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Distributed edge intelligence is a disruptive research area that enables the execution of machine learning and deep

learning (ML/DL) algorithms close to where data are generated. Since edge devices are more limited and

heterogeneous than typical cloud devices, many hindrances have to be overcome to fully extract the potential

benefits of such an approach (such as data-in-motion analytics).
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1. Introduction

Nowadays, with the rise of the Internet of Things (IoT), a large number of smart applications are being built, taking

advantage of connecting several types of devices to the internet. These applications will generate a massive

amount of data that need to be processed promptly to generate valuable and actionable information. Edge

intelligence (EI) refers to the ability to bring about the execution of machine learning tasks from the remote cloud

closer to the IoT/Edge devices, either partially or entirely. Examples of edge devices are smartphones, access

points, gateways, smart routers and switches, new generation base stations, and micro data centers.

Some edge devices have considerable computing capabilities (although always much smaller than cloud

processing centers), but most are characterized by very limited capabilities. Currently, with the increasing

development in the area of MEMS (Micro–Electro–Mechanical Systems) devices, there is a tendency to carry out

part of the processing within the data producing devices themselves (sensors) . There are certainly several

challenges involved in performing processing on resource-limited devices, including the need to adapt complex

algorithms and divide the processing among several nodes.

Therefore, in Edge Intelligence, it is essential to promote collaboration between devices to compensate for their

lower computing capacity. Some synonyms of this concept found in the literature are: distributed learning, edge/fog

learning, distributed intelligence, edge/fog intelligence and mobile intelligence .

The leverage of edge intelligence reduces some drawbacks of running ML tasks entirely in the cloud, such as:

[1][2][3][4]
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High latency : offloading intelligence tasks to the edge enables achievement of faster inference, decreasing

the inherent delay in data transmission through the network backbone;

Security and privacy issues : it is possible to train and infer on sensitive data fully at the edge, preventing

their risky propagation throughout the network, where they are susceptible to attacks. Moreover, edge

intelligence can derive non-sensitive information that could then be submitted to the cloud without further

processing;

The need for continuous internet connection: in locations where connectivity is poor or intermittent, the ML/DL

could still be carried out;

Bandwidth degradation: edge computing can perform part of processing tasks on raw data and transmit the

produced data to the cloud (filtered/aggregated/pre-processed), thus saving network bandwidth. Transmitting

large amounts of data to the cloud burdens the network and impacts the overall Quality of Service (QoS) ;

Power waste : unnecessary raw data being transmitted through the internet demands power, decreasing

energy efficiency on a large scale.

The steps for data processing in ML vary according to the specific technique in use, but generally occur in a well-

defined life cycle, which can be represented by a workflow. Model building is at the heart of any ML technique, but

the complete life cycle of a learning process involves a series of steps, from data acquisition and preparation to

model deployment into a production environment. When adopting the Edge intelligence paradigm, it is necessary to

carefully analyze which steps in the ML life cycle can be successfully executed at the edge of the network. Typical

steps that have been investigated for execution at the edge are data collection, pre-processing, training and

inference.

2. Related Work

Some surveys have been published that address the edge intelligence subject recently. However, they adopt

different perspectives from the one adopted in this SLR. Al-Rakhami et al.  propose and analyze a framework

based on the distributed edge/cloud paradigm using docker technology which provides a very lightweight and

effective virtualization solution. This solution can be utilized to manage, deploy and distribute applications onto

clusters (e.g., small board devices such as Raspberry PI). It is able to provide an advantageous combination of

various benefits and lower costs of data processing performed at the edge instead of central servers. However, the

authors base their proposal on experiments to support the proposal of a new framework. The research does not

mention any of the nine groups of techniques the researchers present in the work.

Wang et al.  survey is centered on the connection between Deep Learning and the edge, either to apply DL in

optimizing the edge or to use the edge to run DL algorithms. The study is divided into five fronts: DL applications on

edge; DL inference in edge; edge computing for DL; DL training at the edge; DL for optimizing the edge. The paper

discusses hardware and virtualization aspects. Concerning the (groups of) techniques and strategies, it is more

restricted to Federated Learning and the optimization of the edge with DL.

[8]
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Xu et al.  approach edge intelligence under the perspectives of edge caching, edge training, edge inference, and

edge offloading in a very comprehensive way. The researchers discuss all these aspects in the work but explore

additional techniques, and strategies related to pre-processing, federated learning, and scheduling. One

intersection of this paper with the researchers' research is the overlap of three groups of techniques the

researchers present (Federated Learning, Edge Pre-processing and Scheduling). However, the researchers

deepened the discussion into more groups of techniques.

