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PAX5, a member of the Paired Box (PAX) transcription factor family, is an essential factor for B-lineage identity during

lymphoid differentiation. Mechanistically, PAX5 controls gene expression profiles, pivotal to cellular processes such as

viability, proliferation, and differentiation. Given its crucial function in B-cell development, PAX5 aberrant expression also

correlates with hallmark cancer processes leading to hematological and other types of cancer lesion.
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1. Introduction

The Paired Box (PAX) gene family encodes nine transcription factors (PAX1–9), which regulate gene expression

programs in tissue development . Although PAX transcription factors share a highly similar paired-box DNA-binding

domain, they are classified into four subgroups (I–IV) based on additional functional domains such as the octapeptide and

the homeodomain, which are generally located in the protein’s internal and amino-terminal regions respectively . Given

their structural resemblance, PAX members from a particular subgroup account for similar activities and functions. For

example, PAX genes in subgroups II (PAX2, PAX5, and PAX8) and III (PAX3 and PAX7) are commonly involved in

processes including cell survival, motility, and tumor progression. Conversely, members from subgroup I

(PAX1 and PAX9) and IV (PAX4 and PAX6) seem less involved in cancer processes . The expression of PAX family gene

products is also generally tissue specific. For instance, PAX2 expression has been described in kidney and optic nerve

development , whereas PAX5 has mostly been associated with the development of the central nervous system, of B-

lymphocytes, and spermatogenesis . Furthermore, the expression patterns of subgroup II members are reported to be

altered in various cancer tissues, which suggests a distinctive role for these PAX gene products in the regulation of

specific malignancies . Amongst these members, PAX5 has been extensively studied and characterized for its role in

cancer pathogenesis.

2. Expression and Tissue Specificity

The human PAX5 gene locus is located on the 9p13 chromosomal region known to undergo a high degree of alterations

leading to its implication in cancer development and progression . Structurally, the PAX5 gene is characterized by two

known distinct promoters, resulting in two alternative transcriptional initiation sites known as PAX5A and PAX5B . Both

transcripts share the same sequence encoded by exon 2 through exon 10. However, they have different sequences in

their first exon (1A or 1B), which is dependently linked to their respective promoter regions (PAX5 1A versus PAX5 1B).

Both PAX5A and PAX5B protein variants consist of a 52-kD protein known as the B-cell lineage-Specific Activator Protein

(BSAP), which was initially identified as an essential regulator of early B-cell differentiation and commitment . Despite

their structural similarities, PAX5A and PAX5B gene products display differential expression signatures and tissue

specificity .

3. PAX5 Expression and Regulation

As depicted in Figure 1, PAX5 is widely associated with various cellular processes and pathologies. Given the essential

role of PAX5-mediated transactivation of vital genes for cell biology, its deregulation will have consequences on basic

cellular processes such as differentiation, viability, and proliferation (reviewed in  ). Investigation of deregulated

mechanisms leading to aberrant PAX5 expression and activity is therefore relevant and warranted to provide more insight

into the overall comprehension of PAX5 mechanisms of action. Although the literature provides abundant research

characterizing PAX5-mediated pathways and interactions, the upstream mechanisms regulating PAX5 expression are

much less defined.
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Figure 1. PAX5 interaction networks and related biological pathways. (A) PAX5 gene interaction networks have been

mapped using the Cytoscape plugin GeneMANIA (https://genemania.org, accessed on 8 April 2022). Schematic

illustrations of functional annotations and biological terms visualization are represented by: (B) PAX5 gene ontology (GO)

in terms of functional orthologs and their relative implication in each predicted biological processes; (C) PAX5 pathway

analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, which provides an integrated

evaluation of genomic, chemical, and biochemical functions; and (D) relative functional association to biological

reactomes based on PAX5-related network genes. Annotations were done using the Enrichr algorithms

(https://maayanlab.cloud/Enrichr, accessed on 10 April 2022). Significance was considered if p < 0.05.

