

Polyphenol-Rich Dry Common Beans and Their Health Benefits

Subjects: **Food Science & Technology**

Contributor: Kumar Ganesan , Baojun Xu

Polyphenols are plant metabolites with potent anti-oxidant properties, which help to reduce the effects of oxidative stress-induced dreaded diseases. The evidence demonstrated that dietary polyphenols are of emerging increasing scientific interest due to their role in the prevention of degenerative diseases in humans. Possible health beneficial effects of polyphenols are based on the human consumption and their bioavailability. Common beans (*Phaseolus vulgaris* L.) are a greater source of polyphenolic compounds with numerous health promoting properties.

Polyphenol-rich dry common beans have potential effects on human health, and possess anti-oxidant, anti-diabetic, anti-obesity, anti-inflammatory and anti-mutagenic and anti-carcinogenic properties.

polyphenols

Phaseolus vulgaris

anti-oxidants

degenerative diseases

health-promoting effects

1. Introduction

Plants synthesize secondary metabolites that often have widespread bioactivities, and are known as phytochemicals. Polyphenol is one of the phytochemicals containing large bioactive structural phenolic units. It has a wide range of classification and possesses various pharmacological and health-promoting effects [1]. Polyphenols are largely found in fruits, cereals, vegetables, food legumes, herbs, spices, nuts, wine, olive oil, tea, coffee, and chocolate. Polyphenols are classified into different groups based on the function of several phenyl rings, including flavonoids (flavones, flavonols, flavanones, isoflavones, anthocyanins, chalcones, dihydrochalcones, and catechins), phenolic acids (hydroxybenzoic hydroxyphenyl acetic, hydroxyphenyl pentanoic and hydroxyl cinnamic acids), stilbenes, and lignans [2]. The primary functions of polyphenols are as anti-oxidants involved in the prevention of degenerative diseases such as cancer and metabolic syndromes [2]. The health-promoting effects of polyphenols depend on the quantity consumed in the diet and their bioavailability. In addition, polyphenols are the active substances in many food legumes, which regulate the activity of a broad spectrum of cell receptors, enzymes and gene expression [3]. Animal experimental studies showed that polyphenol in common beans possess anti-oxidant properties and have various biological activities including anti-diabetic, anti-obesity, anti-inflammatory, antimicrobial, anticancer, hepatoprotective, cardioprotective, nephroprotective, neuroprotective, and osteoprotective [4][5][6][7][8][9][10][11].

2. Common Beans and Their Health Benefits

Common beans (*Phaseolus vulgaris* L.) are annual plants, cultivated in temperate and semitropical regions for their edible dry seeds that are variously called navy beans, kidney beans, red beans, black beans, pinto beans, and cranberry beans. They were first cultivated in Peru and Mexico around 8000 years ago and are now cultivated worldwide [12]. They belong to the family Fabaceae. In the temperate regions, the green leaves and immature pods are edible as vegetables. Dry beans are mainly consumed in low- and middle-class families as the large portion of the protein. In many parts of Asia, young leaves are consumed as a salad. The straw of the plant is normally used for fodder after beans are harvested. In 2010, the global production of dried beans was 25.42 million metric tons, and they were harvested on 32 million hectares. About 19.23% of the production was in India followed by Myanmar (13.88%), Brazil (12.42%), USA (5.66%), China (5.26%), Mexico (4.52%) and Tanzania (4.28%) [12]. The production of dried beans worldwide in 2014 was 27.59 million metric tons, and they were harvested on 31.22 million hectares. About 16.85% of the production was in Myanmar followed by India (14.89%), Brazil (11.92%), USA (4.74%), Mexico (4.60%), Tanzania (4.023%) and China (3.84%) [12]. Beans are known to be used for treating eczema, diabetes, diuretic, burns, acne, cardiac, bladder, carminative, dropsy, dysentery, emollient, hiccups, itchy, and rheumatism [13].

Common beans do not differ mostly in their nutritional compositions; they differ slightly in taste, texture and cooking times [14]. Navy beans are white in color, and were used in the U.S. Navy diet during the 19th century; hence, their name. They are small-sized, white-skinned, oval-shaped beans. Navy bean-containing diets exerted beneficial effects during experimental colitis by reducing inflammatory biomarkers both locally and systemically [15]. Emerging evidence supports the efficacy of navy beans in regulating serum cholesterol and lipid profiles, and inhibiting the incidence and recurrence of adenomatous polyps or precancerous growths, thereby preventing colorectal cancer [16][17]. Kidney beans are large-sized, firm textured, red/pink glossy skinned and kidney-shaped beans. They have the potential to reduce glycemic index in experimental diabetes [18] and the ability to attenuate colonic inflammation in healthy mice [19]. Red beans are small, soft red textured, oval-shaped beans. They exert an anti-inflammatory response [20] and have health-promoting potential with anti-fungal, immunomodulatory, anti-proliferative and apoptosis-inducing activities in tumor cells [21][22]. Black beans are known as turtle beans, which are sweet in taste, soft texture, medium-sized, and oval-shaped beans. These coats are an excellent source of anthocyanins and other phenolics with the potential to be used as natural food colorants with exceptional anti-diabetic potential [23]. Pinto beans are medium-sized, brown-skinned, oval-shaped beans. Hemagglutinins, defensins isolated from pinto beans, possess anti-fungal, anti-diabetic and anti-tumor activities [24][25]. Cranberry beans, also called Roman beans, are red creamy textured, medium-sized and oval-shaped beans. They are rich in phenolic compounds and non-digestible fermentable components, which may help alleviate experimental colitis and mitigate the severity of other gut barrier-associated pathologies [26].

Common beans play a vital role in the vegetarian diets and provide numerous health benefits connected with eating pattern [27]. They serve as a cost-effective source of nutrients. Health benefits of beans are generally acquired from direct attributes, including their high content of proteins, dietary fibers, low saturated fat content, vitamins, minerals, and phytochemicals, as well as replacement in the diet, when they substitute for animal products [28]. These replacements of meat and other animal products with beans are highly linked with enhanced animal welfare and the decrease in inputs of environmental resources [28]. Sufficient amounts of polyphenols in the

dried beans act as potent anti-oxidants. Regular intake of these dried beans containing total and soluble fiber as well as resistant starches have reduced glycemic index in the human.

