
Zend Framework
Subjects: Computer Science, Software Engineering

Contributor: HandWiki Zheng

Zend Framework (ZF) is an open source, object-oriented web application framework implemented in PHP 7 and licensed

under the New BSD License. The framework is basically a collection of professional PHP-based packages. The

framework uses various packages by the use of Composer as part of its package dependency managers; some of them

are PHPUnit for testing all packages, Travis CI for continuous Integration Services. Zend Framework provides to users a

support of the Model View Controller (MVC) in combination with Front Controller solution. MVC implementation in Zend

Framework has five main areas. The router and dispatcher functions to decide which controller to run based on data from

URL, and controller functions in combination with the model and view to develop and create the final web page. On 17

April 2019 it was announced that the framework is transitioning into an open source project hosted by the Linux

Foundation to be known as Laminas.

Keywords: open source project ; web application ; model

1. License

Zend Framework is licensed under the Open Source Initiative (OSI)-approved New BSD License. For ZFv1 all code

contributors must sign a Contributor License Agreement (CLA) based on the Apache Software Foundation’s CLA. The

licensing and contribution policies were established to prevent intellectual property issues for commercial ZF users,

according to Zend's Andi Gutmans. ZF2 and later is CLA free. There is also a longterm support available for the

framework (long term support or LTS) for a total duration of 3 years.

2. Zend Framework Components and Versioning

Starting with Zend Framework version 2.5, components are split into independently versioned packages and

zendframework/zendframework is converted into a Composer meta-package. Framework components introduced after

the split are not added to the meta-package.

While zendframework/zendframework meta-package release version remains at 3.0.0, it will instruct Composer to install

latest compatible versions of the framework components, as per the semantic versioning. Such that zend-mvc component

will be installed at its current version 3.1.1, zend-servicemanager at version 3.3.0 and zend-form at version 2.10.2.

Zend Framework includes following components:

Authentication Authenticate users via a variety of adapters, and provide the authenticated identity to your
application.

Barcode Programmatically create and render barcodes as images or in PDFs.

Cache Caching implementation with a variety of storage options, as well as codified caching strategies
for callbacks, classes, and output.

Captcha Generate and validate CAPTCHAs using Figlets, images, ReCaptcha, and more.

Code Extensions to the PHP Reflection API, static code scanning, and code generation.

Component Installer Composer plugin for injecting modules and configuration providers into application
configuration.

Config Read and write configuration files.

Config Aggregator Aggregate and merge configuration from a variety of sources.

Console Build console applications using getopt syntax or routing, complete with prompts

Crypt Strong cryptography tools and password hashing.

[1] [2]

[3]

DB Database abstraction layer, SQL abstraction, result set abstraction, and RowDataGateway and
TableDataGateway implementations.

Debug Safely dump debug information to HTML.

DI Automated dependency injection and instance manager.

Diactoros PSR-7 HTTP message implementations.

DOM Query HTML and XML documents using XPath or CSS selectors.

Escaper Securely and safely escape HTML, HTML attributes, JavaScript, CSS, and URLs.

EventManager Implement events, signal slots, aspects, and observers!

Expressive PSR-7 middleware in minutes.

Feed Consume and generate Atom and RSS feeds, and interact with Pubsubhubbub.

File Locate PHP classfiles.

Filter Programmatically filter and normalize data and files.

Form Validate and display simple and complex forms, casting forms to business objects and vice
versa.

HAL for PSR-7 Hypertext Application Language (HAL) for PSR-7.

HTTP HTTP message and header abstractions, and HTTP client implementation. (Not a PSR-7
implementation.)

Hydrator Serialize objects to arrays, and vice versa.

InputFilter Normalize and validate input sets from the web, APIs, the CLI, and more, including files.

Internationalization Provide translations for your application, and filter and validate internationalized values.

JSON De/Serialize JSON in PHP, including JavaScript expressions.

JSON-RPC Server JSON-RPC implementation for PHP.

LDAP Perform LDAP operations, including binding, searching and modifying entries in an LDAP
directory.

Loader Autoloading and plugin loading strategies.

Log Robust, composite logger with filtering, formatting, and PSR-3 support.

Mail Parse, create, store, and send email messages, using a variety of storage and transport
protocols.

