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Aging is a complex biological process that is influenced by both intrinsic and extrinsic factors. Recently, it has been

discovered that reactive oxygen species can accelerate the aging process, leading to an increased incidence of age-

related diseases that are characteristic of aging.
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1. Introduction

The global population is currently experiencing a significant expansion of aging populations compared to previous years.

This trend is reflected in the increase in average life expectancy at birth, which has risen by 6.2 years from 65.3 years in

1990, to 71.5 years in 2013. Additionally, individuals who reach the age of 60 can now expect to live for another 22 years

on average . By the year 2040, it is projected that the average life expectancy will increase by 4.4 years for both men

and women. Men can expect to live an average of 74.3 years, while women can expect to live an average of 79.7 years.

However, these numbers may vary depending on individual health conditions . As the population ages, there has been a

noticeable increase in the prevalence of chronic degenerative diseases such as neurodegenerative and cardiovascular

diseases, diabetes, and cancer. These diseases contribute to up to 70% of global mortality each year, including premature

deaths occurring between the ages of 30 and 70 . It is important to note that, while aging is often accompanied by

deteriorative changes and an increased risk of functional declines or diseases, aging itself is not considered a disease.

The focus of anti-aging strategies is not to reverse or halt the aging process, but rather to promote healthy aging and

reduce the incidence of age-related diseases. The World Health Organization recommends adopting healthy dietary

habits, engaging in regular physical activity, and controlling tobacco use as effective measures to alleviate or prevent the

incidence of chronic diseases. By following these guidelines, the risk of developing age-related diseases can be reduced

.

There is growing evidence to suggest that healthy aging can be promoted by consuming nutraceuticals and following

various dietary patterns, such as caloric restriction, intermittent fasting, a Mediterranean diet, an Okinawan diet, and a

Nordic diet. These dietary patterns have been evaluated for their negative correlation with aging and age-related

conditions and diseases , which has led to a search for anti-aging components from food sources and an investigation

of the underlying mechanisms of anti-aging pathways. Bioactive compounds derived from plant sources, including fruits

and vegetables, roots, seeds, and edible flowers, have been suggested to exert anti-aging effects. These compounds

include certain polysaccharides, phenolic compounds, and peptides . In recent years, mushrooms—filamentous fungi

with fruiting bodies—have also been shown to possess enormous pharmacological attributes that are valuable for healthy

aging. These attributes include anti-oxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-cancer

properties .

Mushrooms are nutritious foods that are rich in carbohydrates and proteins, with a lower content of lipids . In addition to

their nutritional value, mushrooms contain various bioactive compounds, such as β-glucans, lectins, and linolenic acids,

which can be isolated through different extraction methods. These compounds confer a variety of pharmacological

activities and may enhance the immune system and strengthen the biological function of the body . Regular intake of

mushrooms or their extracts may help alleviate age-related diseases.
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2. Aging

2.1. Aging and Age-Related Diseases

Aging is a complex process that involves the time-dependent accumulation of diverse deleterious changes in cells,

tissues, organs, or systems that increase vulnerability to chronic illness and death . Nine candidate hallmarks of

aging have been identified and classified, including primary hallmarks (genomic instability, telomere attrition, epigenetic

alterations, and loss of proteostasis), antagonistic hallmarks (deregulated nutrient sensing, mitochondrial dysfunction, and

cellular senescence), and integrative hallmarks (stem cell exhaustion and altered intercellular communication), all of which

are correlated with each other . The antagonistic hallmarks exert positive effects at low levels but negatively affect the

organism at high levels . For example, reactive oxygen species (ROS) are important signaling molecules that play a

role in regulating cellular functions, but excessive levels can lead to oxidative damage and contribute to aging. The

primary hallmarks are the contributors to molecular damage during aging, while the integrative hallmarks are signs of

failure of cellular homeostasis and metabolism mechanisms to ameliorate the damage. These hallmarks are

interconnected with each other and could serve as a guidance to decipher the mechanistic molecular basis for prolonging

health span and development of strategies for longevity, such as stem-cell-based therapies, epigenetic drugs, anti-

inflammatory drugs, and dietary restrictions .

