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Accurate streamflow prediction (SFP) is crucial for water resource management, flood and drought forecasting, and
reservoir operations. However, complex interactions between surface and subsurface processes in watersheds
make predicting extreme events challenging. This work highlights the importance of incorporating physical
understanding and process knowledge into data-driven SFP models for reliable and robust predictions, especially

during extreme events.
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| 1. Introduction

Streamflow—a vital element of the hydrological system—constitutes a pivotal nexus between the sustenance of
diverse aquatic ecosystems and the fulfillment of fundamental human needs across agriculture, industry, and
societal well-being 2B |t also plays a significant role in riverine processes, influencing erosion, transportation,
and deposition. Additionally, streamflow serves as a critical indicator of climatic and environmental changes 4!,
Therefore, accurate understanding and prediction of streamflow are essential for drought monitoring, infrastructure
design, reservoir management, flood forecasting, water quality control, and water resource management &7,
However, despite advances in streamflow prediction (SFP) methods, accurate prediction remains challenging due
to the complex interplay between natural and human influences on a watershed’s response to precipitation BIEIE]
(19 Land-use changes, water withdrawals, infrastructure development, topography, soil characteristics, and
vegetation cover create a dynamic and interdependent system that challenges accurate modeling. Data limitations

and measurement uncertainties further complicate the task 1121,

Process-based models have been used to comprehend complex hydrological processes at the watershed scale,
while data-driven modeling (DDM) has been used to predict streamflow by leveraging input—output relationships.
DDM ranges from traditional statistical methods to complex artificial intelligence (Al)-based models, while process-
based models encompass conceptual and physically based models BIBIL3] Although less physically based, DDM
often outperforms PBM in terms of predictive accuracy 141511161 Developing physically based models is slow and
requires extensive data, making DDM an attractive solution to the challenge of relating input and output variables in
complex systems 7. Moreover, DDM has the potential to avoid several sources of uncertainty in the modeling

process, such as downscaling errors, hydrological model errors, and parameter uncertainty 12,

https://encyclopedia.pub/entry/55418 1/10



Watershed Processes and Streamflow Prediction | Encyclopedia.pub

However, many operational forecasting agencies do not use DDM for SFP 18l This may be due, in part, to the
“black box” nature of DDMs, making it difficult to interpret predictions and diagnose errors 12, Overfitting is also a
significant concern in this paradigm, as the complexity of the models can lead to spurious relationships with the
data (2021 |n fact, both DDM and PBM paradigms have difficulty capturing extreme events, such as floods or
prolonged droughts. While the inherent complexity and non-stationary nature of these events pose a significant
challenge for any prediction model, the simplified hydrological processes often used in PBM frameworks further
limit their accuracy [22. For example, simplified representations of groundwater modules in watershed models or

neglecting certain physical processes can hinder the models’ ability to capture the intricate dynamics of extreme
events [231124],

To improve SFP, several options, including domain knowledge, advanced data preprocessing techniques, multi-
model integration, and metaheuristic algorithms, have been explored. While most of these techniques aim primarily
to enhance prediction accuracy, PBM and domain knowledge-based approaches aim to improve prediction
accuracy, interpretability, and physical consistency in a DDM framework. Incorporating domain knowledge as
additional information about the mechanisms responsible for generating streamflow can help to build physically
consistent models and improve model performance (141251261 Additionally, integrating process-based models with
data-driven models is recognized as a way to create a streamflow model that is both physically consistent and

interpretable.

| 2. Overview of Basic Watershed Processes

In the modeling paradigm, particularly within the context of PBM, detailed analysis and discussion of the distinct
water balance segments and hydrological processes, along with comprehensive mathematical justifications and
expert insights drawn from both the water balance and intimate familiarity with a study region, are crucial for
strengthening the modeling procedures. Conversely, DDM can assist in circumventing certain modeling chain steps
that involve uncertainty. Given the growing prevalence of the combined data-driven and PBM approach 1227 this

section provides an overview of both methods.

2.1. Streamflow Generation Processes

Several factors influence streamflow generation, such as climate, hydrogeology, soil properties, vegetation,
management scenarios, and antecedent conditions. Precipitation undergoes interception by vegetation, infiltration
into the soil, or surface runoff into streams. Evapotranspiration (ET) and subsurface processes, especially baseflow
and lateral flow, significantly contribute to streamflow generation. From a watershed hydrology perspective, the
generation is depicted based on their relation to surface processes, rootzone processes, and groundwater flow
(Figure 1). However, conceptualizing and modeling streamflow has long been an intricate environmental challenge
due to the significant subsurface flow mechanisms occurring in soil and bedrock, which researchers have limited

capacity to quantify and evaluate 28],

https://encyclopedia.pub/entry/55418 2/10



Watershed Processes and Streamflow Prediction | Encyclopedia.pub

'Surface o
| X
jprocesses &

Evapotranspiration

€| Root zone
- Em .