The work presented by Zhou et al.  covers artificial intelligence to edge AI, showing a generalized representation

of application architecture used in the lifecycle management of ML. In the edge layer: sensors/actuators; edge

analytics; logging and monitoring. In the fog layer: visualization; live streaming engines; batch processing; data

ingestion; storage and ML model development platforms and libraries. The researchers' research approaches

several more domains in which edge intelligence is used, which are not present in this survey. Compared to these

other surveys, the researchers analyze the literature more comprehensively, including a discussion on application

domains of edge intelligence and their correlation with identified techniques.

Verbraeken et al.  provide an extensive overview of the current state-of-the-art in terms of outlining the

challenges and opportunities of distributed machine learning over conventional machine learning, discussing the

techniques used for distributed machine learning. The paper follows the same line of research of Wang et al. ,

with a focus on machine learning applied to the distributed environment. To this end, it makes inroads into the

various types of algorithms to solve problems using ML.

Table 1 shows the comparison between the researchers' work and the other surveys mentioned in this section. In

summary, the main gaps of the analyzed works are focused on aspects such as “Techniques and Strategies” on

the edge. The table also shows the aspects of “Challenges”and “Different Application Domains”, where edge

intelligence can be used.

Table 1. Comparison of existing surveys.

[10]
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  Scope

Paper Challenges

Group

of Techniques

Different Application

Domains

Al-Rakhami et al.  0/6 2/8 1/6

Wang et al.  1/6 4/8 4/6

Verbraeken et al.  1/6 0/8 0/6
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3. Answering the RQs

3.1. RQ1—Research Challenges in Edge Intelligence (EI)

In this section,  the researchers summarize the challenges faced by the Edge Intelligence (EI) paradigm that the

analyzed studies either mentioned or aimed to tackle. The discussion presented in this section aims to provide

answers to RQ1: What are the main challenges and open issues in the distributed learning field?

As mentioned earlier, performing ML techniques at the edge of the network promises to bring several benefits, but

it raises several challenges. As this field is still in its beginning, solutions to such challenges are still being

investigated. The surveyed studies tackle several challenges, which can be broadly grouped into six categories,

displayed in Table 2 and described in what follows.

Table 2. Challenges in distributed machine learning in edge computing.

References

1. AI and MEMS Sensors: A Critical Pairing|SEMI. Available online:
https://www.semi.org/en/blogs/technology-trends/ai-and-mems-sensors (accessed on 1 March
2022).

2. Dion, G.; Mejaouri, S.; Sylvestre, J. Reservoir computing with a single delay-coupled non-linear
mechanical oscillator. J. Appl. Phys. 2018, 124, 152132.

3. Rafaie, M.; Hasan, M.H.; Alsaleem, F.M. Neuromorphic MEMS sensor network. Appl. Phys. Lett.
2019, 114, 163501.

4. Hasan, M.H.; Al-Ramini, A.; Abdel-Rahman, E.; Jafari, R.; Alsaleem, F. Colocalized Sensing and
Intelligent Computing in Micro-Sensors. Sensors 2020, 20, 6346.

5. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile
edge computing, caching and communication by federated learning. IEEE Netw. 2019, 33, 156–
165.

6. Li, E.; Zhou, Z.; Chen, X. Edge intelligence: On-demand deep learning model co-inference with
device-edge synergy. In Proceedings of the 2018 Workshop on Mobile Edge Communications,
Budapest, Hungary, 20 August 2018; pp. 31–36.

7. Wang, Z.; Cui, Y.; Lai, Z. A first look at mobile intelligence: Architecture, experimentation and
challenges. IEEE Netw. 2019, 33, 120–125.

8. Zhang, Y.; Huang, H.; Yang, L.X.; Xiang, Y.; Li, M. Serious challenges and potential solutions for
the industrial Internet of Things with edge intelligence. IEEE Netw. 2019, 33, 41–45.

9. Qureshi, K.N.; Iftikhar, A.; Bhatti, S.N.; Piccialli, F.; Giampaolo, F.; Jeon, G. Trust management
and evaluation for edge intelligence in the Internet of Things. Eng. Appl. Artif. Intell. 2020, 94,
103756.

