearman correlation, Chi Squared,

Fisher score, Laplacian score, Trace Ratio criterion, among which, Fisher score is widely used metrics for

supervised feature selection. Fahim Sufi et al. ranked feature subsets according to a correlation-based heuristic

evaluation function . The algorithm selected features by calculating mean feature-class correlation and the

average feature-feature intercorrelation. The two criteria ensure that irrelevant features and redundant features are

removed from the attributes set, because they are not correlated with the class or other features. Some

researchers evaluated each feature from the primary feature sets by Fisher score . The fisher score selected

each ECG feature independently according to their scores under the Fisher criterion, resulting in suboptimal subset

of attributes. It is often used to select feature sets with lower dimension. The Filter method uses statistical

[16]

[17]

[18]

[19][20]



Computational Diagnostic Techniques in Electrocardiogram | Encyclopedia.pub

https://encyclopedia.pub/entry/3202 6/12

indicators to score and filter each feature, focusing on the characteristics of the data itself. The advantage of the

Filter method is that the calculation is fast and does not depend on a specific model. However, the final accuracy of

the classification may be not high because the selected features are not customized for the specific model

Wrapper-based feature selection utilizes a predefined classifier to evaluate the feature set. This method scores the

features using the learning algorithm that will ultimately be employed in classification. The feature selection

process is integrated with training process, and the prediction ability of the model is used as the selection criterion

to evaluate the feature subset, such as classification accuracy, complexity penalty factor. Forward and backward

selection algorithm in multiple linear regression is a simple implementation of wrapper. Sequential floating forward

search (SFFS) algorithm utilizes sequential forward selection (SFS) and sequential backward selection (SBS) in

sequence to obtain the best ECG feature set. Llamedo and Martinez obtained an optimal ECG feature set

containing eight features by SFFS . The SFFS method is suitable for small-and medium-scale data . KNN

and SVM  can be used as evaluation functions of the wrapper. Compared with the filter, the wrapper has better

performance in generating high-quality subsets, but the data processing is computationally expensive since the

learner needs to be trained many times during the feature selection process. Unlike filter selection, which does not

consider subsequent classification algorithms, wrapped selection directly takes the performance of the final

classification algorithms as the evaluation standard of the feature subset. In other words, wrapped feature selection

is to select the most favorable feature subset for a given learning algorithm. However, the performance of the

subset of features is affected by the particular learning algorithm. The stability and adaptability of the feature

subset are poor because each additional feature must be constructed feature subset for evaluation. Wrapper-

based feature selection has high time complexity and is not suitable for high dimensional data set.

Embedded feature selection is built into the construction of the machine learning algorithm. It provides a trade-off

solution between filter method and wrapper method, which can solve the high redundancy of the filter algorithm

and the computational complexity of the wrapper algorithm. The embedded feature selection is automatically

performed during the learner training process . Compared to the other two methods, the searching and selection

process of features’ subset is built into classifier construction. Regularization and tree-based methods are widely

used in embedded methods. The regularization models in form of ℓ -norm regularized regression models, such

as Lasso, sparse linear discriminant analysis, and regularized support vector machine, are widely used in

embedded methods . Regularization is to impose additional constraints or penalties on the loss function when

training a neural network, which can reduce the complexity and instability of the model in the learning process, thus

avoiding overfitting and improving generalization ability. Decision tree is a classic embedded feature selection

method, such as ID3, C4.5, CART algorithm. Features with good ability of classification are selected in the nodes

of the tree, and then the selected feature subsets are used to perform the learning tasks. Feature subsets are

selected during the process of decision tree generation. The random forest has the advantages of high accuracy,

good robustness and easy to use, which makes it one of the most popular machine learning algorithms. The

random forest provides two methods of feature selection, including mean decrease impurity and mean decrease

accuracy. Tree-based prediction models can be used to calculate the importance of features, and thus to remove

irrelevant features. Embedded feature selection can be applied to high dimensional data sets, but the design of the

[21] [22] [23]

[24]

[18]

2, 1

[25]
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embedded method is tightly coupled with a specific learning algorithm, which in turn limits its application to other

learning algorithms.

Figure 3. Feature selection methods, such as filter, wrapper, and embedded method.

Feature Extraction

The disadvantage of feature selection is that unselected features are simply moved out, which will reduce the

accuracy and efficiency of learning algorithms. Feature extraction considers all features and maps the useful

information into a low-dimensional feature space, which is more commonly used in the selection of feature sets

with insufficient prior knowledge and high-dimensionality. By choosing an appropriate dimension reduction method,

the invalid information of the original feature set can be removed and the effective information of the original

feature set is retained to the greatest extent. Typical dimensionality reduction methods include principal component

analysis (PCA), linear discriminant analysis (LDA), independent component analysis (ICA), and generalized

discriminant analysis (GDA) .

