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Brewer’s spent grains (BSG) is the main solid by-product in the brewing industry, obtained during lautering. BSG

has a multitude of applications and it can be used as a valuable fedstock for production of different products.

Moreover, it could also be used as a biomass for energy purposes.

Solid Fuel  Brewer's Spent Grain  Hydrothermal Carbonisation

1. Introduction

The main solid by-product in the brewing industry is brewer’s spent grains (BSG) obtained during lautering .

Industrial-scale breweries produce high quantities of mentioned wastes and are able to deliver it constantly.

According to Eurostat, 34 billion L of beer was produced in the European Union in 2019 . That means that large

quantities of brewer’s spent grains are produced yearly. Such by-product is rich in cellulose, hemicellulose, lignin,

and proteins (Table 1). It may be feasible to use them in the neighbourhood of such factories due to the high costs

of transport.

Table 1. The approximate chemical composition of BSG in different studies (% of dry weight).

[1]

[2]

  Lignin Cellulose Hemicellulose Ash Protein Lipids Phenolics Starch

Kanauchi et

al., (2001)
11.9 25.4 21.8 2.4 24.0 10.6 N.D. N.D.

Carvalheiro

et al.,

(2004)

21.7 21.9 29.6 1.2 24.6 N.D. N.D. N.D.

Silva et al.,

(2004)
16.9 25.3 41.9 4.6 N.D. N.D. N.D. N.D.

[3]

[4]

[5]
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Mussatto

and

Roberto,

(2006)

27.8 16.8 28.4 4.6 15.2 N.D. N.D. N.D.

Celus et al.,

(2006)
N.D. 0.3 22.5 3.3 26.7 N.D. N.D. 1

Xiros et al.,

(2008)
11.5 12 40 3.3 14.2 13 2.0 2.7

Jay et al.,

(2008)
20–22 31–33 N.D. N.D. 15–17 6–8 1.0–1.5 10–12

Treimo et

al., (2009)
12.6 ±

0.1
45.9 *  

23.4 ±

1.4
N.D. N.D.

7.8 ±

0.2

Robertson

et al.,

(2010)

13–17 N.D. 22–29 N.D. 20–24 N.D. N.D. 2–8

Khidzir et

al., (2010)
56.74 ±

9.38

40.20 ±

17.71
N.D.

2.27

±

0.76

6.41 ±

0.31

2.50 ±

0.11
N.D.

0.28 ±

0.06

Waters et

al., (2012) N.D. 26.0 22.2 1.1 22.1 N.D. N.D. N.D.

Meneses et

al., (2013)
19.40 ±

0.34

21.73 ±

1.36
19.27 ± 1.18

4.18

±

0.03

24.69 ±

1.04
N.D. N.D. N.D.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]
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N.D.—no data, *—all carbohydrates.

Figure 1. Diagram of beer wort production with an emphasis on the main solid by-product.

2. Thermal Valorization of BSG

Sobukola et

al., (2012)
9.19 ±

0.011
60.64 ± 0.26 *

2.48

±

0.02

24.39 ±

0.46

6.18 ±

0.13
N.D. N.D.

Kemppai-

nen et al.,

(2016)

19.6 45 * 4.1 20.3 N.D. N.D. N.D.

Yu et al.,

(2020)
N.D. 51.0 ± 0.7 *

4.1 ±

0.1

23.4 ±

0.2

9.4 ±

0.1
N.D. N.D.

[15]

[16]

[17]
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2.1. BSG as a Solid Fuel

Basic fuel properties, reported by many researchers, suggest that BSG is promising as a solid fuel (Figure 2) 

. Reported carbon content reported is typically ranging between 45% up to approx. 49% on the dry basis ,

which makes BSG not significantly different in terms of its fuel properties, in comparison to lignocellulosic biomass.