  Scope

Paper Challenges

Group

of Techniques

Different Application

Domains

Zhou et al.  2/6 4/8 0/6

Dianlei Xu et al.  6/6 3/8 0/6

 The researchers' work 6/6 8/8 6/6

[15]
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Challenges

CH1 Running ML/DL on devices with limited resources

CH2 Ensuring energy efficiency without compromising the accuracy

CH3 Communication efficiency
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CH1 consists of dealing with the typical low processing power of edge devices. Edge devices often have little

processing capacity, mainly when compared to the powerful data centers at the cloud. On the other hand, many ML

applications require high computational power that outweighs the possibilities of resource-constrained IoT and

edge devices. Limited resources also include memory and storage capacities. NN and ML algorithms generally

require storing of and access to a handful of parameters that describe the model architecture and weight values

forming the classification model. With limited storage, it may not be possible to have continued access to the

original training data, or the data may have been removed altogether to free up space. Therefore, a significant

challenge is reducing memory access and storing the data locally to avoid costly reading and writing to external

memory modules.

CH2 consists of ensuring the energy efficiency of edge devices without compromising the accuracy of the system.

In general, the higher the complexity of the required processing, the more energy is consumed. Edge devices can

be battery-powered. In these cases, the energy consumption of algorithms must be minimized to reach energy

efficiency. However, this should be done with care so as not to compromise the quality of the data generated and

the decisions/inferences made. So, there is an important trade-off to be managed.

CH3 concerns communication issues, where edge intelligence models must consider that the devices might face

poor connectivity. In such cases, the model update time in training tasks may be delayed. Valerio, Passarella and

Conti  claim that the inference is highly sensitive to the available bandwidth in communication. Challenges in

communication include network traffic, fluctuations in the bandwidth, intermittent or unavailable connectivity.

CH4 is related to data privacy and security. Several applications in edge intelligence handle sensitive data, such as

healthcare. Thus, distributed ML algorithms must be able to preserve user privacy and information security when

data are transferred throughout the devices. Distributed Edge-Intelligence (EI) has multiple points of vulnerability to

possible malicious attacks or leakage of confidential or important data in the ML workflow.

CH5 is the challenge posed by failures in edge devices. Since devices might fail at some point, the distributed

algorithm must consider ways to overcome this situation. Lastly, heterogeneity and lack of quality in available data

rise challenge CH6. For most ML algorithms, especially in supervised machine learning, high accuracy depends on

the high quality of training data. However, this often does not apply in edge intelligence scenarios, where the

collected data are sparse and unlabelled . Distributed edge intelligence can handle data from different sources

10. Xu, D.; Li, T.; Li, Y.; Su, X.; Tarkoma, S.; Jiang, T.; Crowcroft, J.; Hui, P. Edge Intelligence:
Architectures, Challenges, and Applications. arXiv 2020, arXiv:2003.12172.

11. Wang, J.; Zhang, J.; Bao, W.; Zhu, X.; Cao, B.; Yu, P.S. Not just privacy: Improving performance
of private deep learning in mobile cloud. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2407–
2416.

12. Zhang, W.; Zhang, Z.; Zeadally, S.; Chao, H.C.; Leung, V.C. MASM: A multiple-algorithm service
model for energy-delay optimization in edge artificial intelligence. IEEE Trans. Ind. Inform. 2019,
15, 4216–4224.

13. Al-Rakhami, M.; Alsahli, M.; Hassan, M.M.; Alamri, A.; Guerrieri, A.; Fortino, G. Cost efficient edge
intelligence framework using docker containers. In Proceedings of the 2018 IEEE 16th
International Conference on Dependable, Autonomic and Secure Computing Congress
(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 800–807.

14. Wang, X.; Han, Y.; Leung, V.C.; Niyato, D.; Yan, X.; Chen, X. Convergence of edge computing
and deep learning: A comprehensive survey. IEEE Commun. Surv. Tutorials 2020, 22, 869–904.

15. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge intelligence: Paving the last mile of
artificial intelligence with edge computing. Proc. IEEE 2019, 107, 1738–1762.

16. Verbraeken, J.; Wolting, M.; Katzy, J.; Kloppenburg, J.; Verbelen, T.; Rellermeyer, J.S. A survey on
distributed machine learning. ACM Comput. Surv. (CSUR) 2020, 53, 1–33.

17. Valerio, L.; Passarella, A.; Conti, M. Accuracy vs. traffic trade-off of learning iot data patterns at
the edge with hypothesis transfer learning. In Proceedings of the 2016 IEEE 2nd International
Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow
(RTSI), Bologna, Italy, 7–9 September 2016; pp. 1–6.

18. Zou, Z.; Jin, Y.; Nevalainen, P.; Huan, Y.; Heikkonen, J.; Westerlund, T. Edge and fog computing
enabled AI for IoT-an overview. In Proceedings of the 2019 IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 18–20 March 2019; pp. 51–
56.

