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Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures, which can absorb relatively

large amounts of fluid. Because of the high water content, soft structure, and porosity of hydrogels, they closely resemble

living tissues. Research in recent years shows that hydrogels have been applied in various fields, such as agriculture,

biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying

technology improvements of hydrogel development, hydrogels can be expected to be applied in more fields. 
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1. Introduction

Hydrogels comprise a three-dimensional (3D) network which can absorb a large amount of water and swell in the water

due to their hydrophilic groups, such as -NH , -COOH, -OH, -CONH , -CONH, and -SO H . Its network is

usually constructed by crosslinked polymer chains that sometimes can be formed through crosslinked colloidal clusters 

. They can be flexible and soft, which are results of their water absorption ability . Chemical or

physical crosslinking of natural or synthetic polymer chains can be used to design the hydrogels . Because

of the high water content, soft structure, and porosity of hydrogels, they closely resemble living tissue. Wichterle and Lim

first developed hydrogels for biomaterials in 1960. They produced a synthetic poly-2-hydroxyethyl methacrylate (PHEMA)

hydrogel, which was then used as a filler for eye enucleation and contact lenses . Since then, the expense of hydrogels

in drug delivery and bioactive compound release has been elevated in several early studies from the 1970s to the 1990s

. In the 1990s, hydrogels were applied in tissue engineering . The application of hydrogels was

restricted to only the surface environment from the 1970s to the 1990s, for applications in the eye or open wounds, for

example. The properties (e.g., swelling–deswelling rate, stiffness, degradability, mech size) of hydrogels can be adjusted

by changing the hydrophilic and hydrophobic ratios, the initiator or polymer concentrations, and the reaction conditions

(time, temperature, container, etc.) . The biomedical application of hydrogels is not limited to the surface

environment due to in situ gelation after infection and the stimuli responsiveness of the hydrogel .

Over the past 60 years, hydrogels have been engineered to be implantable, injectable, and sprayable for many organs

and tissues . Recently, hydrogels have gained attention in the field of environmental engineering , soft robotics

, and wastewater treatment . With the underlying technological improvement of hydrogel generation, hydrogels can

be expected to be used in more fields.

2. Biomedical Applications of Hydrogels

2.1. 3D Cell Cultures

Three-dimensional cell cultures provide a useful platform for the cell to grow in vitro in all directions. Compared with the

2D culture system, it is easier to understand the in vivo cell behavior, since cells form a 3D structure in living tissue. The

3D cell culture is achieved by culturing the cells on a 3D scaffold. In the in vivo 3D cell structures, the cells are embedded

in the extracellular matrix (ECM) and form a 3D structure. ECM is known to play an important role in regulating the cell

behavior . Hydrogels have a 3D structure and a hydrophilic polymer network capable of absorbing water in addition to

biological fluid . Thus, they can construct the soft and wet 3D structure which is like the

extracellular matrix (ECM), which is available to encapsulate the cells. This results in those hydrogels which have gained

increasing attention in the application of scaffolds for 3D cell cultures .

Hydrogels can comprise natural, synthetic, and semi-synthetic polymers. These hydrogels provide distinct biochemical,

physical, and mechanical properties for the 3D cell culture . Table 1 describes the recent application of these hydrogels
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for 3D cell culture. Natural hydrogels have good biocompatibility, endogenous factors, and the similar viscoelasticity and

fibrils of the ECM. These hydrogels can support cell activity for 3D cell cultures.

Table 1. Natural, synthetic, and semi-synthetic hydrogels for 3D cell cultures.

Source of
Hydrogels Properties Materials Cell Applications

Natural

Provide comparable
viscoelasticity and
fibrils to the ECM;
having good
biocompatibility;
endogenous factors
can support cellular
activity

Collagen
Rat chondrocyte , hMSCs

, rMSC ,
HUVECs/hASCs 

Maintain the chondrocyte phenotype ;
facilitate chondrogenic differentiation of
hBMSCs  and rBMSCs ; form
stable EC networks ; promote cell
viability; promote growth of hMSCs .

HA

hiPSC-NPCs , hiPSCs ,
rMSCs , human breast
cancer MCF-7 cells ,
HepG2 cells , human
dental pulp stem cells ,
hNS/PC , and hMSCs 

Promote the neural differentiation of
hiPSC-NPCs ; cardiac differentiation
of hiPSCs ; osteogenic differentiation
of human dental pulp stem cells ; the
adhesion and proliferation of HepG2
cells ; cell spreading, fiber
remodeling, and focal adhesion of
hMSCs ; maintain the stemness of
rMSCs and induce the direct cartilage
differentiation ; enhance the
tumorigenic capability of MCF-7 cells

; increase the oligodendrocytes and
neural differentiation of hNS/PC and
support long-term cell viability .