4. PAX5 Epigenetic Regulation

Many genomic studies have described the PAX5 locus as a genetic hot-spot susceptible to structural variation

. For example, PAX5 expression and function are altered by various genetic alterations, including somatic mutation,

translocation, and duplication/polyploidy . In addition to genetic mutation, which changes both the

transcriptional levels and protein sequences, genes are also submitted to epigenetic deregulation, which impacts overall

expression levels . These epigenetic processes include methylation of 5′-cytosine-phosphate-guanine-3′ (CpG) islands,

chromatin remodeling via histone modifications, and various RNA-mediated mechanisms, which involve regulatory non-

coding RNAs . A brief description of each regulatory mechanism and its impact on PAX5-mediated function is

discussed below.

First, methylation of CpG islands to form 5′-methylcytosine (5mC) is a well-described mechanism to repress transcriptional

expression of unwanted genes during fundamental cellular processes such as development and differentiation .

DNA methylation is catalyzed by a group of DNA methyltransferase (DNMT) enzyme members (e.g., DNMT1, DNMT3a,

and DNMT3b) . DNA methylation can also be reversed by demethylation, which is mediated by Ten-Eleven

Translocation (TET) family dioxygenase enzymes, which include TET1, TET2, and TET3 . In fact, B-lineage

development is coordinated by the well-timed deployment of B-cell fate transcription factors, which are regulated by

epigenetic events and post-transcriptional modifications . For example, DNMT1, DNMT3a, and DNMT3b are required

for the maturation of hematopoietic stem cells into CLPs, whereas DNMT1 is particularly essential for pre-B-cell

differentiation to immature B-cell . Subsequent studies have since demonstrated that TET function is required for

developing B-cells to transit from the pro-B to pre-B developmental stage . Mechanistically, the B-cell-specific MB-
1 (CD79a) promoter is known to be hypermethylated during hematopoietic stem cells transition to CLPs and then

progressively demethylated during the expression and assembling of the BCR components. These events

upregulate PAX5 expression and concomitant target genes to achieve B-lineage identity . On the other hand,

attenuation of PAX5 expression during terminal B-cell differentiation is reported to partly mediated by methylation
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of PAX5 . In support of these events, a study by Danbara et al., (2002) demonstrates that genomic demethylation using

5-aza-2′-deoxycytidine in myeloma cell lines results in the reconstitution of PAX5 expression and its transcriptional target

genes (CD19 and MB-1) . Although the regulation of the complex networks of epigenetic modifications governing B-cell

differentiation is only partially understood, one aberrant mechanism leading to deregulated PAX5 methylation has been

described for the inadequate function of AID . The PAX5/AID pathway is essential for somatic hypermutation and

antibody class switching during Ig production . However, constitutive expression of AID has been associated with

lymphomagenesis through its capacity to alter the sequence of non-Ig genes (i.e., PAX5) or through AID-mediated

deamination of the PAX5 gene . As a result, changes in PAX5 gene sequences redefine motif-specific regions

marked for epigenetic modifications and subsequent expression control .

Given the importance of adequate methylation processes regulating PAX5-induced B-cell development, deregulated

methylation results in the destabilization of B-cell homeostasis and cancer phenotypes . This phenomenon has been

further substantiated by the demonstration that PAX5 methylation status directly correlates with overall survival rates of

cancer patients . Furthermore, studies profiling methylation signatures in pediatric ALL patients have

correlated PAX5 hypermethylation to the pathogenesis of B-ALL and T-ALL subtypes . These findings have also

prompted Nordlund et al. (2015) to propose that PAX5 methylation status combined with the mapping of PAX5 gene

recombinations with other partner genes represent an effective diagnostic tool to classify heterogeneous and

cytogenetically undefined ALL subtypes .

PAX5 aberrant methylation is not a tissue-specific phenomenon. In fact, PAX5 hypermethylation has been described in

many non-hematological cancers, particularly where PAX5 is characterized as a tumor suppressor (e.g., hepatocellular

carcinoma , ovarian carcinoma ; head and neck cancer , gastric cancer , lung and breast cancer malignancies

. Mechanistically, many of these latter studies demonstrate that silencing of PAX5 expression by hypermethylation

leads to the inadequate transactivation of Tp53 expression, thus ensuing uncontrolled proliferation or decreased

chemosensitivity to anticancer treatment regimens .