Math Create cryptographically secure pseudo-random numbers, and manage big integers.

Memory Manage data in an environment with limited memory.

MIME Create and parse MIME messages and parts.

Module Manager Modular application system for zend-mvc applications.

MVC Zend Framework's event-driven MVC layer, including MVC Applications, Controllers, and
Plugins.

MVC-Console integration Integration between zend-mvc and zend-console.

MVC-i18n integration Integration between zend-mvc and zend-i18n.

fileprg() plugin Post/Redirect/Get plugin with file upload handling for zend-mvc controllers.

flashmessenger() plugin Plugin for creating and exposing flash messages via zend-mvc controllers.

identity() plugin Plugin for retrieving the current authenticated identity within zend-mvc controllers.

prg() plugin Post/Redirect/Get plugin for zend-mvc controllers.

Navigation Manage trees of pointers to web pages in order to build navigation systems.

Paginator Paginate collections of data from arbitrary sources.

ACL Create, manage, and query access control lists.

RBAC Provide and query Role-Based Access Controls for your application.

Problem Details PSR-7 Problem Details for HTTP API responses and middleware.

ProgressBar Create and update progress bars in different environments.

PSR-7 Bridge PSR-7 <-> zend-http message conversions.

Router Flexible routing system for HTTP and console applications.

Serializer Serialize and deserialize PHP structures to a variety of representations.

Server Create Reflection-based RPC servers.

ServiceManager Factory-Driven Dependency Injection Container

ServiceManager-Di
integration zend-di integration for zend-servicemanager

Session Object-oriented interface to PHP sessions and storage.

SOAP Create, serve, and access SOAP applications, and parse and generate WSDL.

Stdlib SPL extensions, array utilities, error handlers, and more.

Stratigility PSR-7 middleware foundation for building and dispatching middleware pipelines.

Tag Manipulate and weight taggable items, and create tag clouds.

Test Tools to facilitate unit testing of zend-mvc applications.

Text Create FIGlets and text-based tables.

URI Object oriented interface to URIs, with facilities for validation.

Validator Validation classes for a wide range of domains, and the ability to chain validators to create
complex validation criteria.

View Flexible view layer supporting and providing multiple view layers, helpers, and more.

XML-RPC Fully featured XML-RPC server and client implementations.

XML2JSON Convert XML documents to JSON.

3. Installation

Officially supported install method is via Composer package manager.

Zend Framework provides meta-package that includes 61 component but recommended way is to install required

framework components individually. Composer will resolve and install all additional dependencies.

For instance, if you need MVC package, you can install with the following command:

$ composer require zendframework/zend-mvc

Full list of components is available in Zend Framework documentation.

4. Anatomy of Zend Framework

Zend Framework follows configuration-over-convention approach and does not impose any particular application

structure. Skeleton applications for zend-mvc and zend-expressive are available and provide everything necessary to run

applications and to serve as a good starting point.

4.1. Recommended MVC Application Directory Structure

ZendSkeletonApplication, skeleton application using Zend Framework MVC layer and module systems, can be installed

with:

$ composer create-project zendframework/skeleton-application <project-path>

It will create file structure similar to this:

[3]

<project name>/

├── config/ │ ├── autoload/ │ │ ├── global.php │ │ └── local.php.dist │ ├── application.config.php │ └──

modules.config.php ├── data/ │ └── cache/ ├── module/ ├── public/ │ └── index.php ├── vendor/ ├──

composer.json ├── composer.lock

 └── phpunit.xml.dist

The config/ directory has application wide configurations. module/ directory contains local modules that are committed

along with application. vendor/ contains vendor code and other modules managed independently from the application,

content of the folder is normally managed by Composer.

Zend Framework module have only one requirement: Module class exists in a module namespace and is autoloadable.

Module class provides configuration and initialization logic to application. Recommended module structure is as follows:

<modulename> ├── config/ │ └── module.config.php ├── src/ │ └── Module.php ├── test/

├── view/ ├── composer.json └── phpunit.xml.dist

The config/ directory holds module configs, src/ directory contains module source code, as defined in PSR-4 autoloading

standard, test/ directory contains unit tests for the module and view/ directory holds view scripts.