3. Nutritional Compositions of Common Beans

Dry common beans (fully matured and dried) are a rich source of proteins, starch, unsaturated fatty acids (linoleic acid), dietary fibers, vitamins and minerals that are considered as important food resources. These dry beans are normally soaked and cooked for few hours, and served as soups, stews, and meat dishes. Green beans (green immature pods) have greater quantities of vitamin C and dietary fiber and are often sold as canned or frozen in the USA, while sold as fresh vegetables in China. Nutritional properties of the beans are highly linked to their measure of protein, and, to a smaller extent, their carbohydrate, vitamin, and mineral contents. The protein present in the bean types is different based on the cultivars, which ranges between 15% and 35%. The predominant amino acids present in the dry beans are lysine (6.5–7.5 g/100 g protein) and tyrosine with phenylalanine (5.0–8.0 g/100 g protein) [29]. Consequently, the protein present in the beans meets the minimal need of human requirements endorsed by the World Health Organization and Food and Agriculture Organization. Thus, 100 g of dry common beans serve in human provides about 9–25 g of protein, which is almost 20% of the recommended daily consumption for a normal adult. In addition, the digestibility of the dry bean protein is almost 80% [30]. About 55–75 g of carbohydrates are present in 100 g of raw beans and predominant fraction in the bean is starch, constituting almost 50% of the seed weight. In addition, dietary fibers (14–19 g/100 g of raw) and oligosaccharides are significant quantities [31]. More than 50% of fibers are insoluble, composed of pectins, pentosans, hemicellulose, cellulose, and lignin. The lipid fraction in the bean is about 1.5–6.5 g in 100 g of raw beans and is mainly composed of mono- and polyunsaturated fatty acids [32].

Dry beans contain biologically active phytochemicals, which are beneficial for human health [3]. While the beans contain huge quantities of protein, it is connected with anti-nutritional factors and other substances that are harmful to human health including polyphenols (including tannins), proteases, lectins, anti-vitamins, galacto-oligosaccharides, flatulence factors, allergens, and phytic acid [33]. Among the anti-nutritional factors, polyphenols are the primary contributors to reduce digestion of the bean in the human. They are highly active and can react with protein to cause impairment of the digestion. Tannins in the beans are potent and have the ability to bind with proteins by H-bonds, and thus prevent their digestion [34]. Boiling bean seeds is the common method of processing, and results in a decrease in the polyphenol content and reduces anti-nutritional factors [35]. The germination mechanism is also improving the levels of free amino acids, nutritional quality, and decreases the anti-nutritional factors [36]. The nutritional compositions of common beans are listed in **Table 1**.

Table 1. Nutritional compositions of common beans in 100 g of edible portion [37][38][39].

Nutrient	Units	Navy Beans	Kidney Beans	Red Beans	Black Beans	Pinto Beans	Cranberry Beans
Energy	kcal	92	92	167	464	500	257
Protein	g	6.15	5.38	22.22	14.29	10.71	22.86
Total lipid (fat)	g	0.00	0.38	0.00	21.43	21.43	0.00
Carbohydrate	g	16.15	20.77	63.89	57.14	60.71	60.00
Total dietary fiber	g	4.6	5.4	44.4	14.3	10.7	25.7
Total sugars	g	0.00	0.77	2.78	3.57	3.57	2.86
Resistant starch	g	4.2	2.0	3.8	1.7	1.9	2.6
Minerals							
Calcium	mg	62	46	167	143	71	114
Iron	mg	1.38	1.38	7.29	3.86	2.57	5.1
Potassium	mg	300	268	222	279	96	265
Magnesium	mg	48	37	44	60	43	39
Sodium	mg	108	8	69	286	286	10
Vitamins							

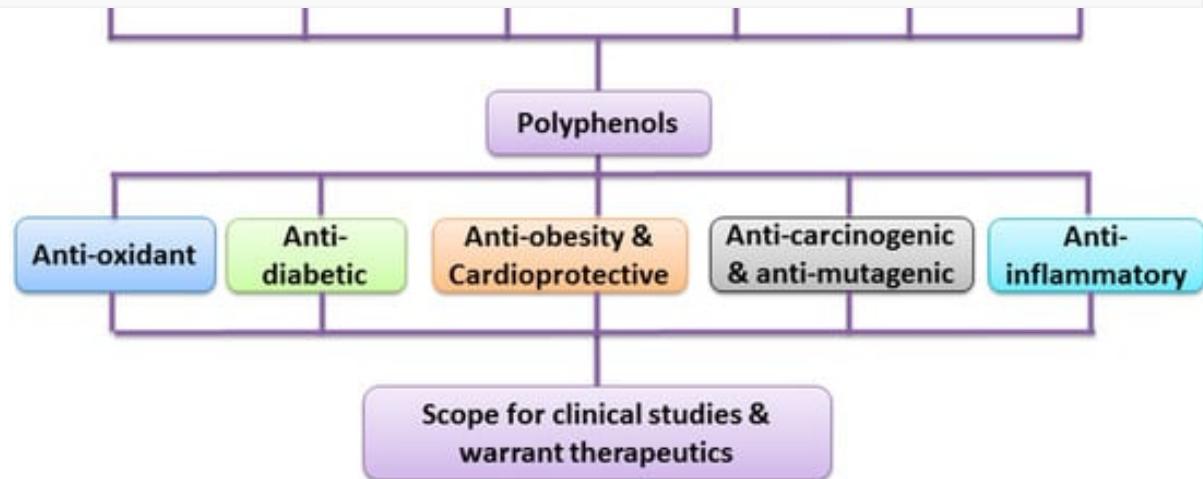
Nutrient	Units	Navy Beans	Kidney Beans	Red Beans	Black Beans	Pinto Beans	Cranberry Beans
Vitamin C	mg	0.9	0.9	0.0	0.0	0.0	0.0
Folate	µg	127	115	140	128	147	124
Lipids							
Total saturated	g	0.000	0.000	0.000	1.790	1.790	0.000
Total monounsaturated fatty acids	g	0.000	0.000	0.000	14.290	14.290	0.000
Total polyunsaturated fatty acids	g	0.000	0.000	0.000	5.360	5.360	0.000
Polyphenol	mg of gallic acid equiv/g	12.47	14.14	13.68	12.60	12.52	11.73
Flavonoids	mg of rutin equiv/g	1.78	2.59	1.55	1.28	0.98	1.65