Gene expression profiles are also epigenetically regulated by multiple histone-modifying enzymes, which change

chromatin structure to alter promoter region accessibility and recruit other modifications . Histones, which assemble the

nucleosomes, are prone to modifications, which include acetylation, methylation, ubiquitination, phosphorylation, and

sumoylation . The most common modifications consist of arginine methylation and/or lysine acetylation, where

acetylation generally promotes gene expression whereas methylation elicits the opposite effects. Many histone modifying

enzymes have been characterized including histone acetyltransferases (HATs), histone deacetylases (HDACs), histone

demethylases, and various methyltransferases (e.g., Euchromatic Histone-Lysine N-Methyltransferase-2/EHMT2 and

Lysine Methyltransferase-2A . Like CpG island methylation, chromatin modifications represent an intrinsic part of B-

cell activation and differentiation. For example, during early B-cell development, PAX5 secures B-cell commitment through

activating B-cell specific genes. In addition, PAX5 concomitantly inhibits B-lineage inappropriate genes through the

recruitment of HDACs to modify and silence promoter activation of these genes . Studies show that the PAX5 locus is

also continuously regulated by histone modifications throughout B-cell maturation. Specifically, the PAX5 promoter in pro-

B-cells are modified by HDACs, whereas EHMT2 regulates mature B-cells located in germinal centers . Another

example is the EBF transcription factor, which is shown to be implicated in PAX5 and CD19 transactivation through the

silencing of Lysine Methyltransferase-2A during early B-cell development . Another example is the previously

mentioned PAX5/BLIMP-1 axis during terminal B-cell differentiation into plasma cells. It is reported that BLIMP-

1 suppresses PAX5 expression through the recruitment of histone demethylases and EHMT2 activities on

the PAX5 promoter . Furthermore, transcription factor Forkhead Box Protein-O1, which is essential for B-cell

development beyond the pro-B-cell stage , is only activated upon histone methylation of TCF3, which only then can

elicit histone modifications and silence PAX5 to enable the progression of B-cell development . Another study conducted

by Danbara et al., (2002) has specifically demonstrated that the upstream PAX5 promoter (exon 1A) is predominantly

inactivated by DNA methylation, whereas the downstream promoter (exon 1B) is repressed by histone deacetylation

during the final stages of B-cell terminal differentiation . Comprehensively, deregulation of histone modifying events

on PAX5 or its upstream regulators lead to aberrant PAX5 transcript levels and the development of diseases .

Accordingly, a recent study from Jin et al. (2021) has not only shown that PAX5 is hypermethylated in retinoblastoma

tumors but also, the treatment of patients with cyclophosphamide (a common antineoplastic agent to treat retinoblastoma)

increases PAX5 expression via gene demethylation and concomitant DNMT inhibition, which result in tumor regression

.

To add complexity and appreciation for epigenetic mechanisms, different ATP-dependent chromatin remodeling

complexes (CRC) capable of moving, ejecting, or restructuring nucleosomes (events often associated with DNA repair)

have also been associated with PAX5 regulation and function . For example, SWItch/Sucrose Non-Fermentable and
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the Nucleosome Remodeling Deacetylase CRCs are known to mediate PAX5-dependant induction or repression

respectively of MB-1 (CD79a) gene expression during BCR assembly . Therefore, the opposing functions of CRCs

provide another layer of PAX5 function during B-cell development . Another example is the histone modifying enzymes

HATs, which can acetylate other cellular proteins (e.g., transcription factors) besides histones. A study by He et al., (2011)

has found that histone acetyltransferase E1A binding protein p300 interacts with the C-terminal region of PAX5 to

acetylate multiple lysine residues of the paired box DNA binding domain . They also demonstrate that acetylation of

the PAX5 transcription factor dramatically enhances the transactivation potential of its target genes . This interaction

was also investigated in B-cell lymphoma, where the Metastasis-Associated Protein-1 represents a substrate for

acetylation upon its interaction with the HAT p300 . This study found that Metastasis-Associated Protein-1 acetylation

leads to the direct transactivation and overexpression of PAX5, a widespread phenomenon in human DLBCL .

