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Autism spectrum disorder (ASD) is a neuropsychiatric condition characterized by impaired social interactions and

repetitive stereotyped behaviors. Growing evidence highlights an important role of the gut–brain–microbiome axis in the

pathogenesis of ASD. Research indicates an abnormal composition of the gut microbiome and the potential involvement

of bacterial molecules in neuroinflammation and brain development disruptions.
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1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental condition defined by early deficits in social

interaction/communication and repetitive stereotyped behaviors . The multifactorial etiology of ASD includes both

genetics and environmental factors. Genetic mutations, maternal immune activation, and environmental triggers such as

toxicants, insecticides, infections, and medications are involved . ASD consists of frequent gastrointestinal (GI)

symptoms with variable prevalence, including chronic diarrhea, constipation, abdominal bloating, and discomfort .

Correlations between GI dysfunction and worsened behavioral symptoms have become evidence of brain–gut axis

pathophysiology in ASD patients and suggest the intestinal microbiome as a significant factor. Researchers observed

changes in the ASD gut microbiome compared to typically developed children; however, they can result from differences

in diet, medical comorbidities, and geographic location . Thus, further work is needed to better understand the concept

of the microbiota–gut–brain axis. The gut microbiome is shaped from the earliest years of life and regulates important

processes such as digestion and immune response .

The number of intestinal bacteria exceeds the number of human cells and genes . Therefore, there is no doubt that its

role is crucial in the proper functioning of the human body. Changes in the mother’s microbiome influence offspring gut

microbial structure and composition . Many data confirm the interaction of microbiota in pregnancy and the prenatal and

newborn period .

Infections or injuries during pregnancy can induce inflammation, subsequently impacting fetal brain development .

Maternal immune activation (MIA) is considered to be a disease primer, making offspring more susceptible to other risk

factors, like genetic and environmental ones . Pregnant women exposed to MIA have been shown to have pathological

activation of specific interleukins, which promotes abnormal cortical development and ASD-like phenotypes in the

offspring .

2. The Mode of Delivery and Microbiota Transfer

Proper human development is an intricate process involving numerous genetic and environmental factors . The gut

microbiome has emerged as one of the crucial components due to its undoubted influence on health throughout the entire

life .

The impaired balance of the gut flora in infancy is linked to an increased risk of numerous diseases, especially of

immunological origins, like asthma  and allergies . Moreover, disruptions in this balance have been associated with a

range of mental and neurological disorders, such as depression , anxiety , schizophrenia , Parkinson’s

disease , Alzheimer’s disease , and autism .

According to the well-established doctrine, microbiota acquisition begins at birth, as a result of exposition to the maternal

birth canal environment . However, this statement has recently been reassessed by a limited number of studies

confirming the presence of microorganisms in the placenta . These results are still the subject of debate in the

scientific community, and there is no clear conclusion .
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Kennedy et al. conducted a multidisciplinary evaluation of similar studies supporting the evidence of microbial presence in

prenatal intrauterine locations. Based on their findings, it is more likely that the observed microbial signals were the effect

of contamination during the collection and processing of samples and data, rather than genuine microbial colonization.

Analyzed studies frequently indicate the presence of microorganisms, widely known as common contaminants such as

Bradyrhizobium and Micrococcus. The researchers emphasize the challenge of distinguishing relevant microbial signals

from contaminating noise in low-biomass samples, which can lead to misconceptions about tissue sterility. Therefore, they

highlight the importance of following a trans-disciplinary approach, considering biological, ecological, and mechanistic

explanations, when studying low-biomass samples. This approach should facilitate the proper interpretation of findings

and address the challenges posed by contamination .

A characteristic microbiome has been identified in the placenta, the amniotic fluid, and the fetus in healthy pregnancies

. Nonetheless, it is unclear when the first fetal exposition to bacteria is and where they come from . Modification in

placental microbiota may be related to infections, including urinary tract infections resulting in placental enrichment of

Streptococcus, Arthrobacter, Klebsiella, and Acinetobacter .

2.1. The Mode of Delivery and Microbiota Transmission

After birth, the diversity of microbiota changes due to the contribution of multiple factors such as skin-to-skin contact ,

breastfeeding , diet , antibiotic administration , and other environmental exposures . Nevertheless, the

mode of delivery is considered one of the most significant determinants influencing the heterogeneity of gut

microorganisms in early life .

The majority of the studies show numerous differences between vaginal (VD) and cesarean section (CS) babies in terms

of composition, amount, and maturation onset of gut microbiota . CS children are more likely to be

inhabited by bacterial species similar to the mother’s skin surface (e.g., Staphylococcus, Corynebacterium, and

Propionibacterium spp.) . Their microbiota is more abundant in potentially pathogenic species like Enterococcus,

Enterobacter, and Klebsiella, usually associated with hospital units .

On the other hand, VD children inherit microbiota closely resembling the mother’s vaginal environment . Such neonates

have more prevalent and diverse communities of Lactobacillus and Bifidobacterium taxa , known for their positive

impact on infant’s health (29). Moreover, the microbiota composition (at the genus and phylum levels) remains stable

during VD children’s development as opposed to CS . Over time, those differences diminish and become less

noticeable in 6–8 weeks after birth . This brief period is crucial for proper neurodevelopment. It overlaps with the

initiation of the most significant elongation of axons and dendrite branching, alongside the beginning of accelerated

synaptogenesis .