The free radical theory of aging, proposed in 1956 by Denham Harman , is a widely accepted theory of aging. The

theory postulates that the aging process is triggered by the initiation of free radical reactions, leading to increased

generation of free radicals by damaged mitochondria with increasing age . Major sources of free radical reactions in

mammals include non-enzymatic reaction of oxygen, ionizing radiation, cytochrome P-450 system, respiratory chain,

phagocytosis, and prostaglandin synthesis, which lead to the accumulation of oxidative damage and may shorten the

lifespan. Several defenses that alleviate the damage of the reactions include DNA repair mechanisms, superoxide

dismutase, glutathione peroxidase, and anti-oxidants (e.g., carotenes and vitamin E) .

ROS are byproducts of oxidative metabolism that can induce cellular defense mechanisms against oxidative invasion at

low doses, potentially prolonging health span and lifespan. However, long-term excessive exposure to ROS can lead to

the oxidation of nucleic acids, proteins, and lipids, causing damage to macromolecules and mitochondrial dysfunction.

This can disrupt cell homeostasis and result in cellular death . ROS production is driven by progressive mitochondrial

dysfunction with increasing age, creating a positive feedback loop of ROS generation and oxidative damage accumulation

. Concurrently, oxidative stress arises due to excessive ROS levels and limited anti-oxidant defense capability, leading

to cellular senescence and a shortened lifespan. The accumulation of oxidative damage to macromolecules and

mitochondria contributes to detrimental consequences, such as pathophysiological changes, functional decline, and

accelerated aging, which are associated with age-related conditions such as inflammation, cardiovascular diseases,

neurodegenerative diseases, autoimmune diseases, and cancer .

It is important to note that aging itself is not a disease. Age-related diseases can be considered “symptoms” of aging,

initiated by minor disturbances that are intensified via vicious positive feedback loops, destabilizing the physiology of an

organism and potentially leading to destruction (i.e., mortality) if no negative feedback loops are in place . For example,

low-grade inflammation can intensify in chronic inflammation, leading to decreased muscle mass, decreased physical

activity, and excess fat deposition. This can further contribute to obesity, diabetes, and cardiovascular problems.

Eventually, cardiovascular diseases can arise and worsen the physiological status of an individual by triggering chronic

inflammation. To minimize cumulative damage to different organs and maintain cell function for healthy aging,

interventions that can interrupt or break the vicious cycles of age-related diseases can be implemented, including

medications, lifestyle adjustments, and dietary management (Figure 1).
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Figure 1. Concept of vicious cycle of aging and age-related diseases. Symbol ↑ denotes increase; symbol ↓ denotes

decrease.

2.2. Aging and Dietary Intervention

The lifestyle of an individual is closely linked to their health span and lifespan. One of the main ways to modify lifestyle for

better health maintenance and to reduce the incidence of age-related diseases is through dietary management. Unhealthy

dietary habits and lifestyle can accelerate the aging process by causing molecular and cellular damage. For example, a

sedentary lifestyle, combined with a “Western diet”, that is high in energy but lacking in nutrition, has been associated with

reduced lifespan and increased occurrence of age-related conditions such as obesity, type 2 diabetes, and cancer . On

the other hand, caloric restriction (CR) has been shown to slow down the rate of aging and extend health span. CR

involves reducing total energy intake by 20% to 40% while ensuring optimal nutrition, compared to an ad libitum diet. This

approach has been demonstrated to extend lifespan and health span in various experimental models, including yeast, fruit

flies, mice, nonhuman primates, and even humans .

According to the theory of aging, CR enhances longevity by reducing oxidative damage and increasing resistance to

oxidative stress through specific signaling pathways. The stress caused by CR, such as nutrient deprivation, activates

defense mechanisms against oxidative damage, thereby slowing down the aging process . CR also affects

physiological pathways that may mediate anti-aging effects, such as the insulin-like growth factor-1 and insulin signaling

pathways, the mammalian target of rapamycin (mTOR) pathway, and the sirtuins pathway . Previous studies have

demonstrated the potential of implementing CR as an anti-aging regimen, as adherence to this dietary management

reduces biomarkers associated with the development of age-related diseases, including cardiovascular diseases,

autoimmune disorders, neurodegenerative diseases, diabetes, and cancer . Therefore, CR can be considered as

the mechanistic foundation for healthy aging strategies involving dietary intervention, which can prolong lifespan and

maintain physiological function for an extended health span.