Fibrin

HUVECs/hMSCs , porcine
cumulus–oocyte complexes
(COCs) , primary human
chondrocytes , mHPSCs

, and
hiPSCs/HUVECs/human
dermal fibroblast 

Prevascular formation of HUVECs,
improve cell viability and proliferation of
hMSCs and enhance their osteogenic
differentiation and bone mineral
deposition ; maintain the functional
relationship between oocytes and
follicular cells ; induce the production
of glycosaminoglycans and collagen
type II of primary human chondrocytes

; enhance the murine hematopoietic
stem/progenitor cells (mHPSCs)
expansion and differentiation ; no
effect viability and prevascular
formation of encapsulated cells .

Alginate
hESCs/hiPSCs , hiPSCs-
derived neurons 

Enhance the generation of retinal
pigmented epithelium and neural retina
of hESCs/hiPSCs ; form complex
neural networks .

Synthetic

Have the good
mechanical strength to
provide structural
support for various
cell types in 3D cell
culture

PVA

mHSCs , mSCCs ,
human glioma cell lines
LN299, U87MG and Gli36 ,
human breast cancer Hs578T
cells, and human pancreatic
cancer cell lines Sui67 and
Sui72 

Enhance the expansion of murine
hematopoietic stem cells (mHSCs) ;
promote the meiotic and post-meiotic
differentiation rate of mSCCs ; form
tumor spheroids .

PEG
hiPSCs , mMSCs ,
chondrocyte , and hMSCs

Enhance the hematopoietic
differentiation of hiPSCs ; evaluate
the behavior of mMSCs  and hMSCs
at the specific condition ; prolong the
oxygen release of chondrocytes .

Semi-
synthetic

Have a feature of ECM
microenvironment and
faster stress relaxation

HA–PEG
hiPS-HEPs  and HUVECs

Enhance viability and functionality of
hiPS-HEPs ; promote the capillary-
like sprouts formation of HUVECs
spheroids .

RGD–
alginate–
PEG

Fibroblasts and mMSCs 
Increase the spread and proliferation of
fibroblasts and the osteogenic
differentiation of mMSCs .

2.2. Drug Delivery

Polymers are one of the most promising substances for the preparation of drug delivery systems. Polymers can be

prepared for various nanostructures, including polymeric micelles, polymeric vesicles, and hydrogels. Those
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nanostructures are great for drug delivery . Increased interest in hydrogels is focused on smart hydrogels due to the

stimuli-responsive properties of polymeric moieties. Stimuli-responsive properties can enable the formulation of novel

targeted drugs and control drug release through non-intravenous administration. It can also delay the effect of

opsonization by low blood contact.

The basic advantage is the ability of a smart hydrogel to change its properties (such as mechanical properties, swelling

capacity, hydrophilicity, or permeability of bioactive molecules) under the effect of surroundings, including temperature,

pH, electromagnetic radiation, magnetic field, and biological factors. Smart hydrogels can be prepared by the natural or

synthetic polymers. There is a problem with natural hydrogels, which is that its mechanical properties make it difficult to

maintain consistency.

Although this problem with natural hydrogel can be overcome by extensive chemical modification for natural polymers, it is

very difficult to process . In contrast, synthetic polymers are easy to alter their chemical or physical properties. The

biodegradable and hydrophilic synthetic polymers are the most competitive substances for the synthesis of smart

hydrogels for drug delivery. Those synthetic polymers endow smart hydrogels with low toxicity, low side effects, and low

blood material adhesion. Of these, the low blood material adhesion can slow the effect of opsonization and reduce the

phagocyte elimination. Table 2 shows the application of those synthetic smart hydrogels for drug delivery.

Table 2. Smart hydrogels for drug delivery.

Hydrogels Drug Materials Sustained-
Release Time

Proposed
Applications Ref.