5. Creating Project Structure

Zend framework supports command line input to create structure of directories. We will use command line interface to

start creating the directory structure for our project. This will give you complete structural understanding of directories. The

interface supports and provides Zend_Tool interface giving a whole host of command functionalities.

1. Open the command line interface, and change the hellozend directory.

2. Windows users type: bin\zf\bat create project

3. Linux/Mac users type: bin\zf.sh create project

This procedure will create Zend Framework project in a your own specified location. After running Zend_Toll it will create

the basic application skeleton. This will not only create directory structure but also all the basic elements of the MVC

framework. In order to get Apache functionalities the virtual host settings will be as:

Listen 8080 <VirtualHost *: 8080> DocumentRoot /User/keithpope/Sites/hellozend/public

</VirtualHost>

The basic directory structure created will be somewhat as mentioned in the aforementioned directory structure of Zend

Framework with similar explanation. There is another aspect of Zend-Tool which is automatically initialized during

installation is bootstrapping. Here the basic purpose is to initialize the request of page by developer. The main entry here

created by Zend Framework is the Index file. Index file provides function to handle user request. This is the main entry

point for all requests. Following shows the functionalities.

1. Application-path: defines the path to application directory

2. Application_Env: changes the application behavior depending on various factors such as how the application is used.

3. getenv(): checks system environment.

4. Initialize Zend-Application application: includes Zend-Application and create an instance of it.

5. Call bootstrap() method coupled with run() method starting MVC.

In general Zend-Tool creates many important directory structures. This system is built upon Rapid Application

Development technology. As a general rule of support the framework focuses on coding and project structures instead of

focusing on smaller parts.

Project directory structure

Controllers

Actions

Views

Bootstrap file

[4]

[4] [4]

[4]

[5]

5.1. Controllers

Controller is the main entry to Zend Framework application. The front controller handler is main hub for accepting

requests and running the accurate actions as requested by the commands. The whole process of requesting and reacting

is routing and dispatching (which basically means calling correct methods in a class) which determines the functionality of

the code. This is implemented by Zend_Controller_Router_- Interface. The router functionality is to find which actions

need to be run and on contrary dispatcher runs those requested actions. The controller in Zend Framework is connected

in a diverse array of structural directories, which provides a support to efficient routing. The main entry point and the

command controller is the Zend_Controller_Front, this works as a foundation which delegates the work received and sent.

The request is shaped and encapsulated with an instance of Zend Controller Request HTTP, as a provider of access to

HTTP requests. The HTTP hold all the superglobals of the framework ($_GET, $_POST, $_COOKIE, $_SERVER, and

$_ENV) with their relevant paths. Moreover, the controller also provides getParam() functions which enables collection of

requested variables.

5.2. Actions

Actions are important functionalities. Controllers do not function without Actions. For this purpose we create another

method which has action appended in its name and automatically the front controller will recognize it as an action. The

Action has init() method which shows its private nature and not accessible by anyone. Following commands are run so

that Zend_Tool can create action for us. Through the use of standard dispatcher all functions are named after the

action's name and followed by word "Action" appended. This leads to controller action class containing methods like

indexAction(), viewAction(), editAction(), and deleteAction().

Windows users:

bin\zf.bat create actions about index

Linux and Mac users:

bin/zf.sh create action about index

An example of forms and actions:

namespace Album\Form; use Zend\Form\Form; class AlbumForm extends Form { public

function __construct($name = null) { // we want to ignore the name passed

parent::__construct('album'); $this->add(array('name' => 'id', 'type' => 'Hidden',

)); $this->add(array('name' => 'title', 'type' => 'Text', 'options' => array('label'

=> 'Title',),)); $this->add(array('name' => 'artist', 'type' => 'Text', 'options'

=> array('label' => 'Artist',),)); $this->add(array('name' => 'submit', 'type' =>

'Submit', 'attributes' => array('value' => 'Go', 'id' => 'submitbutton',),)); } //

source: Zend Framework Guide }

5.3. Standard Router

Standard router is an important Front Controller tool. Here the main decisions are made in order what module, controller

and action are being requested. These are all processed here. The following are defaults structure.

1. Module

2. Controller

3. Actions

The request follows a pattern first information is taken from URL endpoint of HTTP. URI is the end point of the request.