Despite the potential benefits of CR, it can be challenging for individuals to adhere to it in the long term due to various

pitfalls and health concerns, such as hypotension, osteoporosis, slower wound healing, depression, and irritability . As

a result, scientists have explored alternative diet regimens and studied different dietary patterns that may offer similar

benefits to CR but are more feasible for humans to sustain. One such approach is intermittent fasting, which shares the

same concept as CR. Intermittent fasting activates cellular pathways that enhance the body’s intrinsic defense against

oxidative stress, promotes the removal of damaged molecules, and facilitates tissue repair and growth. It also helps to

suppress inflammation and improve stress resistance .

In addition to dietary modifications, researchers have developed anti-aging drugs that mimic the effects of CR. Examples

include rapamycin and metformin, which have shown promising effects in various model organisms and clinical trials.

Rapamycin delays aging by inhibiting mTOR, thereby maintaining the normal functioning of mitochondria and stem cells.

Metformin, on the other hand, affects telomere length, reduces oxidative damage to DNA, and modulates the synthesis

and degradation of age-related proteins . However, it is important to note that there are concerns and side effects

associated with the use of these drugs. For instance, rapamycin may lead to nephrotoxicity and thrombocytopenia, while

metformin may cause vitamin B12 deficiency and lactic acid accumulation . Therefore, there is a need to explore

naturally occurring compounds that have significant anti-aging effects with minimal side effects.
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Nutraceuticals and dietary supplements are also viable alternatives for anti-aging and extending health span. Examples

include curcumin, quercetin, ginseng, and medicinal mushrooms, which exhibit anti-inflammatory, immunomodulatory, and

antioxidative effects . A diet rich in fruits and vegetables, which provide a significant number of nutraceuticals and

phytochemicals, is crucial for maintaining overall health. Interestingly, mushrooms, although not classified as animals or

plants but as part of the fungal kingdom, are often considered as vegetables. They are low in calories, sodium, and fat,

while being a valuable source of fiber, phenolic compounds, β-glucans, selenium, glutathione, B vitamins, and vitamin D.

These components serve as protective agents against oxidative damage, which accelerates aging . Medicinal

mushrooms have also been used for centuries in traditional therapies, like Chinese medicine and Indian Ayurveda

medicine, to alleviate symptoms of various diseases . The bioactive compounds found in mushrooms may contribute to

their anti-aging effects through various physiological pathways involved in aging and age-related diseases.

2.3. Ageing, Mental Health and Gender

Gender and mental health can significantly impact ageing experiences. Gender influences ageing in various ways,

including health outcomes, social roles and expectations, and economic status. Women are more likely to experience

depression, anxiety, and stress due to factors such as caregiving responsibilities, hormonal changes, and discrimination

. Women also tend to report higher levels of loneliness and social isolation in later life. In contrast, men may experience

social isolation and mental health issues due to societal expectations of masculinity, which can lead to reluctance in

seeking help for mental health problems .

Gender differences in health outcomes are well-documented, with women living longer but experiencing more chronic

health conditions than men. Women are more likely to experience osteoporosis, urinary incontinence, and depression

than men. Women also experience menopause, which can lead to physical and psychological symptoms . Men, on the

other hand, are more likely to experience heart disease, stroke, and certain types of cancer. Biological factors such as sex

hormones, genetics, and lifestyle factors like diet, exercise, and smoking influence gender differences in health outcomes

.

Gender roles and expectations can influence ageing experiences . Women are often expected to take on caregiving

roles for children, spouses, or ageing parents, which can lead to stress and impact their own health and well-being.

Women may also face ageism and discrimination in the workplace, leading to financial insecurity in later life. Men, on the

other hand, may experience pressure to maintain their independence and financial stability, leading to social isolation and

mental health issues .

