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Cancer is characterized by increased oxidative stress, an imbalance between reactive oxygen species (ROS) and

antioxidants. Enhanced ROS accumulation, as a result of metabolic disturbances and signaling aberrations, can promote

carcinogenesis and malignant progression by inducing gene mutations and activating pro-oncogenic signaling, providing a

possible rationale for targeting oxidative stress in cancer treatment.
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1. ROS Promote Carcinogenesis and Cancer Progression

It was demonstrated that oxidative stress is involved in a wide range of pathologies including cancer, and increased

production of ROS are common features of cancer cells. Although high reactive oxygen species (ROS) levels are

cytotoxic and may exert anti-tumorigenic effects via oxidative damage and ROS-dependent death signaling, ROS play

critical roles during tumorigenesis and cancer development. Here, these contents focus on the pro-tumorigenic role of

ROS in malignant progression, which may be addressed with antioxidant therapy. The elevated levels of ROS from altered

redox homeostasis contribute to the transformation of healthy cells into cancerous cells and enable their survival through

two major mechanisms. The first is that ROS directly oxidize macromolecules, such as nucleic acids, proteins, lipids and

glucose, resulting in gene mutation and aberrant inflammation . The second mechanism involves oxidative stress-

caused aberrant redox signaling. ROS, particularly hydrogen peroxide (H O )  and superoxide radical (O ), might

function as signaling molecules to cause various signaling pathways to go awry and drive cancer progression  (Figure
1).

Figure 1. ROS promote carcinogenesis and malignant progression. In the process of carcinogenesis, ROS can contribute

to DNA damage, which results in aberrant inflammation and metabolism, leading to oncogenic mutations and cell

hyperproliferation. ROS can also act as signaling molecules to enable cancer cells’ survival and cancer progression via

epithelial-to-mesenchymal transition (EMT). In addition, ROS might affect stromal cells, such as cancer-associated

fibroblasts (CAFs), regulatory T (T ) cells, effector T (T ) cells and NK cells in the tumor microenvironment (TME) to

promote cancer progression.

1.1. ROS-Mediated Oncogenic Mutations Promote Carcinogenesis

The elevated ROS level functions as a contributor to the malignant transformation of normal cells by inducing mutations in

nuclear DNA (nDNA) or mitochondrial DNA (mtDNA), as well as by causing oxidative damage to biomolecules .

Excessive ROS are highly associated with both nDNA and mtDNA mutations, which were reported to result in aberrant

inflammation and metabolism, thus promoting malignant transformation . Overproduction of ROS causes nDNA mutation

and genetic instability, which further activate multiple oncogenes and lead to abnormal metabolic activity and decreased

antioxidant capacity. These events eventually promote the production of ROS in a positive feedback manner .
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Increased ROS was demonstrated to promote chronic inflammation, one of the major causes of cancer, through inducing

chemokines such as IL-8 and CXCR4, as well as inflammatory cytokines including IL-1, IL-6 and TNF-α . In the

context of cancer initiation, mtDNA is also an essential target of ROS, as mtDNA mutation was linked to carcinogenesis

. Each mitochondrion carries a few dozen mtDNA copies. Increased ROS-induced somatic mutations in mtDNA

affect the function of electron transport chain (ETC) and the ATP synthase, which might promote a Warburg-like

phenotype shift towards glycolysis. The metabolic shift can shape cell behavior and participate in oncogenic

transformation in multiple types of cancer, such as colorectal cancer, lung cancer, gastric cancer, liver cancer and head

and neck cancer .

1.2. ROS Function as Signaling Molecules to Drive Cancer Progression

In addition to supporting carcinogenesis, ROS were also demonstrated to sustain and accelerate cancer progression via

epithelial-to-mesenchymal transition (EMT), which is involved in reprogramming the tumor microenvironment (TME) 

. The TME is affected by ROS through regulating the function of T cells, tumor-associated macrophages (TAMs) and

cancer-associated fibroblasts (CAFs) in TME . The TAMs and CAFs promote cell proliferation, angiogenesis,

immunosuppression and invasion, thus enabling cancer progression via the reciprocal crosstalk between cancer cells and

the TME . Moreover, regulatory T (T ) cells and cytotoxic CD8  T cells in TME can suppress effective tumor immunity

and contribute to cancer progression, which is associated with poor response to immunotherapy . In terms of the

role of ROS in TME, H O  is thought to function as signaling molecules, which might cause metabolic changes in CAFs,

such as altered glucose uptake and mitochondrial activity . ROS also contribute to cancer progression by triggering

the immunosuppressive properties of TAMs. For instance, mitochondrial ROS activate MAPK/ERK activity, which

contributes to the secretion of TNF-α and subsequently promotes cancer invasion . Furthermore, it was also

demonstrated that O  can suppress T cell-mediated inflammation, thus promoting TAM-mediated immunosuppression

and leading to tumor development .