Thermoresponsive
hydrogel

Dexamethasone HPMA More than 30
days

Osteoarthritis and
rheumatoid arthritis

Topotecan Poloxamer 407 and
poloxamer 188 28 days Colorectal cancer

Lamivudine and zidovudine Pluronic  F-127 168 h AIDS

Antibody PEGMA 13 days
Enhance the
efficacy of antibody
treatment

pH-responsive
hydrogel

Bortezomib mPEG-LUT 50 h Colorectal cancer

Amifostine (S-2(3-
aminopropylamino) ethyl
phosphorothioate

MAC-g-PCL 6 h Acute radiation
syndrome

Photoresponsive
hydrogel

Doxycycline

SPCOOH modified-
silicone-hydrogel
(poly(HEMA-co-
PEGMEA))

42 h Inflammation
disease

Insulin BP, pNIPAM, PEG, and
ETPTA Not detected Diabetic disease

Daul-responsive
hydrogel      

pH/thermo Doxorubicin
chemosensitizer curcumin

poly (NIPAAm-co-
DMAEMA) 168 h Colon cancer

 Methotrexate  50 h Breast cancer

pH/redox Magnesium ions
poly (NIPAAm-co-
DMAEMA)
PLP-CDE

6 h Ionic therapeutics

2.3. Wound Dressings

The skin is the largest human organ and consists of epidermis, endothelium, and subcutaneous tissue from outside to

inside. Skin is attacked by physical, chemical, or thermal damage, which results in wounding. Wounds lead to the

destruction of skin structure and function . The creation of a wound will trigger a series of physiological responses that

promote wound repair, known as wound healing . Wounds can be categorized by the nature of the repair as acute and

chronic wounds. Acute wounds are mainly caused by mechanical injuries, such as abrasions, cuts, burns, scalds, or

surgical incisions, and can heal completely in about 8–12 weeks . Chronic wounds are wounds with delayed healing,
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12 weeks after the initial injury . These wounds are mainly caused by repeated tissue damage, underlying physiological

factors (such as diabetes, impaired angiogenesis, innervation, or cell migration), or acquired physiological factors (such as

malignancy or infection) . Once a chronic wound forms, it can eventually lead to amputations or even mortality .

The wound healing process is dynamic and complicated. It involves four phases: hemostasis, inflammation, proliferation,

and remodeling . The hemostasis phase occurs within minutes of the injury. During this period, platelets stick to the

wound site, engage with collagen, and release thrombin, which activates fibrin to form a network that stops blood loss.

The inflammation phase occurs when immune cells (especially neutrophils and macrophages) are recruited to the wound

site by platelets. Immune cells engulf damaged cells, dead cells, bacteria, and other pathogens at the wound site. At the

same time, various peptide growth factors are released by platelets and inflammatory cells, which promote the migration

of fibroblasts to the wound site.

During the proliferation phase, fibroblasts proliferate at the wound site and rebuild the dermal tissue, employing

granulation tissue formation and extracellular matrix protein deposition. Within the granulation tissue, blood vessel

networks will be formed, providing sufficient oxygen and nutrients to improve cell survival. Epithelial cells then migrate

from the wound edge to the center to cover the defect: this process is termed re-epithelialization. During the remodeling

phase, excess collagen fibers are degraded in the dermis, and the wound shrinks and heals rapidly. Therefore, the use of

wound dressings to quickly stop bleeding, prevent infection, and promote repair can speed up wound healing and reduce

unnecessary mortality.

Characteristics of an ideal wound dressing should (1) provide and maintain a moist environment, (2) permit the easy

transmission of gases, (3) remove exudates and absorb blood from the wound, (4) have low adherence to skin, (5) reduce

wound necrosis, (6) prevent infection, (7) allow heat insulation, (8) enhance epidermal migration, (9) promote

angiogenesis, (10) have low toxicity and be biocompatible and biodegradable . Several studies have shown that

hydrogels can form a physical barrier and remove excess exudate. They also provide a moist environment to promote the

process of wound healing. In addition, hydrogels can be applied as a sprayable or injectable wound dressing, which may

fill irregularly shaped wounds . They also present with similar properties as the natural extracellular matrix

(ECM), biocompatibility, biodegradability, and tunable properties (such as shape, gel state, and mechanical strength).

These advantages of hydrogels can simulate the development of hydrogels for different dressings for different types of

wounds. Recently, functional hydrogels have received a lot of attention in wound dressing research. These hydrogels can

exhibit high-performance biological activities, such as antibacterial properties, promoting blood coagulation, or promoting

blood regeneration, etc. .