Gender differences in economic status can also impact ageing experiences. Women often earn less than men over their

lifetimes, leading to lower retirement savings and financial insecurity in later life. Women are also more likely to work part-

time or take career breaks to care for children or ageing parents, which can impact their pension entitlements. This can

lead to poverty and social exclusion in later life . Mental health issues, such as depression, anxiety, and cognitive

impairment, can also impact ageing experiences. Depression is a common mental health issue among older adults and

can lead to social isolation, physical illness, and suicide. Anxiety can affect quality of life and daily functioning. Cognitive

impairment, including dementia, can result in memory loss, decision-making difficulties, and loss of independence and

increased caregiving needs .

Studies have shown that gender and mental health can interact to influence ageing experiences .

Women with depression may be more prone to physical disability and cognitive decline in later life compared to men with

depression. Similarly, men with higher levels of anxiety may be more likely to experience cognitive decline than women

with anxiety . Addressing gender and mental health in ageing policies and practices is crucial to ensure that older

adults receive appropriate support and services. This includes promoting gender equity, addressing mental health stigma,

and providing accessible and affordable mental health care for older adults .

3. Components of Mushrooms and Their Anti-Aging Effects

Mushrooms have long been recognized for their nutritional value and potential health benefits. Edible mushrooms are not

only rich in protein, fiber, vitamins, and minerals but also have low levels of fat, making them highly nutritious . They

contain all the essential amino acids and have a higher protein content compared to most vegetables, making them

particularly beneficial for vegetarians. In addition to their nutritional value, edible mushrooms, as fungi, have the ability to

produce a wide range of chemical compounds known as mycochemicals. These mycochemicals can act as bioactive

substances with various advantages for human health . Mushrooms have been found to contain significant levels of
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mycochemicals that serve as bioactive compounds, offering a range of health benefits against aging and age-related

diseases .

3.1. Bioactive Compounds in Mushrooms

Bioactive compounds extracted from mushrooms have been extensively studied for their ability to enhance cellular

functions and provide health benefits. The following text summarizes four representative categories of bioactive

compounds found in mushrooms: carbohydrates, proteins, lipids, and phenolic compounds.

3.1.1. Carbohydrates

Carbohydrates derived from mushrooms have been extensively studied for their anti-tumor, anti-inflammatory, and

immunomodulatory activities . Numerous monosaccharides found in mushrooms, including arabinose, fructose,

fucose, galactose, glucose, mannose, mannitol, rhamnose, trehalose, and xylose, have been identified as exhibiting these

activities. They primarily achieve this through the activation of cytokines, such as interferons and interleukins, and involve

cellular pathways that include dendritic cells, natural killer cells, neutrophils, and cytotoxic macrophages . β-Glucans,

the main type of carbohydrates found in mushrooms, have been shown to possess antioxidative, anti-cancer,

immunomodulatory, and neuroprotective properties. They are considered potent agents for stimulating the immune system

and protecting against carcinogens, pathogens, and toxins . The biological activity and health benefits of

β-glucans isolated from mushrooms, particularly in relation to immune health, are crucial for healthy aging.

Supplementation with mushroom carbohydrates, which contain β-glucans, could be an effective strategy for anti-aging.

Table 1 provides a list of various mushrooms that contain bioactive carbohydrates.

Table 1. Bioactive carbohydrates in selected mushrooms.
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Mushrooms Common
Names Bioactive Compounds Source and Yield Bioactivities References

Agaricus
bisporus

Button
mushroom

Heteropolysaccharide Abnp1001,
Abnp1002, Abap1001, Abap1002

Concentrated
industrial

wastewater of A.
bisporus; 0.989

mg/g, 1.849 mg/g,
0.128 mg/g, and

0.68 mg/g
(Abnp1001,
Abnp1002,
Abap1001,
Abap1002)

Hepatoprotective

Heteropolysaccharide AcAPS, AcAPS-1,
AcAPS-2, AcAPS-3, with rhamnose and

glucose as major monosaccharide

Dried fruiting body;
yield n.s.

Hepatoprotective,
nephroprotective,

antioxidative

Polysaccharide extracts, main
components n.s.

