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The genus Fusarium comprises a large and heterogeneous group of ascomycetes widely distributed in nature.

Many of them have received attention as phytopathogens, with great impacts on crops and as mycotoxin

producers, but others are non-pathogenic, endophytic, saprophytic, or parasitic species of other organisms. The

global distribution of the genus is attributed both to its metabolic diversity, which broadens its accessibility to very

diverse potential substrates, and to its efficient dispersal mechanism, which is based on the production of different

types of conidia. The complex taxonomy of Fusarium species has been clarified by DNA-based phylogenetic

analyses, which revealed a monophyletic lineage consisting of 20 species complexes including almost 300

phylogenetically distinct species. Different species of the Fusarium genus are widely used in research, e.g.,

Fusarium graminearum, Fusarium oxysporum, and Fusarium fujikuroi, which are normally associated with

pathogenesis or secondary metabolism. Some features of the biology of these species, especially those related to

development and metabolite production, are influenced by light. 

light  Fusarium  RNA

1. Effects of Light on Development

The developmental processes related to asexual reproduction in Fusarium are influenced by different factors and

environmental cues, including light . Fungi of this species spread asexually through the formation of three types

of spores, macroconidia, microconidia, and chlamydospores . The different kinds of spores share common

characteristics in different Fusarium species, but there is considerable morphological diversity . Macroconidia

are long, typically sickle-shaped, with transverse septa, usually containing several cells . Microconidia are usually

unicellular, although they are not produced by all Fusarium species, and a few species can arrange microconidia in

chains . Chlamydospores are thick-walled cells, usually formed inside the hyphae, capable of surviving in

adverse conditions and for long periods of time . Conidia of either type are usually produced in abundance to

promote rapid dispersal and the colonization of new habitats, including other pathogenic hosts. Due to their

multinucleated nature, it can be expected that the macroconidia are more resistant than the microconidia to

adverse conditions, and it has been reported that they can develop chlamydospores .

Visible and near-UV lights have been reported to enhance conidia production in different Fusarium species .

Thus, in Fusarium verticillioides, short-wavelength blue light is particularly effective in stimulating conidia

production . Conidiation levels and the presence of macroconidia are very variable among different F. fujikuroi

strains . Macroconidia are rarely observed in IMI58289, a widely used wild-type strain, but they are frequently

found in FKMC1995, which has been used in different works described in this research. Regulatory differences are
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also observed between both strains. For example, light induces conidiation in IMI58289  although it has a

negative effect in FKMC1995 . The differential fitness of conidia produced at different wavelengths towards light

has also been described .

In F. graminearum, conidiation under near-UV light requires the abaA gene product  conserved in other fungi.

The induction of conidiation by light in F. fujikuroi IMI58289 does not occur in mutants of the GATA factor Csm1 .

The latter, and other proteins, such as histone methyltransferase Set1 and demethylase Kdm5, control the

expression of the key conidiation regulator gene abaA . In this research, conidiation was tested under

illumination regimes, but the effect of light was not investigated. The elimination of Fvve1 in F. verticillioides alters

the aerial development of the hyphae and reduces their hydrophobicity, and in submerged cultures it activates

conidiation. Interestingly, this mutation increases the ratio of macroconidia to microconidia . The relationship of

this protein with light regulation provides a possible explanation for the influence of light on conidiation. The

possible involvement of photoreceptors in conidiation, investigated through the effect of their gene mutations.

Regulation by light also involves sexual reproduction. In sexually competent species, the formation of perithecia

during mating is favored under specific light conditions. This has been investigated in F. graminearum , in

which the perithecia are not formed in the dark but under light, with 4 h of daily light being enough for their optimal

production. Moreover, reducing UV exposure lowers the number of perithecia. Ascospore release is also stimulated

by light in this fungus .

2. Effect of Light on Carotenogenesis

Photocarotenogenesis is the most well-characterized light-regulated process in Fusarium . The first studies on

the effect of light on carotenogenesis were carried out on Fusarium aquaeductuum, which showed a gradual

accumulation of carotenoids after illumination, reaching a maximum at 12 h . The carotenogenetic reaction to

light in this species is independent of temperature in the range of 5 to 25 °C but requires oxygenation and active

protein synthesis . The light-inducing effect can be partially replaced by the addition of oxidizing reagents ,

suggesting that the oxidation of the -SH groups plays a role in the light sensing system, which disappears when

reducing agents are added . However, while brief exposure to light is sufficient for photoinduction, oxidizing

agents must be continuously present to maintain their stimulatory effect in addition to that of light , indicating

different mechanisms of action. Nevertheless, the oxidizing agent p-hydroxymercuribenzoate had no effect on

other Fusarium species .