Wound dressings with hemostasis, angiogenesis, antibacterial infection, and anti-inflammation characteristic have a good

impact on wound healing. Natural polymers, such as cellulose, chitosan, collagen, and HA, contain endogenous

bioactivation factors. These natural hydrogels are a good wound dressing for wound healing. For example, an in-situ-

formed collagen–HA hydrogel was adapted to promote spontaneous wound healing. In addition, this hydrogel inhibited the

growth of planktonic Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) . PEG-modified collagen–

chitosan hydrogels further reduce the zone diameters of E. coli and S. aureus biofilms. This hydrogel also exhibits

hemostatic ability, which can enhance wound healing . Zhu L. and Chen L. developed CF-encapsulated graphene–silk

fibroin macromolecular hydrogel dressings, which have functions of antibacterial (both planktonic and biofilm S. aureus
and Pseudomonas aeruginosa (P. aeruginosa)) and enhanced fibroblasts growth. These have a great healing ability for

burn wounds . Khaliq T et al. used the chitosan HCl, κ-carrageenan, and PVA-based, physically crosslinked hydrogel

to load cefotaxime sodium (CTX), which displays a high oxygen permeability and antibacterial capacity for inhibiting the

biofilm size of S. aureus, P. aeruginosa, and E. coli. This hydrogel provided higher re-epithelialization and good

granulation tissue formation for healing burn wounds in a diabetic rat model . In addition, the silver-nanoparticle-

loaded pH hydrogel also showed the effective elimination of P. aeruginosa and Staphylococcus epidermidis (S.
epidermidis) in in vitro antibacterial biofilm studies. This hydrogel provides a promising strategy to enhance the healing of

drug-resistant-bacteria-infected wounds . The in vivo effect of this hydrogel needs further investigation. Collagen–PEG

injectable hydrogels containing umbilical cord stem cell factor (SCF) can induce neovascularization and skew toward M2

macrophages in diabetic wounds. They can promote diabetic wound repair based on their angiogenesis and anti-

inflammation abilities . It is unknown whether this hydrogel has functions in the inhibition of bacterial growth due to the

lack of antibacterial activity assay studies. A 3-carboxy-phenylboronic-acid-grafted gelatin–PVA hydrogel exhibits excellent

hemostasis properties enhancing cell adhesion. This hydrogel further encapsulates the vancomycin-conjugated silver

nanoclusters (VAN-AgNCs) and nimesulide (NIM), endowing an anti-inflammatory effect. It also has the capacity to inhibit

the planktonic S. aureus and P. aeruginosa growth in a VAN-AgNCs dose-dependent manner. In an in vivo experiment,

this VAN-AgNCs- and NIM-loaded 3-carboxy-phenylboronic-acid-grafted gelatin–PVA hydrogel can induce the sequential

healing processes to promote the healing of chronically infected diabetic wounds . Plasma-exosomes-loaded, pH-

responsive carboxymethylcellulose (P-Exos-loaded CMC) hydrogel stimulates the activation of the vascular endothelial
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growth factor (VEGF) signaling pathway. This pathway further enhances angiogenesis and re-epithelialization to promote

the wound healing process in diabetic type 1 mice . Another study uses the umbilical-cord-derived mesenchymal stem

cell exosomes combined with Pluronic F127 hydrogel to demonstrate that this hydrogel can induce the expression of

transforming growth factor beta-1 (TGFβ-1) and cell proliferation in addition to VEGF production. Based on the above

ability, it can enhance the regeneration of granular tissue and angiogenesis in chronic diabetic wound healing .

However, the antibacterial activity of exosomes-loaded hydrogels is unclear in these two studies .

2.4. Tissue Engineering

Tissue engineering is a promising and challenging strategy to treat patients who suffer functional failure and irreparable

tissue destruction . The aim of tissue engineering is to develop a scaffold mimicking an in vivo extracellular matrix to

support tissue regeneration. Hydrogels have gained great interest in tissue engineering due to their mechanical strength,

biocompatibility, biodegradability, and the resemblance to in vivo extracellular matrix .

A hydrogel scaffold can be useful in tissue regeneration of nerves, cardiac tissue, cartilage, and bone. For example, the

3D printing of collagen–chitosan is beneficial in decreasing scar and cavity formation and can improve the regeneration of

nerve fibers, as well as functional recovery, when tested in an animal model . Another example is HA combined with

alginate and fibrin. This was applied as an ink ingredient of 3D printing in peripheral nerve tissue regeneration . In

addition, the HA–cellulose hydrogels can repair the central nerves . Li J et al. used horseradish peroxidase (HRP) and

choline oxidase (ChOx) crosslinked gelation hydrogel to encapsulate the mMSCs. This hydrogel displays a high capacity

to promote cellular viability, neural differentiation, and neurotrophic secretion of loaded mMSCs. Based on that capacity, it

can enhance the survival and proliferation of endogenous neural cells and neurological function recovery of traumatic-

brain-injured mice .
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