compound is about 145 mg/g and represents about 11% of the total seed [41]. The phenolic compounds in the seeds are flavones, monomers, and oligomers of flavanols, flavanones, isoflavonoids, anthocyanins, chalcones, and dihydrochalcones [40][42][43][44][45]. However, the phenolic acids and non-flavonoid phenolic compounds (hydroxybenzoic and hydroxycinnamic acid) are mainly found in cotyledons of the bean [46]. Based on their chemical structure, they are a highly diverse group ranging from simple molecules such as phenolic acids to complex polymers such as tannins and lignin [47]. The testa of the beans contains greater quantities of proanthocyanidins and anthocyanins [40]. Condensed tannins (10.65 mg catechin equivalents/g) and cyanidin 3-glucoside (3.75 mg catechin equivalents/g) are also mainly present in seed coats of the bean [48][49]. These phenolic compounds are generally varied, based on the seed coat color pattern and types of the cultivar of the beans. The color of the seed coat is based on the presence of polyphenols including anthocyanins, flavonols glucosides, and condensed tannins. Dark-colored beans normally have the highest anthocyanins content [50]. In addition, red, black and pink-colored varieties confer color to the bean seed coat due to their anthocyanins. The colors of light yellow or pink spot of the seed coat are generally based on the presence of condensed tannins [49].

Phenolic compounds isolation and characterization were initiated at early 1960, and four anthocyanin pigments (delphinidin 3-glucoside, petunidin 3-glucoside, malvidin 3-glucoside and 3,5-diglucosides) were extracted from the seed coat of black violet beans [51]. Later, anthocyanins, flavonols, and tannins from the different varieties of kidney beans were isolated and characterized by many researchers [52][53][54][55].

The polyphenols present in the common beans are illustrated in **Table 2**.

Table 2. List of polyphenols in the common beans.


Bean Name	Polyphenol Class	Polyphenol Sub-Class	Compound Name	References
Dark bean	Flavonoids	Anthocyanins	Cyanidin 3-O-glucoside, pelargonidin 3-O-glucoside, petunidin-3-O- β -glucopyranoside, malvidin 3-O-glucoside, delphinidin acetyl-glucoside, pelargonidin acetyl glucoside, pelargonidin 3-O-malonyl glucoside, petunidin feruloyl glucose	[40]
Wild and weedy Mexican bean, pinto and black beans	Flavonoids	Anthocyanins	Peonidin, pelargonidin, cyanidin	[56][57]
Dark bean, Wild, and weedy Mexican bean	Flavonoids	Anthocyanins	Delphinidin 3-O-glucoside	[40][56]
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red	Flavonoids	Anthocyanins	Petunidin 3-O-(6"-acetyl-glucoside)	[50][58]

Bean Name	Polyphenol Class	Polyphenol Sub-Class	Compound Name	References
Dark and kidney bean, zolfino landraces	Flavonoids	Anthocyanins	Pelargonidin 3,5-O-diglucoside	[40] [59]
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red	Flavonoids	Anthocyanins	Delphinidin 3-O-glucosyl-glucoside	[50] [60]
Dark bean	Flavonoids	Flavanols	(+)-Catechin, (-)-epicatechin, (+)-gallocatechin, procyanidin dimer, (-)-epigallocatechin, Procyanidin dimer B2, procyanidin dimer B3, procyanidin dimer B4, procyanidin trimer, procyanidin trimer EEC, naringenin 7-glucoside	[40]
Dark bean	Flavonoids	Flavanones	Naringenin, hesperetin, naringin, naringenin 7-O-rutinoside, naringenin 7-O-glucoside, naringenin-7-methyl ether 2, hesperetin 3'-O-glucuronide, hesperetin 7-O-glucuronide, hesperetin 3',7-O-diglucuronide, hesperetin 5,7-O-diglucuronide, hesperetin 7-O-rutinoside	[40]
Dark bean	Flavonoids	Flavones	Apigenin, apigenin 7-O-glucoside	[40]
Brazilian bean	Flavonoids	Flavones	Chrysin	[45]
Dark bean, Brazilian bean,	Flavonoids	Flavonols	Kaempferol	[33] [40] [45]

Bean Name	Polyphenol Class	Polyphenol Sub-Class	Compound Name	References
Mexican bean				
Dark bean, Brazilian bean, Mexican bean	Flavonoids	Flavonols	Quercetin	[33][40] [45]
Dark bean, and Brazilian bean	Flavonoids	Flavonols	Quercetin 3-O-galactoside, Quercetin 3-O-glucoside, Quercetin 3-O-rutinoside, Myricetin, Myricetin 3-O-glucoside, Myricetin 3-O-rhamnoside, Kaempferol 3-O-glucoside, Kaempferol 3-O-rutinoside	[40][45]
Pinto beans, zolfino landraces	Flavonoids	Flavonols	Kaempferol 3-O-glucosylxylose	[42][61]
Alubia, black, cranberry, dark red kidney, great northern, light red kidney, navy, pink, pinto, and small red	Flavonoids	Flavonols	Kaempferol 3-O-xylosyl-glucoside	[50][58]
Pinto beans	Flavonoids	Flavonols	Kaempferol 3-O-acetyl-glucoside	[42]
Dark bean, Brazilian bean	Flavonoids	Isoflavonoids	Daidzein	[40][45]
Dark bean, Brazilian bean	Flavonoids	Isoflavonoids	Genistein	[40][45]

Bean Name	Polyphenol Class	Polyphenol Sub-Class	Compound Name	References
Dark bean	Flavonoids	Isoflavonoids	Biochanin A	[40]
Pinto and black beans	Flavonoids	Isoflavonoids	Glycitein	[57]
Dark bean	Flavonoids	Isoflavonoids	Dihydrogenistein	[40]
Brazilian bean	Polyphenols	Polyphenols	Coumestrol	[45]
Dark bean, pinto and black beans, Mexican bean	Phenolic acids	Hydroxybenzoic acids	Protocatechuic acid	[33][40] [57]
Dark bean	Phenolic acids	Hydroxybenzoic acids	Gallic acid	[40]
Mexican bean	Phenolic acids	Hydroxybenzoic acids	Vanillic acid	[33]
Dark bean, Mexican bean	Phenolic acids	Hydroxycinnamic acids	<i>p</i> -Coumaric acid	[33][40] [60][62]
Pinto and black beans	Phenolic acids	Hydroxycinnamic acids	Caffeic acid [63]	[57]
Dark bean, Mexican bean	Phenolic acids	Hydroxycinnamic acids	Ferulic acid	[33][40]
Dark bean	Phenolic acids	Hydroxycinnamic acids	Sinapic acid, Ferulic acid 4-glucoside	[40]

Bean Name	Polyphenol Class	Polyphenol Sub-Class	Compound Name	References
Dark bean	Stilbenes	Stilbenes	<i>trans</i> -Resveratrol, resveratrol 3-O-glucoside	[40]

Figure 1. Health promoting effects of polyphenol-rich dry common beans.