2. Antioxidant Therapeutic Strategies in Cancer

Given the important role of ROS in cancer, it follows that modulating ROS levels is a promising anticancer strategy. This

may suppress ROS-induced carcinogenesis and cancer progression by inducing oxidative damage and ROS-dependent

cell death . Therefore, multiple antioxidants and weak pro-oxidants were explored in pre-clinical research and clinical

evaluations. Cancer cells can produce excessive ROS through the above-mentioned mechanisms and increased

formation of ROS are common features of cancer cells, which makes them more susceptible to a further increase in ROS

than normal cells. Therefore, pro-oxidants may function as anticancer agents. For example, it was reported that

exogeneous H O  can dramatically reduce the survival of MCF-7 cells with PRDX1 knockout, showing the potential of

pro-oxidants to promote ROS-mediated cell death . In addition, weak pro-oxidants may also function as important

contributors to antioxidant therapy by boosting internal antioxidant capacity. However, treatment with weak pro-oxidants in

cancer therapy still needs further investigation. Here, the following contents focus on the antioxidant therapeutic strategies

using antioxidants. Overall, antioxidant therapeutic strategies in cancer can be classified as targeting ROS with

nonenzymatic antioxidants, including NF-E2 p45-related factor 2 (NRF2) activators , vitamins  (Figure 2) or

targeting ROS with enzymatic antioxidants, including NADPH oxidase (NOX) inhibitors , SOD mimics , NAC and

GSH esters (Figure 3) (Table 1) .

Figure 2. Targeting ROS with nonenzymatic antioxidants. Dehydroascorbic acid (DHA), the oxidized form of vitamin C, is

taken up by cells through glucose transporter 1 (GLUT1) and then reduced to vitamin C. Vitamin E is located in cell

membranes and defends against lipid hydroperoxides. NRF2 activators may disrupt the KEAP1-NRF2 interaction, leading
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to the activation of NRF2 downstream antioxidant genes. Glutathione (GSH) is synthesized from cysteine, glutamate and

glycine. Exogenous N-Acetyl cysteine (NAC) and GSH esters (GSH-E) supplementation promote GSH production and

defense against excessive ROS.

Figure 3. Targeting ROS with enzymatic antioxidants. The inhibitors of plasma membrane NADPH oxidase 2 (NOX2) can

prevent the production of superoxide (O ) and superoxide dismutase (SOD) mimics might dismutate O  to hydrogen

peroxide (H O ).

Table 1. Anticancer antioxidants in clinical trials.

Antioxidants Cancer Types Trial Status Trial ID

NRF2 activators      

Sulforaphane

Lung cancer Phase 2 NCT03232138

Breast cancer Phase 2 NCT00982319

Prostate cancer Phase 2 NCT01228084

Colon cancer NA NCT01344330

HNSCC Early Phase 1 NCT03182959

Resveratrol

Colon cancer Phase 1 NCT00256334

Colorectal cancer Phase 1 NCT00920803

Neuroendocrine tumor NA NCT01476592

Breast cancer NA NCT03482401

Multiple myeloma Phase 2 NCT00920556

Quercetin

Prostate cancer Phase 1 NCT01912820

Colorectal cancer NA NCT00003365

Pancreatic cancer/NSCLC Phase 2/3 NCT02195232

Curcumin

Breast cancer Phase 2 NCT01042938

Colorectal cancer Phase 2 NCT02439385

Prostate cancer NA NCT03211104

Head and neck cancer Early Phase 1 NCT01160302

Pancreatic cancer Phase 2 NCT00192842
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Antioxidants Cancer Types Trial Status Trial ID

Bardoxolone-methyl
(CDDO-Me, RTA402)

Solid tumors/Lymphoid malignancies Phase 1 NCT00529438

Pancreatic cancer Phase 1 NCT00529113

Solid tumors/ Lymphoid malignancies Phase 1 NCT00508807

RTA-408
(omaveloxolone)