URL structure follows as: http://domain.com/moduleName/controllerName/actionName

The default router code example:

// Assuming the following: $ctrl->setControllerDirectory(array('default' =>

'/path/to/default/controllers', 'news' => '/path/to/news/controllers', 'blog' =>

'/path/to/blog/controllers'));

[6]

[6] [6]

[6]

[6]

[6]

[4]

[4]

[4]

[6]

[7]

[4]

[4]

[8]

_forward()

$actions

$controller

$module

$params

Module only:

http://example/news

 module == news

Invalid module maps to controller name:

http://example/foo

 controller == foo

Module + controller:

http://example/blog/archive

 module == blog

 controller == archive

Module + controller + action:

http://example/blog/archive/list

 module == blog

 controller == archive

 action == list

Module + controller + action + params:

http://example/blog/archive/list/sort/alpha/date/desc

 module == blog

 controller == archive

 action == list

 sort == alpha

 date == desc

5.4. Utility Methods

The Zend Framework also provides some utility methods. Following are some utility methods provided in the framework.

it is used to call action
_forward{$action, $controller = null, $module = null, array $params = null}

string, action required

optional string parameter and is place where controller is in.

string, has module in which we have the controller.

array, user parameter

Another method is the redirect utility method. This is the opposite of aforementioned _forward() method. _redirect()

performs HTTP in redirection in creation of a new request. _redirect() methods accepts two arguments namely $url, and

$options.

Furthermore, Action Helpers are also a way to provide extra functionalities within the framework. Action helpers are useful

when there is a need to provide functionality between controllers.

//application/controllers/IndexController.php public function init() { $this->_helper-

>viewRenderer->setNoRender(); }

During initialization phase of IndexController and ContactController, viewReader is called and noRender flag is called on

the view object. The lack of this process creates an error in our application.

5.5. View Directories

Zend Framework provides the view framework to our project and controller and actions are automatically provided to our

application. Inside the Zend Framework in view folder we observe the following folders.

1. View

2. Helpers

3. Scripts

[4]

[4]

[4]

[4]

[4]

[4]

4. Contacts

5. errors

6. index

In order to create a view we follow:

<!-- application/views/scripts/index/index.phtml --> <html> <head> <title><Hello

Zend</title> </head> <body> <hi>Hello Zend</hi> <p>Hello from Zend Framework</p>

</body> </html>

View Sample:

// https://framework.zend.com/manual/2.4/en/modules/zend.view.quick-start.html

namespace Foo\Controller;

use Zend\Mvc\Controller\AbstractActionController; use Zend\View\Model\ViewModel;

class BazBatController extends AbstractActionController {

 public function doSomethingCrazyAction() { $view = new ViewModel(array('message' =>

'Hello world',)); $view->setTemplate('foo/baz-bat/do-something-crazy'); return $view;

}

}

6. Sponsor and Partners

Zend Technologies, co-founded by PHP core contributors Andi Gutmans and Zeev Suraski, is the corporate sponsor of

Zend Framework. Technology partners include IBM, Google, Microsoft, Adobe Systems, and StrikeIron.

7. Features

Zend Framework features include:

All components are fully object-oriented PHP 5 and are E_STRICT compliant, which helps in the development of

building tests and writing codes in a bug-free and crash-proof application manner.

Use-at-will architecture with loosely coupled components and minimal interdependencies

Extensible MVC implementation supporting layouts and PHP-based templates by default

Support for multiple database systems and vendors, including MariaDB, MySQL, Oracle, IBM DB2, Microsoft SQL

Server, PostgreSQL, SQLite, and Informix Dynamic Server

Email composition and delivery, retrieval via mbox, Maildir, POP3 and IMAP4

Flexible caching sub-system with support for many types of backends, such as memory or a file system.