19. Hossain, M.S.; Muhammad, G.; Amin, S.U. Improving consumer satisfaction in smart cities using
edge computing and caching: A case study of date fruits classification. Future Gener. Comput.
Syst. 2018, 88, 333–341.

20. Sharma, A.; Sabitha, A.S.; Bansal, A. Edge analytics for building automation systems: A review. In
Proceedings of the 2018 International Conference on Advances in Computing, Communication
Control and Networking (ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 585–590.

21. Wan, S.; Gu, Z.; Ni, Q. Cognitive computing and wireless communications on the edge for
healthcare service robots. Comput. Commun. 2020, 149, 99–106.

Challenges

CH4 Ensuring data privacy and security

CH5 Handling failure in edge devices

CH6 Heterogeneity and low quality of data
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in different formats and is subject to noise. The application must handle noise and heterogeneity in the sensed data

used as input to attain good accuracy.

Table 3 presents references to each of the described challenges, as well as studies that propose approaches to

tackle these challenges. This table aims to only show an overview on the number of papers by each challenge. The

researchers can observe that challenge CH1 is the one with more papers present in literature. All of the cited works

are better described later here.

Table 3. References to the challenges of Edge Intelligence.

3.2. RQ2—Techniques and Strategies

Here, the researchers focus on three main aspects, namely: (i) the system architecture, (ii) how the ML tasks are

distributed among the devices, and (iii) the underlying adopted techniques. The researchers classify the several

approaches used in distributed learning based on these three aspects. The researchers identified nine groups of

techniques and strategies, described in what follows: Federated learning; Model partitioning; Right-sizing; Edge

pre-processing; Scheduling; Cloud pre-training; Edge only; Model Compression; and Other techniques.

3.3. RQ3—Frameworks for Edge Intelligence

This section describes the studies that provided answers to the RQ3 of this survey. Table 4 lists the main

frameworks currently used in distributed ML applications. The table also correlates each framework with the

22. Elbamby, M.S.; Perfecto, C.; Liu, C.F.; Park, J.; Samarakoon, S.; Chen, X.; Bennis, M. Wireless
edge computing with latency and reliability guarantees. Proc. IEEE 2019, 107, 1717–1737.

23. Rausch, T.; Dustdar, S. Edge intelligence: The convergence of humans, things, and ai. In
Proceedings of the 2019 IEEE International Conference on Cloud Engineering (IC2E), Prague,
Czech Republic, 24–27 June 2019; pp. 86–96.

24. Fasciano, C.; Vitulano, F. Artificial Intelligence on Edge Computing: A Healthcare Scenario in
Ambient Assisted Living. In Proceedings of the Artificial Intelligence for Ambient Assisted Living
(AI*AAL.it 2019), Rende, Italy, 20–23 November 2019.

25. Wang, Y.; Meng, W.; Li, W.; Liu, Z.; Liu, Y.; Xue, H. Adaptive machine learning-based alarm
reduction via edge computing for distributed intrusion detection systems. Concurr. Comput. Pract.
Exp. 2019, 31, e5101.

26. Yazici, M.T.; Basurra, S.; Gaber, M.M. Edge machine learning: Enabling smart internet of things
applications. Big Data Cogn. Comput. 2018, 2, 26.

27. Chen, S.; Gong, P.; Wang, B.; Anpalagan, A.; Guizani, M.; Yang, C. EDGE AI for heterogeneous
and massive IoT networks. In Proceedings of the 2019 IEEE 19th International Conference on
Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 350–355.

28. Zhou, J.; Dai, H.N.; Wang, H. Lightweight convolution neural networks for mobile edge computing
in transportation cyber physical systems. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 1–20.

29. Ali, M.; Anjum, A.; Yaseen, M.U.; Zamani, A.R.; Balouek-Thomert, D.; Rana, O.; Parashar, M.
Edge enhanced deep learning system for large-scale video stream analytics. In Proceedings of
the 2018 IEEE 2nd International Conference on Fog and Edge Computing (ICFEC), Washington,
DC, USA, 1–3 May 2018; pp. 1–10.

30. Li, E.; Zeng, L.; Zhou, Z.; Chen, X. Edge AI: On-demand accelerating deep neural network
inference via edge computing. IEEE Trans. Wirel. Commun. 2019, 19, 447–457.

31. Li, H.; Ota, K.; Dong, M. Learning IoT in edge: Deep learning for the Internet of Things with edge
computing. IEEE Netw. 2018, 32, 96–101.