5.1. Anti-Oxidant Activity

The dry common beans have excellent anti-oxidant activities because of its phenolic acids, flavonoids, stilbenes, and tannins. These anti-oxidant activities are primarily due to the reducing capacity of polyphenols as they play vital functions in neutralizing free radicals and scavenging radicals or suppressing lipid peroxidation [64]. In addition, polyphenols involve chelation of metal ions, causing impairment/cessation of oxidative mechanisms. Generally, the anti-oxidant activity is elevated during digestion and absorption of the common beans in the intestine. Normally, phenolic compounds are released higher in the stomach due to its acidic environment, and the acid medium and enzyme-mediated hydrolysis facilitate the higher solubility of polyphenols along with starch and proteins [44]. Common beans containing polyphenols have demonstrated the highest total anti-oxidant capacity measured by in vitro methods of 2,2'-Diphenyl-1-picrylhydrazyl (DPPH), β -carotene bleaching, ferric reducing anti-oxidant power, oxygen radical absorbing capacity, Trolox equivalent anti-oxidant capacity, and total radical-trapping anti-oxidant parameters [42][43][57][65][66][67][68][69].

5.2. Anti-Diabetic Activity

Venn and Mann [70] have strongly suggested that the regular consumption of dry common beans is beneficial in the prevention and management of diabetes. Clinical studies show that consumption of three or more servings of beans in a week decreases the menace of diabetes almost by 35%, as compared to less or non-consumption of beans [71]. In vitro anti-diabetic studies of common beans have showed a greater inhibition of α -amylase, α -glucosidase and dipeptidyl peptidase-IV, which have found to be anti-hyperglycemic activities due to their phenolic

compounds such as flavonoids and their glucosides of delphinidin, petunidin, and malvidin, anthocyanins, catechin, myricetin 3-O-arabinoside, epicatechin, vanillic acid, syringic acid, and O-coumaric acid [23][72][73][74].

5.3. Anti-Obesity and Cardioprotective Activity

Metabolic syndrome is the set of metabolic conditions connected with the threat of cardiovascular diseases, increased triglycerides (TG), total cholesterol (TC), low density lipoprotein (LDL), very low density lipoprotein (VLDL), blood pressure (BP), and glucose as well as lower levels of HDL and central adiposity [75][76]. Regular intake of dry common beans has proven to be favorable for healthy subjects as well as obese individuals by decreasing serum TC and LDL and elevating HDL [77]. Epidemiological and clinical studies have demonstrated that consumption of common beans inversely connected with the risk of cardiovascular and coronary arterial diseases [76][78]. Further, these studies revealed that consumption of beans four or more times per week reduced the risks of coronary arterial diseases (22%) and cardiovascular diseases (11%): serum TC declines of about 1% decrease the risk of coronary heart disease by 2%, while serum LDL declines of about 1% reduce the risk of both diseases by about 1% [78]. Two weeks of regular consumption of baked beans by hypercholesterolemic individuals showed a significant reduction of TC (12%) and LDL (15%) [79].

5.4. Anti-Mutagenic and Anti-Carcinogenic Activities

Normally, the generation of ROS and oxidative stress damage macromolecules such as lipid, protein RNA, and DNA, which may cause chronic degenerative diseases, including cancer [80][81]. However, the occurrence of cancer can be decreased by lifestyle and dietary habit changes. Studies have also suggested that diets rich in common beans reduce the greater risk of various cancers including colon, breast, and prostate [82][83][84]. A larger study conducted in 41 countries found that the consumption of common beans reduced the morbidity by cancers such as colon, breast, and prostate [85]. Further, studies have revealed that consumption of beans two or more times per week reduced the risks of colon cancer up to 47% [86], prostate cancer about 22% [87] and breast cancer about 67% [88]. In vivo studies have also suggested consumption of beans reduced risk of various cancers [83][89][90][91][92].

5.5. Anti-Inflammatory Activity

Common beans contain phenolic compounds (phenolic acids, flavonoids, and anthocyanins) and non-digestible fermentable components (short-chain fatty acid precursors) with demonstrated anti-oxidant and anti-inflammatory activities. Experimental studies associated with modulation of inflammatory-related cell signaling pathways by common beans have been well established. In an animal study, C57BL/6 mice fed a 20% navy bean or black bean flour-containing diet showed significantly reduced dextran sodium sulfate induced experimental colitis and inflammation-related parameters (IL-1 β , TNF α , IFN γ , IL-17A, and IL-9), increased histological injury score and apoptosis, and alleviated symptoms of colitis and colon inflammation [15]. Common beans possess various bioactive compounds including flavonoids and anthocyanins, which significantly reduced the activity of murine macrophages through the inhibition of pro-inflammatory gene expression without cytotoxicity [93][94][95]. Similarly, human-randomized, controlled, crossover trials have also demonstrated that three-day intake of 100 g of black bean meal and soup improved the arthritic condition by significantly reducing pain and inflammation [95]. The

immunomodulatory effects of 20% navy bean or black bean or cranberry bean administration in C57BL/6 mice for two weeks showed a significant reduction in colonic mucosal damage and inflammation in response to dextran sodium sulfate. The results further demonstrated that common bean containing bioactive compounds including phenolic acids, flavonoids, and anthocyanins provoke prominent immune response [26][96].