Whole mushroom;
yield n.s.

Anti-tumor,
immunostimulatory

Heteropolysaccharide/Mannogalacoglucan
mannose, galactose, glucose

Freeze-dried fresh
fruiting body;

41.4% yield (w/w
dry weight)

Anti-tumor

β-glucan Dried fresh fruiting
body; yield n.s. Immunostimulatory

Fructose, mannitol, trehalose

Fresh fruiting
body; 5.79% (white

mushroom) &
4.27% (brown

mushroom) (w/w
fresh weight)

n.s.

Calocybe
indica

Milky
mushroom

Polysaccharide extracts, main
components n.s.

Fresh fruiting
body; 3.27% (w/w

dry weight)

Anti-oxidant,
neuroprotective
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3.1.2. Proteins

Compared to other food sources, mushrooms contain higher levels of bioactive proteins such as lectins, ribosome

inactivating proteins, fungal immunomodulatory proteins, and laccases, which possess various biological activities (Table
2) including antioxidative, immunomodulatory, anti-inflammatory, and anti-cancer properties . Lectins are non-immune

proteins or glycoproteins that bind to specific carbohydrates on cell surfaces, acting as nutraceuticals with

immunomodulatory, anti-tumor, and anti-proliferative properties . Other mushroom proteins, such as laccase, fungal

immunomodulatory protein, and ribosome inactivating proteins, have distinct bioactive activities. Laccases are considered

Mushrooms Common
Names Bioactive Compounds Source and Yield Bioactivities References

Flammulina
velutipes

Enoki/Golden
needle

mushroom

Polysaccharide extracts, main
components n.s.

Base of stipe; yield
n.s. Anti-tumor

Polysaccharide extracts, main
components n.s.

Fresh whole-
mushroom; yield

n.s.
Neuroprotective

Fructose, mannitol, sucrose, trehalose
Fresh fruiting

body; 8.29% (w/w
fresh weight)

n.s.

Ganoderma
lucidum Ling Zhi

Polysaccharide extracts, main
components n.s.

Mycelia; 71.99%
(w/w dry weight)

Anti-inflammation,
ameliorating

insulin resistance,
suppressing lipid

accumulation,
regulation of gut

microbiota

Polysaccharide extracts, main
components n.s.

Commercialized
spray dried

mycelia; 91.48%
(w/w dry weight)

Improving
intestinal barrier

functions

Arabinose, galactose, glucose, xylose Whole mushroom;
yield n.s. Anti-tumor

Polysaccharide extracts, main
components n.s.

Dried conidial
powder; 2% (w/w
dry weight, crude

extracts)

Promote cognitive
function and neural

progenitor
proliferation

Lentinula
edodes

Shiitake
mushroom

Glucose, galactose, mannose, arabinose

Fruiting body; 1.3%
(w/w dry weight,

purified
polysaccharide

cLEP1)

Therapeutic to
cervical carcinoma

Rhamnose Residue/byproduct;
yield n.s.

Anti-inflammatory,
anti-oxidant

Pyranose, β-d-glucans (β-(1→3)-D-glucose
as backbone & β-(1→6)-D-glucose as side

chains)

Dried fruiting body;
0.76% (w/w dry

weight)
Anti-tumor

Mannogalactoglucan-type
polysaccharides WPLE-N-2, WPLE-A0.5-2

Fruiting body; yield
n.s.

Anti-cancer,
immunomodulatory

Lentinan (β-(1,3)-glucan with β-(1,6)
branches)

Dried fruiting body
(commercial

product); 2.6% (w/w
dry weight)

Anti-tumor

Mannitol, trehalose, arabinose

Dried powder;
23.3% (mannitol),
13.2% (trehalose),
1.79% (arabinose)
(w/w dry weight)

n.s.