With the help of remote procedure call (RPC) and REST(Representational State Transfer) services, Zend Apigility helps

developers to create APIs, authentication of APIs, documentation of APIs, Easy Modification

8. Development of Applications

Zend Framework applications can run on any PHP stack that fulfills the technical requirements. Zend Technologies

provides a PHP stack, Zend Server (or Zend Server Community Edition), which is advertised to be optimized for running

Zend Framework applications. Zend Server includes Zend Framework in its installers, along with PHP and all required

extensions. According to Zend Technologies, Zend Server provides improved performance for PHP and especially Zend

Framework applications through opcode acceleration and several caching capabilities, and includes application

monitoring and diagnostics facilities. Zend Studio is an IDE that includes features specifically to integrate with Zend

Framework. It provides an MVC view, MVC code generation based on Zend_Tool (a component of the Zend Framework),

a code formatter, code completion, parameter assist, and more. Zend Studio is not free software, whereas the Zend

Framework and Zend Server Community Edition are free. Zend Server is compatible with common debugging tools such

[4]

[9]

[10] [11] [12] [13] [14] [15]

[16]

[17]

[18]

[19]

[20]

as Xdebug. Other developers may want to use a different PHP stack and another IDE such as Eclipse PDT which works

well together with Zend Server. A pre configured, free version of Eclipse PDT with Zend Debug is available on the Zend

web site.

9. Code, Documentation, and Test Standards

Code contributions to Zend Framework are subject to rigorous code, documentation, and test standards. All code must

meet ZF's coding standards and unit tests must reach 80% code coverage before the corresponding code may be moved

to the release branch.

10. Simple Cloud API

On September 22, 2009, Zend Technologies announced that it would be working with technology partners including

Microsoft, IBM, Rackspace, Nirvanix, and GoGrid along with the Zend Framework community to develop a common API to

cloud application services called the Simple Cloud API. This project is part of Zend Framework and will be hosted on the

Zend Framework website, but a separate site called simplecloud.org has been launched to discuss and download

the most current versions of the API.The Simple Cloud API and several Cloud Services are included in Zend Framework.

The adapters to popular cloud services have reached production quality.

11. Hello World: File by File

In order to create Hello World program, there are multiple steps including:

First create four files within the directory structure. These files are bootstrap file, an Apache Control file (.htaccess), a

controller file and a view controller for the view.

Second a copy of Zend Framework need to be developed. With the growth of complexity, additional code is required

which will provide the functionality and that is relative small and focuses on the benefits of MVC system. Regarding

the process in more detail, the bootstrap file is initialization in one form or another.

Next it needs to be ensured the environment is correct and that there are no errors, followed by setting date and time for

tracking functionality. In order to set up date and time many procedures can be followed; for example the method

data_default_timezone_set() can get called and Zend assumes that default directory will include the phd path. The Zend

Framework does not depend on any specific file, but helper classes are helpful in this case. Following are some

examples:

Zend_Loader::loadClass() the main purpose here is to correct file for the supplied class name.

Following this the underscores are converted into directory-specific structures. As a result, the code lines

Zend_Loader::loadClass('Zend_Controller_Front'); and include_once 'Zend/Controller/Front.php'; show similar results.

Zend_Debug::dump() functions in terms of debugging information and is focused on formatted var_dump() output.

Finally the bootstrap runs the front controller and initializes it. The design pattern used by Zend_Controller_Front is the

Singleton design and getInstance() is used to get the single instance.

12. Current Development

Zend Framework 3.0 was released on June 28, 2016. It includes new components like a JSON RPC server, a XML to

JSON converter, PSR-7 functionality, and compatibility with PHP 7. Zend Framework 3.0 runs up to 4 times faster than

Zend Framework 2, and the packages have been decoupled to allow for greater reuse. The contributors of Zend

Framework are actively encouraging the use of Zend Framework version 3.x. The stated end of life for Zend Framework 1

is 2016-09-28, and for Zend Framework 2 is 2018-03-31. The first development release of Zend Framework 2.0 was

released on August 6, 2010. Changes made in this release were the removal of require_once statements, migration

to PHP 5.3 namespaces, a refactored test suite, a rewritten Zend\Session, and the addition of the new Zend\Stdlib.

The second development release was on November 3, 2010. The first stable release of Zend Framework 2.0 was

released 5 September 2012.

References

1. Gutmans, Andi (2005-10-27). "Zend Framework (post is too long so make sure to grab coffee)". Andi on Web & IT.
http://andigutmans.blogspot.com/2005_10_01_archive.html. Retrieved 2009-02-11.

[21]

[22]

[23] [24]

[6]

[6]

[6]

[6]

[6]

[6]

[6]

[25]

[26]

[27]

[28]

2. "Contributor Guide (ZF v1)". http://framework.zend.com/participate/contributor-guide-v1.