32. Hassan, M.A.; Xiao, M.; Wei, Q.; Chen, S. Help your mobile applications with fog computing. In
Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication,
and Networking-Workshops (SECON Workshops), Seattle, WA, USA, 22–25 June 2015; pp. 1–6.

33. Liu, C.; Cao, Y.; Luo, Y.; Chen, G.; Vokkarane, V.; Yunsheng, M.; Chen, S.; Hou, P. A new deep
learning-based food recognition system for dietary assessment on an edge computing service
infrastructure. IEEE Trans. Serv. Comput. 2017, 11, 249–261.

34. Liu, Y.; Yang, C.; Jiang, L.; Xie, S.; Zhang, Y. Intelligent edge computing for IoT-based energy
management in smart cities. IEEE Netw. 2019, 33, 111–117.

  References Works That Tackle the Challenges

CH1

CH2

CH3

CH4

CH5 –

CH6

[10][15][18][19][20][21][22][23][24]

[25][26][27]

[14][24][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50]

[51][52][53][54][55][56][57][58][59][60][61][62]

[10][15][19][22][24][26][37] [8][20][24][27][29][32][33][34][45][48][52][55][57][61][62][63]

[10][20][24][25][42][62] [16][17][19][29][30][31][32][35][39][42][52][64][65]

[10][20][23][32][40][66] [8][9][10][20][40][47][67][68][69]

[10][23]

[10][20][40][70][71] [10][34][66]
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corresponding EI group of techniques or the main related strategy.

Table 4. EI frameworks.

35. Nishio, T.; Yonetani, R. Client selection for federated learning with heterogeneous resources in
mobile edge. In Proceedings of the ICC 2019-2019 IEEE International Conference on
Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.

36. Bura, H.; Lin, N.; Kumar, N.; Malekar, S.; Nagaraj, S.; Liu, K. An edge based smart parking
solution using camera networks and deep learning. In Proceedings of the 2018 IEEE International
Conference on Cognitive Computing (ICCC), San Francisco, CA, USA, 2–7 July 2018; pp. 17–24.

37. Wei, J.; Cao, S. Application of edge intelligent computing in satellite Internet of Things. In
Proceedings of the 2019 IEEE International Conference on Smart Internet of Things (SmartIoT),
Tianjin, China, 9–11 August 2019; pp. 85–91.

38. Moon, J.; Kum, S.; Lee, S. A heterogeneous IoT data analysis framework with collaboration of
edge-cloud computing: Focusing on indoor PM10 and PM2. 5 status prediction. Sensors 2019,
19, 3038.

39. Ke, R.; Zhuang, Y.; Pu, Z.; Wang, Y. A smart, efficient, and reliable parking surveillance system
with edge artificial intelligence on IoT devices. IEEE Trans. Intell. Transp. Syst. 2021, 22, 4962–
4974.

40. Ma, Z.; Liu, Y.; Liu, X.; Ma, J.; Ren, K. Lightweight privacy-preserving ensemble classification for
face recognition. IEEE Internet Things J. 2019, 6, 5778–5790.

41. Palossi, D.; Loquercio, A.; Conti, F.; Flamand, E.; Scaramuzza, D.; Benini, L. A 64-mW DNN-
based visual navigation engine for autonomous nano-drones. IEEE Internet Things J. 2019, 6,
8357–8371.

42. Zhang, X.; Wang, Y.; Lu, S.; Liu, L.; Xu, L.; Shi, W. OpenEI: An open framework for edge
intelligence. In Proceedings of the 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), Dallas, TX, USA, 7–10 July 2019; pp. 1840–1851.

43. Xu, C.; Dong, M.; Ota, K.; Li, J.; Yang, W.; Wu, J. Sceh: Smart customized e-health framework for
countryside using edge ai and body sensor networks. In Proceedings of the 2019 IEEE global
communications conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

44. Gómez-Carmona, O.; Casado-Mansilla, D.; Kraemer, F.A.; López-de Ipiña, D.; García-Zubia, J.
Exploring the computational cost of machine learning at the edge for human-centric Internet of
Things. Future Gener. Comput. Syst. 2020, 112, 670–683.

45. Lu, S.; Sengupta, A. Exploring the connection between binary and spiking neural networks. Front.
Neurosci. 2020, 14, 535.

46. Guo, R.; Xiang, Y.; Mao, Z.; Yi, Z.; Zhao, X.; Shi, D. Artificial Intelligence Enabled Online Non-
intrusive Load Monitoring Embedded in Smart Plugs. In Proceedings of the International
Symposium on Signal Processing and Intelligent Recognition Systems, Trivandrum, India, 18–21
December 2019; Springer: Singapore, 2019; pp. 23–36.