Additionally, ash content varies between 2 and 6% , which is similar to different types of agricultural

biomass . However, high moisture content, exceeding 70% , is a significant obstacle in

the use of BSG as a solid biofuel. Drying is possible but requires energy and bulky installations due to relatively

high residence time, e.g., the order of magnitude of 100 min was reported by some studies  for achieving

moisture reduction of 0.2 of the original value, corresponding with the moisture content of approx. 15%. Moreover,

the energy required for the drying process should not be overlooked. Some studies  reported drying energy, for

superheated steam drying of BSG, ranging between 0.65 and 1.45 MJ/kg of removed water, when latent heat

recovery from steam was included in the balance .

Figure 2. Energetic valorization of BSG.

2.2. Hydrothermal Carbonization as a Thermal Valorization Method for Wet Types of
Biomass

HTC is a thermal valorization process, typically performed at elevated temperatures (typically 200 to 260 °C) in

subcritical water, at elevated pressure . The use of such a process can enhance mechanical dewatering,

which has already been reported for various wet types of biomass .

The ionic constant of water is significantly increased, and water behaves as a non-polar solvent at 200–280 °C 

. A multitude of reactions occurring at the same time, with the output of multiple different products,

[18]

[19] [18][19]

[19][20][21]

[22][23][24][25][26][27][28] [18][19]

[29]

[30]

[30]

[31][32]

[33][34][35]

[35]

[36][37][38][39][40][41]
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can be considered characteristic for HTC of complex substances such as different types of biomass . The HTC

process starts with hydrolysis . This is followed by dehydration and decarboxylation . Dehydration

decreases the amount of hydroxyl groups (OH) . The decrease in the amount of OH groups also causes a lower

O/C ratio. Decarboxylation decreases the amount of carboxyl (COOH) and carbonyl (C=O) groups, also slightly

decreasing the O/C ratio of the solid product . This is followed by polymerization and aromatization . A

decrease in the number of hydroxyl groups is the key aspect in making hydrothermally carbonized biomass more

hydrophobic, lowering its equilibrium moisture content  and making physical dewatering easier . The ability to

decrease O/C ratio is beneficial when valorization is performed, aiming at improving the results of subsequent

pyrolysis . Moreover, the process of hydrothermal carbonization can change the biomass in terms of the

composition of the inorganic fraction . Furthermore, some studies reported relatively easy pelletizing of

hydrochars . This makes hydrothermal carbonization a prospective valorization process for low-quality solid

biofuels, especially when wet biomass is concerned as a potential feedstock.

2.3. The Effect of Hydrothermal Carbonization of BSG

Slight improvement in mechanical dewatering, thanks to HTC of BSG, was observed . Moreover, the GC-MS

analysis of the liquid HTC effluent indicated that it contains organic compounds that could be used to produce

biogas in the anaerobic digestion . Similarly, phenols, benzenediols, and fatty acids can be found in the liquid

by-products of HTC of BSG, concluding that the release of such compounds is an effect of the presence of bound

lipids in the feedstock . HTC of spent grain from a big scale brewery, resulted in an improvement in fuel

properties. Higher heating value (HHV) increased, accompanied by a decrease in the ash content, especially for

high water: biomass ratios . The study deemed low temperatures of the HTC process especially suitable, thanks

to the high content of hemicellulose in the feedstock . For HTC of BSG the mass yield can be determined by an

indirect method . Moreover, it has been confirmed that HTC can increase the heating value of BSG and

decrease the O/C ratio , indicating its suitability as a valorization method suitable for subsequent pyrolysis.

A Py-GC-MS analysis of BSG and corresponding hydrochars were performed. It was noticed that relatively low

pyrolysis temperature for spent grains resulted in a release of a significant amount of N-compounds, which was

attributed to weakly bonded proteins present in the feedstock . On the other hand, fewer N-compounds was

released during pyrolysis of hydrochars, owing to the Maillard reactions producing more stable N-heterocyclic

structures . Hydrothermal carbonization, performed at temperatures between 180 and 260 °C, resulted in the

removal efficiency of inorganics, ranging from almost 60% to more than 95% for K, approx. 45% to approx. 55% for

P, and approx. 35% up to approx. 75% for Na . Moreover, HTC performed at 180 and 220 °C, and pyrolysis at

600 °C resulted in increased BET surface for pyrochars from a two-step process, when comparing to single-step

pyrolysis at the same temperature .