The final contributing mechanism in epigenetic control is mediated by non-coding RNAs, which include small interfering

RNAs, microRNAs (miRNAs), piwi-interacting RNAs, long non-coding RNAs, and circular RNAs (circRNAs) . In

comparison to DNA and histone modifications, only a paucity of studies has directly elucidated ncRNA-mediated

mechanisms governing PAX5 expression and function. A recent study from Harquail et al., (2019) has used a

bioinformatic approach to establish a causal link between differentially expressed miRNAs in cancer cells in relation to

their putative targeting of PAX5-dependent cancer processes and identified miRs-484 and 210 as directly regulators

for PAX5 expression and function . Interestingly, miR-210 has been extensively studied as a potent oncogenic miRNA,

which targets critical tumor suppressors such as E2F3 and Tp53 . It is also well established that miR-210 is

upregulated during hypoxia to induce EMT and tumor progression . Given the prevalent role of PAX5 in

epithelialization and EMT-MET processes in breast cancer cells , it has been suggested that miR-210 likely

targets PAX5 during tumor neoplasm and hypoxia to produce a robust, comprehensive shift from epithelial to

mesenchymal phenotypic features to evade hypoxic insult . PAX5 has also been reported to be part of a regulatory

feedback loop with miR-155 in cancer cells . MiR-155 is known to play a vital role in the differentiation of memory B-

cells where it targets PU.1 and AID necessary for B-cell commitment into plasma cell . Despite the rapidly growing

field of non-coding RNA function in biological processes, the elucidation of non-coding RNA-dependent control of PAX5
expression and function in B-cell development and disease is still under investigation. As our knowledge expands on the

deregulation of miRNA profiles and its impact on biological processes, researchers notice that changes to the mRNA

sequences targeted by miRNAs will also have significant consequences, including miRNA motif accessibility and

disruption of translational control. Accordingly, the next section will discuss PAX5 post-transcriptional modifications and

editing, which alter miRNA-specific targeting and impede the potential binding capacity of any motif-specific interacting

partners of PAX5 products.

5. PAX5 Post-Transcriptional Regulation

Similar to most human gene transcripts, PAX5 mRNAs undergo alternative splicing processes, which translate into altered

translational reading frames and often multiple protein isoforms . To date, alternative splicing events

of PAX5 transcripts in humans and other species result in translated products with deleted regions corresponding to single

or multiple coding exons . Specifically, studies have shown that alternative splicing of the 5′ or 3′ end

of PAX5 mRNA leads to structural and functional alterations of the PAX5 transcription factor in the DNA binding (exons 2-

3) and transactivation domains (exons 8-9) respectively . A study performed by Robichaud et al., (2004) has

characterized alternatively spliced PAX5 transcripts in CD19  peripheral blood lymphocytes from healthy adult donors and

found that B-cells simultaneously co-express multiple isoforms, including full-length mRNA (exons 1-10), in addition to

transcripts lacking either exon 7 (∆7); exon 8 (∆8); exon 9 (∆9); exons 7-8 (∆7/8); or exons 7-8-9 (∆7/8/9) . Interestingly,

this study also demonstrates that each PAX5 protein variant elicits a unique transactivation potential upon downstream

target genes . Other studies have since reported additional C-terminal isoforms lacking exons 6-7-8-9 (∆6/7/8/9); exons

6-7-8 (∆6/7/8); exons 8-9 (∆8/9); and finally, a transcript containing a partial intronic sequence (intron 6) in healthy B-cells

and lymphoma . These findings underscore the complexity of potential dominant-negative effects and the outcome of

downstream target gene expression due to a network of multiple PAX5 transcription factor variants. Despite various

reports characterizing the expression of alternatively spliced PAX5 variants, the specific role of each isoform and their

capacity to compete for putative PAX5 targets are still undefined. However, one study conducted by Sadakane et al.,

(2007) has correlated a specific expression profile comprising of the wild-type and the ∆8 PAX5 variants in over 90% of

childhood acute lymphoblastic leukemia samples tested . These findings suggest a possible role for

individual PAX5 alternatively spliced isoforms in the regulation (or deregulation) of PAX5 function.