All Fusarium carotenoid synthesis genes have been identified , and the pathway is well established. Three

structural genes, carRA, carB, and carX, required for torulene, β-carotene, and retinal production, are organized in

a gene cluster coregulated with a rhodopsin gene, carO. The photoinduction of carotenogenesis in Fusarium

mycelium grown in the dark involves a rapid increase in the transcript levels of most structural genes during the

first hour of illumination, followed by an accumulation of carotenoids in the following hours, providing an orange

pigmentation to the mycelium. Northern blot and RT-PCR analyses of the four clustered car genes of F. fujikuroi

showed a similar induction kinetics, also found for the carT gene, which is required for neurosporaxanthin
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synthesis. Similar results were obtained in F. oxysporum  and F. verticillioides . Recent RNA-seq data have

also revealed the significant photoinduction of ggs1 coding for a prenyl transferase , which has been previously

underestimated . The carD gene exhibited a lower photoresponse in F. fujikuroi , as corroborated by RNA-seq

data . Therefore, in F. fujikuroi, all carotenoid metabolism genes are regulated by light. The regulatory proteins

responsible for this photoresponse are mentioned in later sections, but other proteins involved in the light signal

transduction pathway may also be responsible. Fusarium has the predicted components of a Velvet complex,

FfLae1, FfVel, and FfVel2 , which is connected to light regulation in other fungi . The carRA gene is

upregulated in Fflae1 mutants, indicating a repressor function for lae1 gene .

3. Effect of Light on the Production of Other Secondary
Metabolites

Light modulates the production of other metabolites in addition to carotenoids. Gibberellin biosynthesis is

stimulated by light in some strains of F. fujikuroi , although its effect is minor compared to that caused by

nitrogen shortage. The influence of light on the synthesis of enniatins, cyclohexadepsipeptide antibiotics produced

by different Fusarium species, has also been investigated. Enniatin production is enhanced by light in Fusarium

sambucinum . In other fungi, such as those of the genera Aspergillus or Neurospora, light influences the

production of secondary metabolites through the Velvet VelB/VeA/LaeA complex . In Aspergillus, this occurs

through light controlling the VeA passage into the nucleus in response to a signal from photoreceptor proteins .

In Neurospora crassa, light promotes the degradation of the Velvet Ve-1 protein . Disruption of the Velvet

complex genes in F. fujikuroi almost completely halts the biosynthesis of gibberellins, fumonisin, fusarins, and

fusaric acid , as well as conidiation. F. graminearum deletion mutants of the FgVeA and FgVe1 genes show

reduced aerial hyphal formation, as well as reduced biosynthesis of deoxynivalenol, aurofusarin, and trichotecene

. No attention has been paid, for either of the two Fusarium species, to the effect of light on these phenotypic

changes. However, deleting the Velvet complex genes veA, velB, and laeA drastically reduces beauvericin

production in F. oxysporum under light and dark conditions, in addition to affecting conidia production and

morphology . These mutants exhibited fewer differences in pigmentation and morphology between light and dark

growth colonies than those exhibited by the wild type, confirming their connection to light regulation.

4. Fusarium Photoreceptors

The proteins responsible for light detection and signal transmission are known as photoreceptors. They bind to

small molecules called chromophores, which can absorb light and cause a conformational or chemical change in

the cognate protein. This triggers a direct response or initiates a signal transduction pathway . Depending on the

nature of their chromophore, photoreceptors can detect light or radiation within a specific wavelength range. Thus,

UV-, blue/UV-, green-, or red-light photoreceptors can be distinguished. Flavin, retinal, and tetrapyrrole

chromophores are the typical fungal photoreceptor chromophores . Most light responses studied in fungi are

caused by the detection of blue light, although responses at other wavelengths are also known . The

main families of photoreceptors in fungi and their presence in Fusarium are described below. Fusarium genomes
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contain genes for ten photoreceptors (Table 1). Most of them have been studied by targeted deletion in several

Fusarium species, while others await investigation.

Table 1. Genes for photoreceptor proteins in the genomes of three Fusarium species.

 Color of absorbed light is indicated in parentheses.  Protein denomination in F. fujikuroi.  References to studies

in which the gene or protein was investigated in a Fusarium species.  Gene denominations in genome

annotations.  Strain IMI58289.  Strain 4287. Formae specialis lycopersici.  Strain PH-1.  WCC: White Collar

complex. WcoA forms a complex with WcoB, in which WcoA is the light-detecting component.
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