References

1. Sharma, A.; Kaur, M.; Katnoria, J.K.; Nagpal, A.K. Polyphenols in food: Cancer prevention and apoptosis induction. *Curr. Med. Chem.* 2017.
2. Ganesan, K.; Xu, B. A critical review on polyphenols and health benefits of black soybeans. *Nutrients* 2017, 9.
3. McDougall, G.J. Phenolic-enriched foods: Sources and processing for enhanced health benefits. *Proc. Nutr. Soc.* 2017, 76, 163–171.
4. Aparicio-Fernández, X.; García-Gasca, T.; Yousef, G.G.; Lila, M.A.; González de Mejía, E.; Loarca-Piña, G. Chemopreventive activity of polyphenolics from black Jamapa Bean (*Phaseolus vulgaris* L.) on HeLa and HaCaT cells. *J. Agric. Food Chem.* 2006, 54, 2116–2122.
5. Aparicio-Fernández, X.; Yousef, G.G.; Loarca-Piña, G.; González de Mejía, E.; Lila, M.A. Characterization of polyphenolics in the seed coat of Black Jamapa bean (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2005, 53, 4615–4622.
6. Aparicio-Fernández, X.; Manzo-Bonilla, L.; Loarca-Piña, G. Comparison of antimutagenic activity of phenolic compounds in newly harvested and stored common beans *Phaseolus Vulgaris* against aflatoxin B1. *J. Food Sci.* 2005, 70, S73–S78.
7. Beninger, C.W.; Hosfield, G.L. Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from *Phaseolus vulgaris* L. seed coat color genotypes. *J. Agric. Food Chem.* 2003, 51, 7879–7883.
8. Cardador-Martínez, A.; Loarca-Piña, G.; Oomah, B.D. Antioxidant activity in common beans (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2002, 50, 6975–6980.
9. Guzmán-Maldonado, S.H.; Paredes-López, O. Functional products of plants indigenous of Latin America: Amaranth, quinoa, common beans and botanicals. In *Functional Foods. Bichemical and Processing Aspects*; Mazza, G., Ed.; Thechnomic: Lancaster, PA, USA, 1998; pp. 39–328.
10. Hangen, L.; Bennink, M.R. Consumption of Black Beans and Navy Beans (*Phaseolus vulgaris*) Reduced azoxymethane-induced colon cancer in rats. *Nutr. Cancer* 2002, 44, 60–65.
11. Queiroz-Monici, K.S.; Costa, G.E.A.; da Silva, N.; Reis, S.M.P.M.; de Oliveira, A.C. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats.

Nutrition 2005, 21, 602–609.

12. FAO. Estadísticas de Fríjol Seco. Available online: <http://www.fao.org/faostat/en/#data/QC> (accessed on 26 May 2014).

13. Adams, M.W. Energy inputs in dry bean production. In *Handbook of Energy Utilization in Agriculture*; Pimentel, D., Ed.; CRC Press: Boca Raton, FL, USA, 1980; pp. 123–126.

14. Mitchell, D.C.; Lawrence, F.R.; Hartman, T.J.; Curran, J.M. Consumption of dry beans, peas, and lentils could improve diet quality in the US population. *J. Am. Diet. Assoc.* 2009, 109, 909–913.

15. Zhang, C.; Monk, J.M.; Lu, J.T.; Zarepoor, L.; Wu, W.; Liu, R.; Pauls, K.P.; Wood, G.A.; Robinson, L.; Tsao, R.; et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation during colitis. *Br. J. Nutr.* 2014, 111, 1549–1563.

16. Borresen, E.C.; Brown, D.G.; Harbison, G.; Taylor, L.; Fairbanks, A.; O'Malia, J.; Bazan, M.; Rao, S.; Bailey, S.M.; Wdowik, M.; et al. A randomized controlled trial to increase navy bean or rice bran consumption in colorectal cancer survivors. *Nutr. Cancer* 2016, 68, 1269–1280.

17. Borresen, E.C.; Jenkins-Puccetti, N.; Schmitz, K.; Brown, D.G.; Pollack, A.; Fairbanks, A.; Wdowik, M.; Rao, S.; Nelson, T.L.; Luckasen, G.; et al. A pilot randomized controlled clinical trial to assess tolerance and efficacy of navy bean and rice bran supplementation for lowering cholesterol in children. *Glob. Pediatr. Health* 2017, 4.

18. Lestari, L.A.; Huriyati, E.; Marsono, Y. The development of low glycemic index cookie bars from foxtail millet (*Setaria italica*), arrowroot (*Maranta arundinacea*) flour, and kidney beans (*Phaseolus vulgaris*). *J. Food Sci. Technol.* 2017, 54, 1406–1413.

19. Monk, J.M.; Zhang, C.P.; Wu, W.; Zarepoor, L.; Lu, J.T.; Liu, R.; Pauls, K.P.; Wood, G.A.; Tsao, R.; Robinson, L.E.; et al. White, and dark kidney beans reduce colonic mucosal damage and inflammation in response to dextran sodium sulfate. *J. Nutr. Biochem.* 2015, 26, 752–760.

20. Chao, W.W.; Chung, Y.C.; Shih, I.P.; Wang, H.Y.; Chou, S.T.; Hsu, C.K. Red bean extract inhibits lipopolysaccharide-induced inflammation and H₂O₂-induced oxidative stress in RAW 264.7 macrophages. *J. Med. Food*. 2015, 18, 724–730.

21. Chan, Y.S.; Ng, T.B. Northeast red beans produce a thermostable and pH-stable defensin-like peptide with potent antifungal activity. *Cell Biochem. Biophys.* 2013, 66, 637–648.

22. Chan, Y.S.; Wong, J.H.; Fang, E.F.; Pan, W.; Ng, T.B. A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. *Protein Pept. Lett.* 2013, 20, 1159–1169.

23. Mojica, L.; Berhow, M.; Gonzalez de Mejia, E. Black bean anthocyanin-rich extracts as food colorants: Physicochemical stability and antidiabetes potential. *Food Chem.* 2017, 229, 628–639.

24. Yin, C.; Wong, J.H.; Ng, T.B. Isolation of a hemagglutinin with potent antiproliferative activity and a large antifungal defensin from *Phaseolus vulgaris* cv. Hokkaido Large Pinto Beans. *J. Agric. Food Chem.* 2015, 63, 5439–5448.

25. Ojeda, A.G.; Wrobel, K.; Escobosa, A.R.; Elguera, J.C.; Garay-Sevilla, M.E.; Wrobel, K. Molybdenum and copper in four varieties of common bean (*Phaseolus vulgaris*): New data of potential utility in designing healthy diet for diabetic patients. *Biol. Trace Elem. Res.* 2015, 163, 244–254.

26. Monk, J.M.; Lepp, D.; Zhang, C.P.; Wu, W.; Zarepoor, L.; Lu, J.T.; Pauls, K.P.; Tsao, R.; Wood, G.A.; Robinson, L.E.; et al. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. *J. Nutr. Biochem.* 2016, 28, 129–139.