Pleurotus
eryngii

King oyster
mushroom

Mannose, glucose, galactose
Fresh whole-

mushroom; 5.4%
(w/w dry weight)

Anti-tumor

Heteropolysaccharides, novel fractions
PEPE-1, PEPE-2, PEPE-3 (mannose,

glucose, galactose, xylose)

Fresh mushroom
residue; yield n.s. Anti-tumor

Mannose, glucose, galactose
Fresh whole-

mushroom; 28.3%
(w/w dry weight)

Immunomodulatory
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n.s., not specified; Abnp, Agaricus bisporus polysaccharides between 5 kDa and 100 kDa; Abap, Agaricus bisporus
polysaccharides under 5 kDa; AcAPS, purified fractions of acidic-extractable polysaccharides; WPLE,

mannogalactoglucan-type polysaccharides from Lentinus edodes; POMP, Pleurotus ostreatus mycelium polysaccharide.

multicopper oxidases implicated in processes such as pathogenesis, morphogenesis, and immunogenesis of an organism

. Fungal immunomodulatory proteins purified from mushrooms, such as Ganoderma lucidum, Ganoderma tsugae,

Poria cocos, and Trametes versicolor, have been suggested as potential adjuvants for tumor therapy due to their

structural similarity to human antibodies and their ability to suppress tumor metastasis and invasion .

Table 2. Bioactive proteins in mushrooms.

Mushrooms Common
Names

Bioactive
Compounds/Substances
*

Bioactivities References

Agaricus bisporus Button mushroom Lectin Immunomodulatory

Cerrena unicolor Mossy maze polypore Laccase Anti-tumor

Coprinus comatus Shaggy mane/chicken drumstick
mushroom Laccase Anti-viral

Flammulina
velutipes Enoki/Golden needle mushroom

FIP Anti-inflammatory

RIP Anti-viral

Ganoderma
applanatum Artist’s conk Lectin Anti-tumor

Ganoderma lucidum Lingzhi Laccase Anti-viral

Ganoderma tsugae Hemlock reishi FIP Immunomodulatory

Hypsizygus
marmoreus Jade mushroom RIPs (hypsin, marmorin) Anti-fungal, anti-tumor

Inonotus baumii Sanghuang Laccase Anti-tumor

Macrolepiota
procera Parasol mushroom Lectin Anti-tumor

Pleurotus
cornucopiae Golden oyster Laccase Anti-viral, anti-tumor

Pleurotus eryngii King oyster mushroom Laccase Anti-viral

Pleurotus ostreatus Oyster mushroom Lectin Immunomodulatory

Sparassis latifolia Cauliflower mushroom Lectin Anti-fungal, anti-
bacteria

* Include various categories and sub-categories of proteins. FIP, fungal immunomodulatory protein. RIP, ribosome

inactivating protein.

The ribosome inactivating protein family acts as rRNA N-glycosylase, inactivating 60S ribosomal subunits through an N-

glycosidic cleavage that eliminates one or more adenosine residues from rRNA to inhibit protein synthesis . Members

of the ribosome inactivating protein family, such as trichosanthin, luffin, ricin, and abrin, have been of considerable interest

due to their potent activity against viral infections and their potential use as immunotoxins for cancer treatment by

conjugating with monoclonal antibodies . However, it is noteworthy that some mushroom ribosome inactivating

proteins may be hazardous and pose adverse effects on health. For instance, hypsin from Hypsizigus mamoreus has

been reported to increase in vitro cell death . Therefore, it is important to elucidate the structure-functional properties

of mushroom proteins as they may be toxic to humans when consumed. Table 2 lists various bioactive proteins derived

from mushrooms.

3.1.3. Lipids

Although mushrooms have a low fat content ranging from 0.1% to 16.3%, they are a good source of high-quality essential

fatty acids such as oleic acid (1–60.3% of total fatty acids in 100 g), linoleic acid (0–81.1% of total fatty acids in 100 g),

and linolenic acid (0–28.8% of total fatty acids in 100 g) . Table 3 summarizes the lipid profiles of various mushrooms

in terms of the content of saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty

acids (PUFA). Mushrooms are good sources of unsaturated fatty acids, as observed in a study by Günç Ergönül et al. 

who investigated the fatty acid compositions of six wild edible mushroom species and found that unsaturated fatty acids

predominated over saturated ones. In most nutritional characterization studies, mushroom fatty acids are commonly