Framework

Groups of

Techniques or

Strategies

Comments

Neurosurgeon  Model

Partitioning

Lightweight scheduler to automatically partition DNN computation

between edge devices and cloud at the granularity of NN layers

JointDNN  Model

Partitioning

JointDNN provides an energy- and performance-efficient method

of querying some layers on the mobile device and some layers on

the cloud server.

H. Li et al.  Model

Partitioning

They divide the NN layers and deploy the part with the lower ones

(closer to the input) into edge servers and the part with higher

layers (closer to the output) into the cloud for offloading

processing. They also propose an offline and an online algorithm

that schedules tasks in Edge servers.

Musical chair  Model

Partitioning

Musical Chair aims at alleviating the compute cost and

overcoming the resource barrier by distributing their computation:

data parallelism and model parallelism.

AAIoT  Model

Partitioning

Accurate segmenting NNs under multi-layer IoT architectures

MobileNet  Model

Compression

Model

Selector

Presented by Google Inc., the two hyperparameters introduced

allow the model builder to choose the right sized model for the

specific application.

[72]
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[31]
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47. Zhang, Y.; Ma, X.; Zhang, J.; Hossain, M.S.; Muhammad, G.; Amin, S.U. Edge intelligence in the
cognitive Internet of Things: Improving sensitivity and interactivity. IEEE Netw. 2019, 33, 58–64.

48. Plastiras, G.; Terzi, M.; Kyrkou, C.; Theocharidcs, T. Edge intelligence: Challenges and
opportunities of near-sensor machine learning applications. In Proceedings of the 2018 IEEE 29th
International Conference on Application-Specific Systems, Architectures and Processors (ASAP),
Milan, Italy, 10–12 July 2018; pp. 1–7.

49. Zeng, L.; Li, E.; Zhou, Z.; Chen, X. Boomerang: On-demand cooperative deep neural network
inference for edge intelligence on the industrial Internet of Things. IEEE Netw. 2019, 33, 96–103.

50. Xie, F.; Xu, A.; Jiang, Y.; Chen, S.; Liao, R.; Wen, H. Edge intelligence based co-training of cnn. In
Proceedings of the 2019 14th International Conference on Computer Science & Education
(ICCSE), Toronto, ON, Canada, 19–21 August 2019; pp. 830–834.

51. Liu, J.; Zhang, J.; Ding, Y.; Xu, X.; Jiang, M.; Shi, Y. Binarizing Weights Wisely for Edge
Intelligence: Guide for Partial Binarization of Deconvolution-Based Generators. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2020, 39, 4748–4759.

52. Wu, H.; Lyu, F.; Zhou, C.; Chen, J.; Wang, L.; Shen, X. Optimal UAV caching and trajectory in
aerial-assisted vehicular networks: A learning-based approach. IEEE J. Sel. Areas Commun.
2020, 38, 2783–2797.

53. Chang, Y.; Huang, X.; Shao, Z.; Yang, Y. An efficient distributed deep learning framework for fog-
based IoT systems. In Proceedings of the 2019 IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

54. Montino, P.; Pau, D. Environmental Intelligence for Embedded Real-time Traffic Sound
Classification. In Proceedings of the 2019 IEEE 5th International forum on Research and
Technology for Society and Industry (RTSI), Florence, Italy, 9–12 September 2019; pp. 45–50.

55. Yang, Y.; Mai, X.; Wu, H.; Nie, M.; Wu, H. POWER: A Parallel-Optimization-Based Framework
Towards Edge Intelligent Image Recognition and a Case Study. In Proceedings of the
International Conference on Algorithms and Architectures for Parallel Processing, Guangzhou,
China, 15–17 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 508–523.

56. Munir, M.S.; Abedin, S.F.; Hong, C.S. Artificial intelligence-based service aggregation for mobile-
agent in edge computing. In Proceedings of the 2019 20th Asia-Pacific Network Operations and
Management Symposium (APNOMS), Matsue, Japan, 18–20 September 2019; pp. 1–6.

57. Gonzalez-Guerrero, P.; Tracy II, T.; Guo, X.; Stan, M.R. Towards low-power random forest using
asynchronous computing with streams. In Proceedings of the 2019 Tenth International Green and
Sustainable Computing Conference (IGSC), Alexandria, VA, USA, 21–24 October 2019; pp. 1–5.