27. Haddad, E.H.; Tanzman, J.S. What do vegetarians in the United States eat? *Am. J. Clin. Nutr.* 2003, 78, 626–632.

28. Messina, V. Nutritional and health benefits of dried beans. *Am. J. Clin. Nutr.* 2014, 100, 437–442.

29. Chávez-Mendoza, C.; Sánchez, E. Bioactive compounds from Mexican varieties of the common bean (*Phaseolus vulgaris*): Implications for health. *Molecules* 2017, 22, 1360.

30. Suárez-Martínez, S.E.; Ferriz-Martínez, R.A.; Campos-Vega, R.; Elton-Puente, J.E.; de la Torre Carbot, K.; García-Gasca, T. Bean seeds: Leading nutraceutical source for human health. *CyTA J. Food* 2016, 14, 131–137.

31. Ulloa, J.A.; Rosas, U.P.; Ramírez, R.J.C.; Rangel, U.B.E. El frijol (*Phaseolus vulgaris*): Su importancia nutricional y como fuente de fitoquímicos. *Rev. Fuente* 2011, 3, 5–9.

32. Mederos, Y. Indicadores de la calidad en el grano de frijol (*Phaseolus vulgaris* L.). *Cultiv. Trop.* 2006, 27, 55–63.

33. Díaz-Batalla, L.; Widholm, J.M.; Fahey, G.C.; Castaño-Tostado, E.; Paredes-López, O. Chemical components with health implications in wild and cultivated Mexican common bean seeds (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2006, 54, 2045–2052.

34. Machado, C.M.; Ferruzzi, M.G.; Nielsen, S.S. Impact of the hard-to-cook phenomenon on phenolic antioxidants in dry beans (*Phaseolus vulgaris*). *J. Agric. Food Chem.* 2008, 56, 3102–3110.

35. Aguilera, Y.; Estrella, I.; Benítez, V.; Esteban, R.M.; Martín-Cabrejas, M.A. Bioactive phenolic compounds and functional properties of dehydrated beans flours. *Food Res. Int.* 2010, 44, 774–780.

36. López-Amorós, M.L.; Hernández, T.; Estrella, I. Effect of germination on legume phenolic compounds and their antioxidant activity. *J. Food Compos. Anal.* 2006, 19, 277–283.

37. United States Department of Agriculture (USDA). Agricultural Research Service, National Nutrient Database for Standard Reference Release 28. Nutrient Database Laboratory Homepage. Available online: <https://ndb.nal.usda.gov/ndb/search/list> (accessed on 14 July 2016).

38. Golam Masum Akond, A.S.M.; Khandaker, L.; Berthold, J.; Gates, J.; Peters, K.; Delong, H.; Hossain, K. Anthocyanin, total polyphenols and antioxidant activity of common bean. *Am. J. Food Technol.* 2011, 6, 385–394.

39. Ren, S.C.; Liu, Z.L.; Wang, P. Proximate composition and flavonoids content and in vitro antioxidant activity of 10 varieties of legume seeds grown in China. *J. Med. Plants Res.* 2012, 6, 301–308.

40. López, A.; El-Naggar, T.; Dueñas, M.; Ortega, T.; Estrella, I.; Hernández, T.; Gómez-Serranillos, M.P.; Palomino, O.M.; Carretero, M.E. Effect of cooking and germination on phenolic composition and biological properties of dark beans (*Phaseolus vulgaris* L.). *Food Chem.* 2013, 138, 547–555.

41. Cardador-Martinez, A.; Castano-Tostado, E.; Loarca-Pina, G. Antimutagenic activity of natural phenolic compounds present in the common bean (*Phaseolus vulgaris*) against aflatoxin B1. *Food Addit. Contam.* 2002, 19, 62–69.

42. Beninger, C.W.; Gu, L.; Prior, R.L.; Junk, D.C.; Vandenberg, A.; Bett, K.E. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2005, 53, 7777–7782.

43. Xu, B.J.; Chang, S.K. Total phenolic content and antioxidant properties of Eclipse black beans (*Phaseolus vulgaris* L.) as affected by processing methods. *J. Food Sci.* 2008, 73, 19–27.

44. Akillioglu, H.G.; Karakaya, S. Changes in total phenols, total flavonoids, and antioxidant activities of common beans and pinto beans after soaking, cooking, and in vitro digestion process. *Food Sci. Biotechnol.* 2010, 19, 633–639.

45. de Lima, P.F.; Colombo, C.A.; Chiorato, A.F.; Yamaguchi, L.F.; Kato, M.J.; Carbonell, S.A. Occurrence of isoflavonoids in Brazilian common bean germplasm (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2014, 62, 9699–9704.

46. Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and Peruvian bean cultivars (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2007, 55, 90–98.

47. Ávalos, G.A.; Pérez-Urria, C.E. Metabolismo secundario de plantas. . Reduca (Biología). Ser. Fisiol. Veg. 2009, 2, 119–145.

48. Reynoso Camacho, R.; del Carmen Ríos Ugalde, M.; Torres Pacheco, I.; Acosta Gallegos, J.A.; Palomino Salinas, A.C.; Ramos Gómez, M.; González Jasso, E.; Horacio Guzmán, Y.S.H. Common bean (*Phaseolus vulgaris* L.) consumption and its effects on colon cancer in Sprague–Dawley rats. *Agric. Téc. Méx.* 2007, 33, 43–52.

49. Juárez-López, B.A.; Aparicio-Fernández, X. Polyphenolics concentration and antiradical capacity of common bean varieties (*Phaseolus vulgaris* L.) after thermal treatment. In *Food Science and Food Biotechnology Essentials: A Contemporary Perspective*, 1st ed.; Nevárez-Moorillón, G.V., Ortega-Rivas, E., Eds.; Asociación Mexicana de Ciencia de los Alimentos, A.C : Durango, Mexico, 2012; pp. 25–33.

50. Lin, L.Z.; Harnly, J.M.; Pastor-Corrales, M.S.; Luthria, D.L. The polyphenolic profiles of common beans (*Phaseolus vulgaris* L.). *Food Chem.* 2008, **107**, 399–410.

51. Hayat, I.; Ahmad, A.; Masud, T.; Ahmed, A.; Bashir, S. Nutritional and health perspectives of beans (*Phaseolus vulgaris* L.): An overview. *Crit. Rev. Food Sci. Nutr.* 2014, **54**, 580–592.