Mushrooms Common
Names Bioactive Compounds Source and Yield Bioactivities References

Pleurotus
ostreatus

Oyster
mushroom

Crude polysaccharide extracts
Fresh whole-

mushroom; 61%
(w/w)

Alleviation of
cognitive

impairment

Crude polysaccharide extracts
Fresh whole-

mushroom; 63.98%
(w/w)

Regulation of
dislipidemia

Homogeneous polysaccharides, fractions
POMP1, POMP2, POMP3 Mycelia; yield n.s. Anti-tumor
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determined using gas-liquid chromatography coupled with a flame ionization detector. However, the sample extraction

method used prior to measurement may impact the final outcome of lipid profiles. For instance, a study by Sinanoglou et

al.  investigated the lipid profiles of Laetiporus sulphureus using different combinations of extraction methods and two

individual solvents and found variations among the four combinations . Ergosterol, the major sterol found in

mushrooms, accounts for the major lipid component of fungal extracellular vesicles as well . Ergosterol extracted from

medicinal mushroom Ganoderma lucidum has been shown to exert anti-oxidant effects and reduce the risk of

cardiovascular diseases while extending lifespan . Compared to lipids from animal sources, edible mushrooms

are advantageous due to their high levels of polyunsaturated fatty acids, which may regulate various physiological

functions in age-related diseases, such as decreasing blood pressure and triglyceride levels, and reducing the risks of

age-related cardiovascular diseases, arthritis, and neurodegenerative diseases . Therefore, mushrooms may play a

significant role in human nutrition and anti-aging regimens based on their fatty acid profiles.

Table 3. Lipid profiles in mushrooms.

Mushrooms Common Name
Total SFA
(% of
Total FA)

Total
MUFA
(% of Total
FA)

Total
PUFA
(% of Total
FA)

Measurement
Techniques References

Agaricus blazei Almond mushroom 24.4 2.0 73.6 GC-FID

Agaricus bisporus
White button mushroom 20.3 1.4 78.3

Capillary GLC-FID
Brown button mushroom 18.4 1.8 79.8

Agrocybe
cylindracea Poplar mushroom 28.1 2.83 69.1 Capillary GLC-FID

Boletus
reticulatus Summer cep 21.1 40.3 38.4 GLC-FID

Coprinus comatus Shaggy mane/Lawyer’s
cap 23.8 11.4 64.8 Capillary GLC-FID

Flammulina
velutipes

Enoki/Golden needle
mushroom

18.5 7.2 74.3 Capillary GLC-FID

20.7 18.6 60.7 GLC-FID

Lactarius
deliciocus Saffron milkcap 20.8 42.0 37.3 Capillary GLC-FID

Lactarius
salmonicolor Salmon milkcap 19.0 19.6 61.6 GLC-FID

Lentinus edodes Shiitake mushroom
16.7 3.5 79.8 GC-FID

15.1 2.9 82.0 Capillary GLC-FID

Pleurotus eryngii King oyster mushroom 17.4 13.1 69.4 Capillary GLC-FID

Pleurotus
ostreatus Oyster mushroom

17.0 13.6 69.4 Capillary GLC-FID

21.8 11.4 66.5 GLC-FID

Polyporus
squamosus Dryad’s saddle 25.2 34.3 40.6 GLC-FID

Russula
anthracina - 23.7 53.3 22.9 GLC-FID

Laetiporus
sulphureus Sulphur polypore 21.6 17.6 60.8 GC-FID,

TLC-FID

Suillus collinitus - 17.5 34.4 47.4 Capillary GLC-FID

Tricholoma
myomyces Grey knight mushroom 15.8 46.3 37.8 Capillary GLC-FID

SFA, saturated fatty acid. MUFA, monosaturated fatty acid. PUFA, polysaturated fatty acid. GC-FID, gas chromatography

coupled with flame ionization detector. GLC-FID, gas-liquid chromatography coupled with flame ionization detection. TLC-

FID, thin layer chromatography–flame ionization detection.