3. Extraction of High-Value Compounds from BSG

Due to the multitude of compounds contained, the brewer’s spent grain undergoes extraction processes to obtain

substances with the desired properties. BSG undergoes many different extraction processes, such as alkaline

[32]

[31] [31][42]

[31]

[31] [31][42]
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hydrolysis , enzymatic hydrolysis ,microwave-assisted extraction , solvent extraction , supercritical

carbon dioxide extraction , ultrasound-assisted extraction , etc. The products that can be obtained by

extraction are:

3.1. Arabinoxylans, Polyphenol, Antioxidants and Glucose

Arabinoxylan is a polysaccharide consisting of two pentose sugars: xylose and arabinose . Among other

hemicelluloses, cellulose, and lignin, it is part of the dietary fibre found in BSG. It can bind to polyphenols such as

ferulic acid and p-cumaic acid. Arabinoxylans can be recovered by ultrasound-assisted extraction , microwave-

assisted extraction  or HCl and ethanol extraction (after previous protein extraction) .

Studies show that supercritical extraction of CO  with ethanol 60% v/v at 35 MPa, 40 °C at an extraction time of

240 min allows a good recovery of phenolic or flavonoid fractions . The extract obtained is characterized by

good antioxidant properties. Phenolic fractions can also be obtained by solvent extraction (acetone–water mixture)

. Good recovery of ferulic and p-coumaric acids is provided by the BSG alkaline extraction  and solvent

extraction (acetone: water mixture) . For ultrasound-assisted extraction of polyphenol compounds from BSG,

experimental data were in good agreement with both power law and the Weibull model . Ultrasound-assisted

extraction achieved similar productivity, after 30 min of treatment, in comparison to enzyme hydrolysis .

Comparison of conventional maceration, microwave and ultrasound-assisted extraction, using BSG from light and

dark beer as well as their mixtures concluded that microwave and ultrasound extraction did not improve the total

polyphenol yield . As the result of the use of Bacillus subtilis WX-17 to improve the nutritional value of BSG in a

solid-state fermentation the total amount of unsaturated fatty acid and the total antioxidant quantity can increase by

as much as 1.7 and 5.8 times, respectively . Extraction of phenolic antioxidants from BSG, using acetone–water

and ethanol–water mixtures as extraction solvents, achieves maximum yield at 60% (v/v) organic solvent

concentration, for both solvents .

3.2. Proteins

Due to the high protein content (about 20% in dry matter), BSG is a good potential source of vegetable protein for

the food industry. In the case of protein extraction, the selectivity of the extraction process is crucial. Alkaline

treatment of BSG, resulted in the extraction yield of 21.4% and purity of 60.2% for extracted proteins . In case of

a combination of alkaline pretreatment with diluted acid, a very high degree of extraction was obtained (even 95%).

However, the selectivity of protein extraction process has some drawbacks, because part of lignin and

hydrocarbons contained in BSG can be dissolved together with proteins . Good selectivity, with lower horizontal

extraction (about 65%) can be obtained with hydrothermal pretreatment, which does not require the use of

chemicals . Good results of the extraction of proteins from BSG (up to 80%) were achieved with the use of

carboxylate salt—urea DES . The disadvantage of this technology is the residual DES in the protein product, but

in a case when a substitute for urea will be gained, this method could be attractive for making human nutrition

products. Another promising method is the use of ultrasounds for enzymatic hydrolysis of proteins from BSG .

[54] [55] [56] [14]
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By using ultrasound pretreatment, the efficiency of protein separation is increased (from 61.6 to 69.8%), the time of

enzymatic reaction is shortened (by 56%), and the cost of enzyme use can be reduced (even 73%).
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