More recently, PAX5 transcripts have also been characterized to undergo 3′end shortening . This type of transcriptional

modification has significant repercussions on translational fate given that mRNA untranslated regions (UTRs), notably at

the 3′end, harbor multiple binding sites for RNA binding proteins and other translational regulatory elements (e.g.,
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miRNAs), which control transcript stability and translation efficiency . A study by Beauregard et al., (2021) has

recently reported that although 3′-editing of PAX5 transcripts is prevalent in healthy peripheral B-cells, shortening of the

3′UTR is directly linked to increased translation of PAX5 and correlates with leukemic disease progression .

Mechanistically, the study reveals that PAX5 3′UTR shortening is mainly due to sequence excision (up to 86%) by

alternative splicing events. PAX5 mRNA shortening was also investigated in non-hematological cancers. Interestingly,

conversely to 3′UTR splicing in B-cells, PAX5 3′UTR shortening in breast cancer cells is primarily manifested by

alternative polyadenylation (APA) . APA is another type of post-transcriptional modification where gene transcription is

prompted to use alternative polyadenylation motifs (transcription termination signals), which alter the overall length of the

mRNA sequences at their 3′ end. In fact, APA motifs are prevalent in more than half of all human transcripts, notably in

oncogenes, to evade translational control at their 3′UTR, resulting in increased mRNA stability and translation . To

further elucidate the impact of PAX5 3′UTR shortening on miRNA targeting and regulation, a bioinformatic approach was

used to identify predicted miRNAs targeting the excised 3′UTR in truncated PAX5 transcripts from cancer cells . The

study then experimentally validated that miR-181a, miR-217, and miR-1275 represent the most impactful tumor

suppressors lost during PAX5 3′UTR shortening in cancer cell models . Nevertheless, more studies are required to fully

understand the impact of regulatory elements (e.g., miRNAs) and the accessibility of their corresponding binding sites

deleted from truncated PAX5 transcripts in oncogenic processes and disease.

The previous sections describe multiple regulatory mechanisms, which lead to very diverse PAX5 transcripts, proteins,

and functions. More recently, researchers have also characterized a new class of transcriptional PAX5 products,

circular PAX5 RNAs (circPAX5) . Circular RNAs (circRNAs) represent a relatively new category of non-coding

RNAs characterized by a covalent phosphodiester bond between the 5′ and 3′ extremities of the transcript . After

being discovered in viruses in 1976, circular RNA was first observed in humans in 1991, when it was initially thought to be

the product of improper post-translational editing . Since then, circRNAs have been shown to be abundantly expressed

and play essential roles in cell biology and disease . Accordingly, circular RNAs can encode proteins through cap-

independent translation pathways, regulate gene transcription, regulate gene translation, interact with proteins, and even

mop up (sponge) small RNAs such as miRNAs . Due to their essential role in cellular processes, circular RNA

aberrant expression and function are consequently associated with diseases, including cancer . In fact, a study

by Gaffo et al. (2019) describes circPAX5 as one of the most differentially overexpressed products in pediatric B-ALL

patients . They also demonstrate that circPAX5 directly binds to miR-124-5p in B-cell precursors to promote B-ALL

progression through the interference of the B-cell maturation process . More recently, researchers have mapped

multiple circPAX5 isoforms in B-cells including: circPAX5_2-3 (containing exons 2 and 3); circPAX5_2-4 (exons 2, 3 and

4); circPAX5_2-5 (exons 2, 3, 4 and 5); circPAX5_2-6 (exons 2, 3, 4, 5 and 6); circPAX5_2-7 (exons 2, 3, 4, 5, 6, and

7); circPAX5_2-8 (exons 2, 3, 4, 5, 6, 7, and 8); circPAX5_8 (exon 8); circPAX5_7-8 (exons 7 and 8); circPAX5_5-8 (exons

5, 6, 7, 8); and finally, circPAX5_2-6+intron 5 (exons 2, 3, 4, 5, partial intron 5, and exon 6) . Furthermore, using