Vados

1
|
|
|
| |
| . I
I O
| 3>
1 43 :
|
1 S .
I T : shallow aquifer -
R =
a ODutlet/Gauging : Percoration to
| ] shallow aquifer Seepage
| o
! o !
2 - -

o '8 e Confining layer

(T : g 1
! 8 : Recharge to deep
; x  aquifer
| | |
|
1

Figure 1. Basic watershed surface and subsurface hydrological processes and simplified diagram of the

hydrograph.
2.2. Streamflow Prediction

PBM is typically used when there is a good understanding of the fundamental processes driving the system, and
the goal is to create a model that accurately captures those processes. On the other hand, data-driven hydrological
models use statistical or soft computing methods to map inputs to outputs without considering the physical
hydrological processes involved in the transformation. The DDM approach is discussed further. Examples of widely
utiized PBM include the Soil and Water Assessment Tool (SWAT), HBV (Hydrologiska Byrans
Vattenbalansavdelning) 29 GR4J (Génie Rural a 4 parametres Journalier) (29 variable Infiltration Capacity (VIC)
Bl the Hydrologic Engineering Center—Hydrologic Modeling System (HEC-HMS) 22 and the Precipitation-Runoff
Modeling System (PRMS) 331 Next, researchers described the key hydrological processes and equations used in
the SWAT model as an example of PBM.

The SWAT model ET computation relies on potential evapotranspiration (PET) and has multiple options. The

selection of a method primarily depends on the availability of data. For instance, the Penman—Monteith method [34]
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necessitates measurements of solar radiation, air temperature, relative humidity, and wind speed, whereas the

Hargreaves method 22 requires only air temperature data.

2.3. Basic Processes in Data-Driven Streamflow Prediction

DDM can be broadly classified into two types: conventional data-driven techniques and Al-based models [B8IE7],
Conventional techniques, such as multiple linear regression (MLR), autoregressive integrated moving average
(ARIMA), autoregressive-moving average (ARMA), and autoregressive-moving average with the exogenous term
(ARMAX), are preferred in SFP due to their simplicity. In contrast, Al-based models offer more advanced
capabilities and higher accuracy BZB8l The most widely utilized Al-based data-driven models fall into four

categories: evolutionary algorithms, fuzzy-logic algorithms, classification methods, and artificial network techniques
[10][38]

The basic steps in DDM include data preprocessing, selecting suitable inputs and architecture, parameter
estimation, and model validation B4 This procedure unfolds in four key steps: data collection and cleaning,
feature selection and engineering, model selection and building, and prediction (Figure 2). Effective data
preprocessing, which typically involves essential steps such as data cleaning to detect and correct anomalies or
inconsistencies, is critical for DDM as it significantly impacts subsequent analysis accuracy and efficiency 49, To
ensure the model’s ability to generalize to real-world scenarios, a crucial step is to divide the available data into
three distinct subsets: training, testing, and validation 2. This strategic division allows the model to learn from the
majority of the data during training, undergo a rigorous evaluation on a separate testing set, and finally, have its

ability to generalize to unseen data confidently validated 43!,
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Figure 2. The fundamental data-driven prediction process.

Utilizing multiple input variables in hydrologic and water resources applications poses a challenge in identifying the
most relevant or significant ones (144 Selecting the most pertinent features can enhance model accuracy,
mitigate overfitting, and improve the interpretability of natural processes “944145] Feature selection encompasses
a variety of techniques, including filtering, wrapper, and embedded methods, which are broadly classified into

model-free and model-based approaches [4248]147],

An ideal input selection algorithm should exhibit flexibility for modeling, computational efficiency for handling high-
dimensional datasets, scalability with respect to input dimensionality, and redundancy minimization 43, A primary
drawback of the model-based method lies in its computational demands, as it necessitates numerous calibration
and validation processes to identify the optimal input combination. This renders the method unsuitable for large
datasets 47, Moreover, the input selection outcome hinges on the predetermined model class and architecture.
Nonetheless, model-based approaches generally achieve superior performance due to their fine-tuning to the

specific interactions between the model class and the data.

Feature engineering, the process of preparing input data before training a neural network, offers several benefits:

reduced error in estimated outcomes, shorter training times, and equal attention to all data 8. Effective
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normalization involves converting data to a linear scale, where equal relative changes correspond to identical
absolute values 49, Data are typically adjusted to fit within ranges like [-1, 1], [0.1, 0.9], or [0, 1] 459,

A comprehensive evaluation of a hydrological prediction model's performance requires both graphical and

numerical analyses of its error relative to observed data, including the selection of appropriate performance criteria

and careful interpretation of the results B, For a more holistic assessment, it is recommended to use at least one

goodness-of-fit measure, such as the Nash-Sutcliffe Efficiency Coefficient (NSE) B2 and one absolute error

measure, such as root mean square error (RMSE) B2l Specifically, for DDM, the relative correlation coefficient is

recommended as an alternative to conventional evaluation measures such as NSE 231,
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