3. "Documentation for the ZF components". https://docs.zendframework.com/.

4. Pope, Keith. Zend Framework 1.8 Web Application Development (1). Olton, GB: Packt Publishing, 2009. ProQuest
ebrary. Web. 13 February 2017.

5. Padilla, A. (2009). Beginning Zend Framework. Apress.

6. Allen, R., Lo, N., & Brown, S. (2009). Zend framework in action. Manning.

7. Company, Zend, a Rogue Wave. "Zend Framework - Issue". https://framework.zend.com/manual/2.3/en/user-
guide/forms-and-actions.html.

8. Company, Zend, a Rogue Wave. "Zend Framework - Issue".
https://framework.zend.com/manual/1.12/en/zend.controller.router.html.

9. Company, Zend, a Rogue Wave. "Zend Framework - Issue".
https://framework.zend.com/manual/2.4/en/modules/zend.view.quick-start.html.

10. "History of PHP and related projects". The PHP Group. http://www.php.net/history. Retrieved 2009-02-11.

11. LaMonica, Martin (2005-02-25). "IBM backs open-source Web software". cnet.com. http://news.cnet.com/IBM-backs-
open-source-Web-software/2100-7344_3-5589559.html?tag=nw.14. Retrieved 2009-02-11.

12. Kernel, Sean Michael (2006-12-20). "Google Data Joins PHP Zend Framework". internetnews.com.
http://www.internetnews.com/dev-news/article.php/3650066. Retrieved 2009-02-11.

13. Krill, Paul (2006-10-31). "Microsoft, Zend boost PHP for Windows". infoworld.com.
http://www.infoworld.com/article/06/10/31/HNzenphp_1.html. Retrieved 2009-02-11.

14. Potter, Mike (2014-05-21). "Adobe Contributing AMF Support to Zend Framework". The Official Flex Team Blog.
http://blogs.adobe.com/flex/archives/2008/07/adobe_contributing_amf_support.html. Retrieved 2009-02-11.

15. "StrikeIron Featured Partners". http://www.strikeiron.com/partners/featured_partners.aspx. Retrieved 2009-02-11.

16. "About Zend Framework". http://framework.zend.com/about/overview. Retrieved 2009-02-11.

17. Why to Use Zend Framework? By SuntecOSS, Retrieved, April 21st, 2016 http://www.suntecoss.com/blog/why-to-use-
zend-framework/

18. Zend’s Apigility, an Open Source API Builder for Developing Quality APIs By SuntecOSS, Retrieved, May 19th, 2016
http://www.suntecoss.com/blog/zend-apigility-an-open-source-api-builder-for-developing-quality-apis/

19. "Zend site". http://www.zend.com/products/server.

20. "Download Zend Studio - IDE, PHP profiler, mobile, unit testing & more".
http://www.zend.com/en/products/studio/features#ZFI.

21. "Zend Framework Contributor Guide". July 1, 2006.
http://framework.zend.com/wiki/display/ZFDEV/Zend+Framework+Contributor+Guide.

22. "Simple Cloud API Press Release". Archived from the original on December 1, 2009.
https://web.archive.org/web/20091201014623/http://www.zend.com/en/company/news/press/zend-teams-with-ibm-
microsoft-rackspace-and-other-cloud-leaders-on-open-source-initiative-to-drive-cloud-application-development.

23. "Zend Framework website". http://framework.zend.com/.

24. simplecloud.org http://www.simplecloud.org

25. zendframework (2016-06-28). "Zend Framework 3 Released!". https://framework.zend.com/blog/2016-06-28-zend-
framework-3.html.

26. "Zend Framework 2.0.0dev1". 2010-08-06. http://devzone.zend.com/article/12385-First-Development-Milestone-of-ZF-
2.0-Released.

27. "Zend Framework 2.0.0dev2". 2011-11-03. http://framework.zend.com/announcements/2010-11-03-zf2dev2. Retrieved
2011-03-18.

28. "Zend Framework 2.0.0 STABLE Released! - Zend Framework - Zend Framework". Framework.zend.com. September
5, 2012. http://framework.zend.com/blog/zend-framework-2-0-0-stable-released.html.

Retrieved from https://encyclopedia.pub/entry/history/show/75338