58. Sanchez, J.; Soltani, N.; Chamarthi, R.; Sawant, A.; Tabkhi, H. A novel 1d-convolution accelerator
for low-power real-time cnn processing on the edge. In Proceedings of the 2018 IEEE High

Framework

Groups of

Techniques or

Strategies

Comments

Squeezenet Model

Compression

It is a reduced DNN that achieves AlexNet-level accuracy with 50

times fewer parameters

Tiny-YOLO Model

Compression

Tiny Yolo is a very lite NN and is hence suitable for running on

edge devices. It has an accuracy that is comparable to the

standard AlexNet for small class numbers but is much faster.

BranchyNet Right sizing Open source DNN training framework that supports the early-exit

mechanism.

TeamNet  Model

Compression

Transfer

Learning

TeamNet trains shallower models using the similar but downsized

architecture of a given SOTA (state of the art) deep model.

The master node compares its uncertainty with the worker’s and

selects the one with the least uncertainty as to the final result.

OpenEI  Model

Compression

Data

Quantization

Model

Selector

The algorithms are optimized by compressing the size of the

model, quantizing the weight. The model selector will choose the

most suitable model based on the developer’s requirement (the

default is accuracy) and the current computing resource.

TensorFlow Lite  Data

Quantization

TensorFlow’s lightweight solution, which is designed for mobile

and edge devices. It leverages many optimization techniques,

including quantized kernels, to reduce the latency.
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DC, USA, 4–8 December 2016; pp. 1–6.

66. Morshed, A.; Jayaraman, P.P.; Sellis, T.; Georgakopoulos, D.; Villari, M.; Ranjan, R. Deep
osmosis: Holistic distributed deep learning in osmotic computing. IEEE Cloud Comput. 2017, 4,
22–32.

67. Abeshu, A.; Chilamkurti, N. Deep learning: The frontier for distributed attack detection in fog-to-
things computing. IEEE Commun. Mag. 2018, 56, 169–175.

68. Lyu, L.; Bezdek, J.C.; He, X.; Jin, J. Fog-embedded deep learning for the Internet of Things. IEEE
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Framework

Groups of

Techniques or

Strategies

Comments

QNNPACK (Quantized

Neural Networks

PACKage) 

Data

Quantization

Developed by Facebook, is a mobile-optimized library for high-

performance NN inference. It provides an implementation of

common NN operators on quantized 8-bit tensors.

ProtoNN  Model

Compression

Inspired by k-Nearest Neighbor (KNN) and could be deployed on

the edges with limited storage and computational power.

EMI-RNN  Right Sizing It requires 72 times less computation than standard Long Short

term Memory Networks (LSTM) and improves its accuracy by 1%.

CoreML  Model

Compression

Data

Quantization

Published by Apple, it is a deep learning package optimized for

on-device performance to minimize memory footprint and power

consumption. Users are allowed to integrate the trained machine

learning model into Apple products, such as Siri, Camera,

and QuickType.

DroNet  Model

Compression

Data

Quantization

The DroNet topology was inspired by residual networks and was

reduced in size to minimize the bare image processing time

(inference). The numerical representation of weights and

activations reduces from the native one, 32-bit floating-point

(Float32), down to a 16-bit fixed point one (Fixed16).

Stratum  Model

Selector

Dynamic

Scheduling

Stratum can select the best model by evaluating a series of user-

built models. A resource monitoring framework within Stratum

keeps track of resource utilization and is responsible for triggering

actions to elastically scale resources and migrate tasks,

as needed, to meet the ML workflow’s Quality of Services (QoS).

ML modules can be placed on the edge of the Cloud layer,

depending on user requirements and capacity analysis.
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Framework

Groups of

Techniques or

Strategies

Comments

Efficient distributed

deep learning (EDDL)

Model

Compression

Model

Partitioning

Right-Sizing

A systematic and structured scheme based on balanced

incomplete block design (BIBD) used in situations where the

dataflows in DNNs are sparse. Vertical and horizontal model

partition and grouped convolution techniques are used to reduce

computation and memory. To speed up the inference, BranchyNet

is utilized.

In-Edge AI  Federated

Learning

Utilizes the collaboration among devices and edge nodes to

exchange the learning parameters for better training and inference

of the models.

Edgence  Blockchain Edgence (EDGe + intelligENCE) is proposed to serve as a

blockchain-enabled edge-computing platform to intelligently

manage massive decentralized applications in IoT use cases.

FederatedAveraging

(FedAvg) 

Federated

Learning

Combines local stochastic gradient descent (SGD) on each client

with a server that performs model averaging.

SSGD  Federated

Learning

System that enables multiple parties to jointly learn an accurate

neural network model for a given objective without sharing their

input datasets.