52. Ariga, T.; Hamano, M. Radical scavenging action and its mode in procyandins B-1 and B-3 from adzuki beans to peroxy radicals. *Agric. Biol. Chem.* 1990, **54**, 2499–2504.

53. Tsuda, T.; Ohshima, K.; Kawakishi, S.; Osawa, T. Antioxidative pigments isolated from the seeds of *Phaseolus vulgaris* L. *J. Agric. Food Chem.* 1994, **42**, 248–251.

54. Guzman-Maldonado, G.H.; Castellanos, J.; De Mejia, E.G. Relationship between theoretical and experimentally detected tannin content of common bean *Phaseolus vulgaris* L. *Food Chem.* 1996, **55**, 333–335.

55. De Mejia, E.G.; Castano-Tostado, E.; Loarca-Pina, G. Antimutagenic effects of natural phenolic compounds in beans. *Mutat. Res.* 1999, **441**, 1–9.

56. Espinosa-Alonso, L.G.; Lygin, A.; Widholm, J.M.; Valverde, M.E.; Paredes-Lopez, O. Polyphenols in wild and weedy Mexican common beans (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2006, **54**, 4436–4444.

57. Xu, B.; Chang, S.K. Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (*Phaseolus vulgaris* L.) as affected by thermal processing. *J. Agric. Food Chem.* 2009, **57**, 4754–4764.

58. Choung, M.G.; Choi, B.R.; An, Y.N.; Chu, Y.H.; Cho, Y.S. Anthocyanin profile of Korean cultivated kidney bean (*Phaseolus vulgaris* L.). *J. Agric. Food Chem.* 2003, **51**, 7040–7043.

59. Adebawale, Y.A.; Adeyemi, I.A.; Oshodi, A.A.; Niranjan, K. Isolation, fractionation and characterization of proteins from Mucuna bean. *Food Chem.* 2007, **104**, 287–299.

60. Chung, H.J.; Liu, Q.; Pauls, K.P.; Fan, M.Z.; Yada, R. In vitro starch digestibility, expected glycemic index and some physicochemical properties of starch and flour from common bean (*Phaseolus vulgaris* L.) varieties grown in Canada. *Food Res. Int.* 2008, **41**, 869–875.

61. Romani, A.; Vignolini, P.; Galardi, C.; Mulinacci, N.; Benedettelli, S.; Heimler, D. Germplasm characterization of Zolfino landraces (*Phaseolus vulgaris* L.) by flavonoid content. *J. Agric. Food Chem.* 2004, **52**, 3838–3842.

62. Jenkins, A.L. The glycemic index: Looking back 25 years. *Cereal Foods World* 2007, 52, 50–53.

63. Huber, K.; Brígida, P.; Bretas, E.B.; Canniatti-Brazaca, S.G. Phenolic acid, flavonoids and antioxidant activity of common brown beans (*Phaseolus vulgaris* L.) before and after cooking. *J. Nutr. Food Sci.* 2016, 6, 1–7.

64. Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (*Phaseolus vulgaris* L.). *J. Sci. Food Agric.* 2005, 85, 935–942.

65. Guajardo-Flores, D.; García-Patiño, M.; Serna-Guerrero, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Characterization and quantification of saponins and flavonoids in sprouts, seed coats, and cotyledons of germinated black beans. *Food Chem.* 2012, 134, 1312–1319.

66. Cardador-Martínez, A.; Albores, A.; Bah, M.; Calderón-Salinas, V.; Castaño-Tostado, E.; Guevara-González, R.; Shimada-Miyasaka, A.; Loarca-Piña, G. Relationship among antimutagenic, antioxidant and enzymatic activities of methanolic extract from common beans (*Phaseolus vulgaris* L.). *Plant Foods Hum. Nutr.* 2006, 61, 161–168.

67. Xu, B.; Chang, S.K. Total phenolics, phenolic acids, isoflavones, and anthocyanins and antioxidant properties of yellow and black soybeans as affected by thermal processing. *J. Agric. Food Chem.* 2008, 56, 7165–7175.

68. Karaś, M.; Jakubczyk, A.; Szymanowska, U.; Materska, M.; Zielińska, E. Antioxidant activity of protein hydrolysates from raw and heat-treated yellow string beans (*Phaseolus vulgaris* L.). *Acta Sci. Pol. Technol. Aliment.* 2014, 13, 385–391.

69. Frassinetti, S.; Gabriele, M.; Caltavuturo, L.; Longo, V.; Pucci, L. Antimutagenic and antioxidant activity of a selected lectin-free common bean (*Phaseolus vulgaris* L.) in two cell-based models. *Plant Foods Hum. Nutr.* 2015, 70, 35–41.

70. Venn, B.J.; Mann, J.I. Cereal grains, legumes and diabetes. *Eur. J. Clin. Nutr.* 2004, 58, 1443–1461.

71. Campos-Vega., R.; Loarca-Pina, G.; Oomah, B.D. Minor components of pulses and their potential impact on human health. *Food Res. Int.* 2010, 43, 461–582.

72. Mojica, L.; Meyer, A.; Berhow, M.A.; González de Mejía, E. Bean cultivars (*Phaseolus vulgaris* L.) have similar high antioxidant capacity, in vitro inhibition of α -amylase and α -glucosidase while diverse phenolic composition and concentration. *Food Res. Int.* 2015, 69, 38–48.

73. Oseguera-Toledo, M.E.; Gonzalez de Mejia, E.; Amaya-Llano, S.L. Hard-to-cook bean (*Phaseolus vulgaris* L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. *Food Res. Int.* 2015, 76, 839–851.

74. Mojica, L.; de Mejía, E.G. Optimization of enzymatic production of anti-diabetic peptides from black bean (*Phaseolus vulgaris* L.) proteins, their characterization and biological potential. *Food*

Funct. 2016, 7, 713–727.

75. Pi-Sunyer, F.X. Pathophysiology and long-term management of the metabolic syndrome. *Obes. Res.* 2004, 12, 174–180.

76. Finley, J.W.; Burrell, J.B.; Reeves, P.G. Pinto bean consumption changes SCFA profiles in fecal fermentations, bacterial populations of the lower bowel, and lipid profiles in blood of humans. *J. Nutr.* 2007, 137, 2391–2398.