The PCA method is a linear dimensionality reduction method that maps the original features into a low-dimensional

space while retaining the variance. PCA is the most widely used form of dimensionality reduction, which preserves

the maximum amount of variance of the original data. The choice of optimal number of principal components is one

of the major challenges for providing meaningful interpretation of time series. He and Tan developed entropy-based

adaptive dimensionality reduction and clustering methods for automatic pattern recognition of ECG signals . A

novel entropy-based principal component analysis (EPCA) was developed to automatically select the optimal

number of principal components for dimensionality reduction of ECG signals. Then, a novel fuzzy entropy c-means

clustering algorithm (FECM) was utilized to identify the best number of clusters for a specific subject. The results

on ECG signals verify that the performance of EPCA is superior to PCA based on cumulative percentage and

[26]

[27]
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screen graph. The clustering accuracy of FECM performs superiorly to Ng–Jordan–Weiss (NJW) method,

hierarchical agglomerative clustering (HAC) and K-means with the known cluster number. LDA also known as

Fisher’s discriminant analysis, is a dimensionality reduction algorithm. Unlike PCA, LDA is a supervised algorithm

that maximizes separation between multiple classes, while PCA is an unsupervised algorithm that focusses on

maximizing variance in a dataset. PDA shows good performance in pattern recognition. Varatharajan et al. applied

LDA to reduce the features of the ECG signal . The effectiveness of LDA with an enhanced kernel-based SVM

method was proved by calculation of sensitivity, specificity and mean square error. LDA is applied to DWT sub-

bands for dimensionality reduction by Martis et al. . By using 12 linear discriminant features as input, both neural

network and SVM achieved average classification accuracy of more than 97%. ICA is a linear dimension reduction

method, which transforms the features into columns of mutually independent components . Independent

components can be picked up from the mixed signals by ICA. Martis et al. compared the performance of various

dimensionality reduction techniques for arrhythmia classification, including PCA, LDA and ICA, based on DWT

features . ICA coupled with neural network yielded the highest average sensitivity, specificity, and accuracy of

99.97%, 99.83% and 99.28%, respectively. Experimental results showed that the ICA on DWT coefficients was

more robust and yielded good classification accuracy. The linear feature extraction methods are relatively simple,

however, the feature extraction model will be wrong by projecting data onto a linear subspace when the dataset

has non-linear connections.

In clinical practice, all the changes of ECG parameters are detected by visual evaluation and manual interpretation

to detect the presence of cardiovascular disease. However, due to the nonstationary and nonlinear nature of ECG

signals, cardiovascular disease indicators may appear randomly on the time scale. Non-linear features of ECG,

such as energy (Ee), entropy (Ez), fractal dimension (F ), and relative wavelet (RWz) can be extracted to show

some diagnostic details that can’t be simply detected by visual evaluation . Nonlinear methods can perform

better in complex nonlinear relationships among the features . Locally linear embedding (LLE) is an

unsupervised nonlinear dimensionality reduction method, which tries to preserve the data structure by a non-linear

method according to local features of the dataset (Figure 4).

[28]

[29]

[30][31]

[32]

D

[33]

[34]
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Figure 4. Different feature extraction methods used in ECG analysis.

It can perform much faster than the other approaches. However, LLE is extremely susceptive to noises, and LLE

will not preserve well the local geometry of the data sets in the embedding space if there are outliers in the data .

Kernel-based method has become one of the most popular approaches to extract the complicated nonlinear

information embedded on an ECG dataset. Kernel LLE (KLLE) can reconstruct nonlinear data as a linear

combination of its neighbors. Li et al. mapped 12-dimensional features of ECG segments of single beat type into 7-

dimensional embedding space described by two coordinates of kernel LLE . The results showed that the

true/false ratio for the proposed method outperformed other selected methods. The KLLE space shows better

performance in loss of diagnostic information in ECG signals. Kernel principal component analysis (KPCA) is a

popular nonlinear generalization of PCA, which is suitable for processing linearly nonseparable data sets. The

basic idea of KPCA is to map the original data into a high dimensional space via a kernel function ( ), and then to

apply the standard PCA algorithm to it (Figure 4) , which can extract a more complete nonlinear representation of

the principal components. However, KPCA takes more time than PCA.
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