TaqMan probes designed to target each unique circPAX5 junction region created by both extremities, researchers

demonstrate that circPAX5_2-5 and circPAX5_2-6 are overexpressed in chronic lymphocytic leukemia patients in

comparison to peripheral B-cells from healthy individuals. Mechanistically, researchers demonstrate

that circPAX5 products interact with important microRNAs such as miR-146a and the miR-17-92 cluster. Previous reports

demonstrate that miR-146a is a critical regulator of BLIMP-1 during B-cell differentiation , whereas microRNAs from the

miR-17-92 cluster mediate the developmental transition of pro-B to pre-B-cells . In addition, the miR-17-92 cluster

is also associated with many oncogenic processes and phenotypes of hematopoietic cancers, notably in Burkitt

lymphoma . Altogether, these findings not only identify a new class of PAX5 products (i.e., circPAX5) but also provide

new potential signaling avenues for PAX5-mediated function in B-cell development and disease.

6. Post-Translational Regulation of PAX5

Post-translational modifications and regulation of PAX5 function have not been extensively characterized. However, a few

studies have reported specific PAX5-interacting regulators, which modify the PAX5 transcription factor to regulate its

transactivation potential. As described earlier, PAX5 can be acetylated by HATs on multiple lysine residues, which

enhances its transcriptional activation of downstream target genes . Another example is how the PAX5 transcription

factor can be regulated through phosphorylation events. Accordingly, studies show that PAX5 phosphorylation is

responsible for the BLIMP-1/PAX5 regulatory axis during the critical stages of plasma cell differentiation .

Specifically, upon BCR engagement of pro-B cells, PAX5 is phosphorylated on serine and tyrosine residues by

Extracellular Regulated Kinases-1/2 and Spleen Associated Tyrosine Kinase respectively, which revoke PAX5′s ability to

repress BLIMP-1 expression, thus enabling the progression of plasma cell development. On the other hand, a study

[91][92]

[93]

[94]

[95][96][97]

[98]

[99]

[100][101][102]

[103][104]

[105]

[71][103]

[106][107][108]

[105][109][110]

[100]

[100]

[111][112]

[113]

[114][115]

[116]

[66]

[117][118]



conducted by Kovac et al., (2000) has demonstrated that Importin alpha-1 interacts with the nuclear localization signal on

PAX5 to confer its nuclear localization and import, leading to greater PAX5 transactivation of downstream target

genes .

7. Discussion

It is well established that PAX5 products are important regulators of cell biology, notably in B-lineage commitment and

maturation. It is also apparent that PAX5 is plagued not only by the high-profile genes it regulates but also, by its

incredible vulnerability to genetic alterations leading to aberrant expression of PAX5 products. Given the reliance of crucial

developmental program genes on PAX5 transactivity, perturbation of PAX5 expression and function at any level ultimately

derails basic cellular processes, lending way to oncogenic manifestations. Moreover, given the requirements for

coordinated and transitional PAX5 expression profiles during early (PAX5 activation) and late (PAX5 attenuation) phases

of B-cell maturation, inadequate PAX5 activity leads to blockade of B-cell differentiation and uncontrolled proliferation of

immature B-cells.

Figure 2. Mutation-independent mechanisms leading to aberrant PAX5 signaling and cell processes. Aside from PAX5
gene sequence alterations, deregulated PAX5 expression can also result from epigenetic events and post-transcription

modifications. First, PAX5 gene promoter hypermethylation has been described in many cancers, notably when PAX5
behaves as a tumor suppressor. Post- transcriptional modifications (e.g., coding exon alternative splicing, 3′UTR

shortening, and RNA circularization) also contribute to overall PAX5 expression and function. The net production of

functional PAX5 transcription factors can thereafter collaborate with IKZF1 to regulate downstream metabolic genes to

limit glucose uptake and energy supply required for oncogenic transformation. Adequate PAX5 function is also required to

regulate Tp53 expression and avoid uncontrolled cancer phenotypes. Tp53 is also intimately linked to metabolic

disfunction leading to cancer processes.
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