77. Anderson, J.W.; Major, A.W. Pulses, and lipaemia, short- and long-term effects: Potential in the prevention of cardiovascular disease. *Br. J. Nutr.* 2002, 88, 263–271.

78. Winham, D.M.; Hutchins, M.H. Baked beans consumption reduces serum cholesterol in hypercholesterolemic adults. *Nutr. Res.* 2007, 27, 380–386.

79. Shutler, S.M.; Bircher, G.M.; Tredger, J.A.; Morgan, L.M.; Walker, A.F.; Low, A.G. The effect of daily baked bean (*Phaseolus vulgaris*) consumption on the plasma lipid levels of young, normocholesterolemic men. *Br. J. Nutr.* 1989, 61, 257–265.

80. Wu, P.; Liu, S.; Su, J.; Chen, J.; Li, L.; Zhang, R.; Chen, T. Apoptosis triggered by isoquercitrin in bladder cancer cells by activating the AMPK-activated protein kinase pathway. *Food Funct.* 2017.

81. Chatterjee, A.; Ronghe, A.; Padhye, S.B.; Spade, D.A.; Bhat, N.K.; Bhat, H.K. Antioxidant activities of novel resveratrol analogs in breast cancer. *J. Biochem. Mol. Toxicol.* 2017.

82. Thompson, M.D.; Thompson, H.J.; Brick, M.A.; McGinley, J.N.; Jiang, W.; Zhu, Z.; Wolfe, P. Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (*Phaseolus vulgaris*, L.). *J. Nutr.* 2008, 138, 2091–2097.

83. Vergara-Castañeda, H.A.; Guevara-González, R.G.; Ramos-Gómez, M.; Reynoso-Camacho, R.; Guzmán-Maldonado, H.; Feregrino-Pérez, A.A.; Oomah, B.D.; Loarca-Piña, G. Non-digestible fraction of cooked bean (*Phaseolus vulgaris* L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. *Food Funct.* 2010, 1, 294–300.

84. Campos-Vega, R.; García-Gasca, T.; Guevara-Gonzalez, R.; Ramos-Gomez, M.; Oomah, B.D.; Loarca-Piña, G. Human gut flora-fermented non-digestible fraction from cooked bean (*Phaseolus vulgaris* L.) modifies protein expression associated with apoptosis, cell cycle arrest, and proliferation in human adenocarcinoma colon cancer cells. *J. Agric. Food Chem.* 2012, 60, 12443–12450.

85. Correa, P. Epidemiological correlations between diet and cancer frequency. *Cancer Res.* 1981, 41, 3685–3689.

86. Thompson, M.D.; Mensack, M.M.; Jiang, W.; Zhu, Z.; Lewis, M.R.; McGinley, J.N.; Brick, M.A.; Thompson, H.J. Cell signaling pathways associated with a reduction in mammary cancer burden by dietary common bean (*Phaseolus vulgaris* L.). *Carcinogenesis* 2012, 33, 226–232.

87. Kolonel, L.N.; Hankin, J.H.; Whittemore, A.S.; Wu, A.H.; Gallagher, R.P.; Wilkens, L.R.; John, E.M.; Howe, G.R.; Dreon, D.M.; West, D.W.; et al. Vegetables, fruits, legumes and prostate cancer: A multiethnic case-control study. *Cancer Epidemiol. Biomark. Prev.* 2000, **9**, 795–804.

88. Thompson, M.D.; Brick, M.A.; McGinley, J.N.; Thompson, H.J. Chemical composition and mammary cancer inhibitory activity of dry beans. *Crop Sci.* 2009, **49**, 179–186.

89. Mensack, M.M.; McGinley, J.N.; Thompson, H.J. Metabolomic analysis of the effects of edible dry beans (*Phaseolus vulgaris* L.) on tissue lipid metabolism and carcinogenesis in rats. *Br. J. Nutr.* 2012, **108**, 155–165.

90. Hayd, V.C.; Ramn, G.G.; Lorenzo, G.O.; Dave, O.B.; Rosala, R.C.; Paul, W.; Guadalupe, L.P. Non-digestible fraction of beans (*Phaseolus vulgaris* L.) modulates signaling pathway genes at an early stage of colon cancer in Sprague-Dawley rats. *Br. J. Nutr.* 2012, **108**, 145–154.

91. Feregrino-Prez, A.A.; Berumen, L.C.; Garca-Alcocer, G.; Guevara-Gonzalez, R.G.; Ramos-Gomez, M.; Reynoso-Camacho, R.; Acosta-Gallegos, J.A.; Loarca-Pia, G. Composition and chemopreventive effect of polysaccharides from common beans (*Phaseolus vulgaris* L.) on azoxymethane-induced colon cancer. *J. Agric. Food Chem.* 2008, **56**, 8737–8744.

92. Feregrino-Perez, A.A.; Piol-Felis, C.; Gomez-Arbones, X.; Guevara-Gonzlez, R.G.; Campos-Vega, R.; Acosta-Gallegos, J.; Loarca-Pia, G. A non-digestible fraction of the common bean (*Phaseolus vulgaris* L.) induces cell cycle arrest and apoptosis during early carcinogenesis. *Plant Foods Hum. Nutr.* 2014, **69**, 248–254.

93. Oomah, B.D.; Corbe, A.; Balasubramanian, P. Antioxidant and anti-inflammatory activities of bean (*Phaseolus vulgaris* L.) hulls. *J. Agric. Food Chem.* 2010, **58**, 8225–8230.

94. Gabriele, M.; Pucci, L.; La Marca, M.; Lucchesi, D.; Della Croce, C.M.; Longo, V.; Lubrano, V. A fermented bean flour extract down-regulates LOX-1, CHOP, and ICAM-1 in HMEC-1 stimulated by ox-LDL. *Cell Mol. Biol. Lett.* 2016, **21**, 10–21.

95. Reverri, E.J.; Randolph, J.M.; Steinberg, F.M.; Kappagoda, C.T.; Edirisinghe, I.; Burton-Freeman, B.M. Black beans, fiber, and antioxidant capacity pilot study: Examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. *Nutrients* 2015, **7**, 6139–6154.

96. Monk, J.M.; Lepp, D.; Wu, W.; Pauls, K.P.; Robinson, L.E.; Power, K.A. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health. *J. Nutr. Biochem.* 2017, **49**, 89–100.

Retrieved from <https://encyclopedia.pub/entry/history/show/112832>