3.1.4. Phenolic Compounds

[119]

[119]

[120]

[55][121][122]

[64][123]

[83]

[70]

[124]

[118]

[124]

[70]

[118]

[124]

[118]

[83]

[70]

[70]

[70]

[118]

[118]

[118]

[119]

[124]

[124]



Phenolic compounds found in mushrooms are typically considered secondary metabolites. The most prominent phenolic

compounds in mushrooms include heteroglycans, lectins, phenolic acids (such as ferulic, gallic, and cinnamic acids),

flavonoids (including hesperetin, quercetin, kaempferol, and naringenin), steroids, alkaloids, tannins, chitinous

substances, terpenoids, and tocopherols. These compounds exhibit various biological activities, including anti-oxidant,

anti-tumor, anti-inflammatory, anti-hyperglycemic, anti-osteoporotic, anti-tyrosinase, and anti-microbial effects, primarily

due to their strong antioxidative properties . Some of the preferred mushroom species for extracting

phenolic compounds include Agaricus brasiliensis (almond mushroom), Cantharellus cibarius (chanterelle), Lactarius
indigo (indigo milk cap), Inonotus obliquus (chaga mushroom), and Melanoleuca cognate . Table 4
provides a summary of representative phenolic compounds extracted from various mushroom species.

Table 4. Extractable phenolic compounds in mushrooms.

Phenolic
Compound
Categories

Phenolic
Compounds Mushroom Sources References

Phenolic acids

Ferulic acid Agaricus brasiliensis, Agrocybe aegerita, Calocybe indica,
Cantharellus cibarius

Gallic acid
Agaricus brasiliensis, Agrocybe aegerita, Calocybe indica,

Cantharellus cibarius, Ganoderma lucidum, Pleurotus
citrinopileatus, Pleurotus pulmonarius, Russula aurora

Cinnamic acid Amanita crocea, Ganoderma lucidum, Pleurotus ostreatus,
Suilus belinii

Caffeic acid
Calocybe indica, Cantharellus cibarius, Hyphodontia paradoxa,

Inonotus obliquus, Pleurotus citrinopileatus, Pleurotus
pulmonarius,

p-Coumaric acid
Agaricus brasiliensis, Agaricus subrufescens, Amanita crocea,

Hyphodontia paradoxa, Laccaria amethystea, Melanoleuca
cognate, Pleurotus ostreatus

p-Hydroxybenzoic
acid

Agaricus brasilensis, Amanita crocea, Cantharellus cibarius,
Lactarius indigo, Lentinus edodes, Melanoleuca cognate, Suillus

belinii

Fumaric acid Agaricus brasiliensis

Vanillic acid Morchella esculenta (L.) Pers., Russula emetic

Syringic acid Hyphodontia paradoxa, Morchella esculenta (L.) Pers.

Protocatechuic
acid

Agrocybe aegerita, Calocybe indica, Cantharellus cibarius,
Hyphodontia paradoxa, Inonotus obliquus, Melanoleuca,

Morchella esculenta (L.) Pers., Suillus belinii, Russula emetic

Rosmarinic acid Hyphodontia paradoxa, Russula aurora, Russula emetic

Flavonoids

Quercetin Ganoderma lucidum, Laccaria amethystea, Pleurotus
citrinopileatus,

Kaempferol Ganoderma lucidum, Lactarius indigo

Hesperetin Calocybe indica, Ganoderma lucidum

Naringenin Calocybe indica, Ganoderma lucidum

Catechin Laccaria amethystea, Russula emetic

Myricetin Cantharellus cibarius, Lactarius indigo

Procyanidin Lactarius indigo

Rutin Pleurotus citrinopileatus, Russula emetic

Tannins Tannic acid
Agaricus silvaticus, Hydnum rufescens, Meripilus giganteus,

Pleurotus citrinopileatus, Pleurotus ostreatus, Pleurotus tuber-
regium(fries)
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Phenolic
Compound
Categories

Phenolic
Compounds Mushroom Sources References

Tocopherols

α-Tocopherol Agaricus bisporus, Boletus badius, Lepista inversa, Pleurotus
ostreatus, Russula delica

β-Tocopherol Laccaria laccata

γ-Tocopherol Clitocybe alexandri

δ-Tocopherol Lepista inversa
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