BlockFL  Blockchain

Federated

Learning

Mobile devices’ local model updates are exchanged and verified

by leveraging blockchain.

Edgent  Model

Partitioning

Adaptively partitions DNN computation between the device and

edge, in order to leverage hybrid computation resources in
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When correlating the EI strategies with frameworks, it is possible to notice some interesting associations. There are

ten of these techniques and strategies, of which only three are present in more than 60% of the papers. They are:

(i) Model Compression with 24%, (ii) Model Partitioning with 20%, (iii) Data Quantization with 17%. Federated

Learning, Right-Sizing, Gossip Averaging and Model Selector correspond to 9% each. The others have less than

8%. Figure 1 illustrates these ten classes of strategies.
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Framework

Groups of

Techniques or

Strategies

Comments

Right-Sizing proximity for real-time DNN inference. DNN right-sizing

accelerates DNN inference through the early exit at a proper

intermediate DNN layer to further reduce the computation latency.

PipeDream  Model

Partitioning

PipeDream keeps all available GPUs productive by systematically

partitioning DNN layers among them to balance work and

minimize communication.

GoSGD  Gossip

Averaging

Method to share information between different threads based on

gossip algorithms and showing good consensus convergence

properties.

Gossiping SGD  Gossip

Averaging

Asynchronous method that replaces the all-reduce collective

operation of synchronous training with a gossip aggregation

algorithm.

GossipGraD  Gossip

Averaging

Asynchronous communication of gradients for further reducing the

communication cost.

INCEPTIONN  Data

Quantization

Lossy-compression algorithm for floating-point gradients.

The framework reduces the communication time by 70.9 80.7%

and offers 2.2 3.1× speedup over the conventional training system

while achieving the same level of accuracy.

Minerva  Data

Quantization

Model

compression

Quantization analysis minimizes bit widths without exceeding a

strict prediction error bound. Compared to a 16-bit fixed-point

baseline, Minerva reduces power consumption by 1.5×. Minerva

identifies operands that are close to zero and removes them from

the prediction computation such that model accuracy is not
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Figure 1. Edge Intelligence strategies.

Among these strategies, Model Compression is the most suitable for solving the process of training and testing

with the raw data and reducing the dimensionality in real-time. This strategy allows ML algorithms to have faster

responses, using lower resources of bandwidth, power and processing. In addition, this technique has proven to be

more economical and better at data security once the processing is realized entirely on the edge. In terms of

algorithms, the most common is the DNN paradigm of machine learning, which segments models into successive

parts (layers). This algorithm allows for the deployment of each part on distinguished sites (model partitioning).

DNN also enables compression techniques such as removing nodes or layers, allowing offloading of a whole

model in resource-constrained devices.

EI techniques tackle latency problems when part of the entire process is realized on edge devices, decreasing data

traffic on the network and, consequently, decreasing the inherent delay in data transmission. Regarding security

and privacy issues, it is possible to train and infer on sensitive data partially or fully at the edge, preventing their

risky propagation throughout the network, where they are susceptible to attacks.

3.4. RQ4—Edge Intelligence Application Domains

In this section, the researchers present a taxonomy to characterize the application domains where the field of EI

has been adopted, providing inputs to answer the RQ4. According to the researched articles, it was possible to

group them into six main domains: (i) Industry, (ii) Surveillance, (iii) Security, (iv) Intelligent Transport, (v) Health,

and (vi) Energy Management. This does not mean that other domains cannot be created due to new research.

Figure 2 illustrates this taxonomy up to a third level. Table 5 shows the works that tackle these domains. Figure 3

summarizes the statistics of the six domains of the publishing by field.

Figure 2. EI application domains.
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Framework

Groups of

Techniques or

Strategies

Comments

affected. Selective pruning further reduces power consumption by

2.0× on top of bit width quantization.  

AdaDeep  Model

Compression

Automatically selects a combination of compression techniques

for a given DNN that will lead to an optimal balance between user-

specified performance goals and resource constraints. AdaDeep

enables up to 9.8× latency reduction, 4.3× energy efficiency

improvement, and 38× storage reduction in DNNs while incurring

negligible accuracy loss.

JALAD  Data

Quantization

Model

Partitioning

Data compression by jointly considering compression rate and

model accuracy. A latency-aware deep decoupling strategy to

minimize the overall execution latency is employed. Decouples a

deep NN to run a part of it at edge devices and the other part

inside the conventional cloud.
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Figure 3. Publications by domain application.

Table 5. Application domains and corresponding works.
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