2.2. Changes in Gut Microflora in Autism

Gut dysbiosis is a health complication with greater prevalence in ASD patients compared to neurotypical individuals .

ASD-diagnosed individuals have less diverse gut microbiota, with the main components consisting of Bacteroidetes,

Parabacteroides, Faecalibacterium, Phascolarctobacterium, Lactobacillus, Clostridioides, Desulfovibrio, Caloramator, and

Sarcina compared to the control group . Additionally, decreased levels of Coprococcus and Bifidobacterium were

discovered . Another data analysis revealed a reduction in Prevotella, Coprococcus, Enterococcus, Lactobacillus,

Streptococcus, Lactococcus, Staphylococcus, Ruminococcus, and Bifidobacterium species and higher levels of Clostridia
and Desulfovibrio . Nonetheless, not all studies confirm this relationship, i.e., research on ASD patients and their

neurotypical siblings indicated no significant differences in gut microbiota diversity .

However, microbiota disturbances are still frequently linked to ASD. For example, intensive antibiotic therapy, repeatedly

used in ASD-diagnosed children might result in the overgrowth of Desulfovibrio bacteria . The involvement of

Desulfovibrio in ASD pathogenesis is underscored through its production of Lipopolysaccharide (LPS) and its known role

in promoting inflammation . Tomova et al. in a study involving a small group of ASD-diagnosed children demonstrated a

significant association between autism severity and the abundance of Desulfovibrio spp. .

Moreover, ASD patients typically exhibit decreased levels of Lactobacillus spp. . It is worth noticing that attempts at

recolonization with Lactobacillus reuteri have shown partial alleviation of intestine inflammation caused by LPS.

Additionally, supplementation with Bacteroides fragilis has been found to reduce gut permeability .

The gut microbiota not only encompasses bacteria but also includes fungi. A good example is Candida spp., which has

been proclaimed to take part in ASD pathogenesis . Elevated concentrations of Candida yeasts have been observed in
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fecal samples from individuals with ASD . Maintaining an appropriate concentration of Lactobacillus spp. prevents the

overgrowth of Candida; however, autistic individuals exhibit reduced numbers of Lactobacillus spp. . Additionally, an

excessive Candida population impedes re-establishment with commensal microorganisms . The proliferation of

Candida yeasts results in an increased production of ammonia and toxins, which studies have linked to the exacerbation

of autistic behaviors . Furthermore, Candida overgrowth may lead to the malabsorption of minerals and carbohydrates

. Therefore, addressing the balance of gut microbiota, particularly managing Candida levels and promoting the

presence of beneficial bacteria, becomes essential research interest in the context of ASD.

Research on microbiome changes in autism is inconclusive. Differences may be influenced by individual variation in

microflora composition, different ages and genders of subjects, severe eating restriction, food selectivity, disparities in the

diet used or unknown factors.

3. Mode of Delivery and Autism Correlation

As the mode of delivery influences microbiota composition in early life, researchers focused on verifying its impact on the

risk of autism.

Yip et al. analyzed records from the International Collaboration for Autism Registry Epidemiology (iCARE) database. Their

study cohort consisted of 4,987,390 children born in 5 different countries (Norway, Sweden, Denmark, Finland, and

Western Australia) and comprised 71,646 C-section deliveries. They ascertained that both—elective and emergency CS

are associated with a higher risk of ASD in comparison to vaginal delivery . Those findings were confirmed by more

recent studies .

Furthermore, works by Chien et al., Huberman Samuel et al., and Yang et al. indicate that only CS performed under

general anesthesia (GA) noticeably increases the risk of ASD. CS under regional anesthesia (RA) brought only an

insignificantly higher risk than VD . This might suggest that GA is a major factor contributing to the link between

the mode of delivery and autism. However, those findings should be taken with caution due to several limitations of

evaluated studies such as the omission of confounding factors, limited statistical power, and lack of sibling analysis.

Moreover, the reason responsible for this phenomenon remains indistinct. Research based on human and animal models

suggests that the administration of GA in early life might be the cause of neurotoxicity, which disturbs postpartum

neurodevelopment . These toxic effects might impact regions of synaptogenesis, which is especially accelerated in the

first 6 months of life  and can be the cause of disruptions and delays in the subsequent development of other areas of

the brain .

In addition, studies show that the general correlation between delivery mode and ASD might be related to confounding

variables such as unknown genetic and environmental conditions. Curran et al. analyzed a large cohort of 2,697,315

children. Even though the general analysis proved that CS children are approximately 20% more likely to develop ASD

after adjusting for sibling controls the association disappeared. Weaknesses of this study include the inability to verify the

authenticity of the analyzed cases and determine whether the origin of confounding is a genetic or external factor.

Furthermore, the sample size of the sibling control was significantly lower than the general study population .

In conclusion, most of the studies confirm that children delivered by cesarean section are more prone to the development

of ASD. Additionally, the use of GA turned out to be one of the most feasible risk factors. Nevertheless, those findings

must be taken cautiously as all confounders connected with CS should be considered.
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