NSCLC Phase 1 NCT02029729

Breast cancer Phase 2 NCT02142959

Melanoma Phase 1/2 NCT02259231

Dimethyl fumarate

Multiple sclerosis Phase 3 NCT02430532

Lymphocytic leukemia Phase 1 NCT02784834

Glioblastoma Phase 1 NCT02337426

Oltipraz Lung cancer Phase 1 NCT00006457

SOD mimics      

GC4419

Head and neck cancer Phase 2 NCT04529850

Pancreatic cancer Phase 1/2 NCT03340974

Squamous cell carcinoma Phase 1 NCT01921426

Head and neck cancer Phase 2 NCT02508389

Metalloporphyrins Lung cancer Phase 3 NCT00054795

NOX inhibitors      

Ebselen (SPI-1005)
Cancer Phase 1 NCT01452607

Lung cancer, Head and neck cancer Phase 2 NCT01451853

GSH-related antioxidants      

NAC

Breast cancer Phase 1 NCT01878695

Gastric cancer NA NCT03238404

Ovarian cancer NA NCT03491033

Head and neck cancer Phase 2 NCT02123511

Gastrointestinal neoplasms Phase 2 NCT00196885

Bladder cancer NA NCT02756637

Lung cancer Phase 2 NCT00691132

Colorectal cancer NA NCT01325909

NOV-002

Breast cancer Phase 2 NCT00499122

Ovarian cancer Phase 2 NCT00345540

NSCLC Phase 3 NCT00347412

Leukemia Phase 2 NCT00960726

Reduced GSH Breast cancer Phase 2 NCT00266331

Vitamins      



Antioxidants Cancer Types Trial Status Trial ID

Vitamin C

Ovarian cancer Phase 2 NCT00284427

Pancreatic cancer Phase 1 NCT00954525

Prostatic neoplasms Phase 2 NCT01080352

Ovarian cancer Phase 2 NCT00284427

Advanced cancer Phase 1/2 NCT01050621

Solid cancers Phase 1 NCT00441207

NSCLC Phase 1/2 NCT02655913

Head and Neck Cancer NA NCT03531190

Skin cancer NA NCT01032031

Liver cancer Phase 1/2 NCT01754987

Vitamin E

Prostate cancer Phase 3 NCT00006392

Colorectal cancer Phase 1 NCT00905918

Head and neck neoplasms Phase 2 NCT02397486

Skin neoplasms NA NCT02248584

Pancreatic neoplasms Phase 1 NCT00985777

Breast cancer Phase 2 NCT00022204

NA: Not Applicable; HNSCC, head and neck squamous cell carcinoma; NSCLC, Non-small cell lung cancer.

2.1. Targeting ROS with Nonenzymatic Antioxidants

The transcription factor NRF2 was considered as a master regulator of various homeostatic genes that defend against

cellular stress, including oxidative stress . Upon exposure to oxidative stress, the transcription factor NRF2 is released

from its principal negative regulator Kelch-like ECH-associated protein 1 (KEAP1) and translocates to the nucleus, where

NRF2 binds to antioxidant response element (ARE) and promotes the expression of antioxidant genes . High

expression of NRF2 was observed in various oxidative stress-related diseases including cancer, especially in NRF2-

activated malignant tumors. NRF2 activators were considered as potential agents to prevent carcinogenesis or reverse

cancer progression . Five categories of NRF2 activator were developed, the underlying action mechanisms of which

include: (1) modification on sensor cysteines of KEAP1, leading to the dissociation between NRF2 and KEAP1 ; (2)

direct disruption of the KEAP1-NRF2 interaction ; (3) disruption of the interaction between NRF2 and β-transducin

repeat-containing protein (βTrCP), which targets NRF2 for proteasome degradation ; (4) sequestration of KEAP1 into

autophagosomes by p62 ; (5) upregulation of NRF2 protein levels by de novo synthesis that cannot be degraded by

KEAP1 ; (6) inhibition of the NRF2 transcriptional repressor BTB domain and CNC homolog 1 (BACH1) .

The current development of NRF2 activators is mainly based on modifying sensor cysteines of KEAP1 and disrupting the

KEAP1-NRF2 interaction. For instance, fumaric acid esters are oral analogs of fumarate that represent a group of NRF2

activators that work by modifying sensor cysteines of KEAP1, among which dimethyl fumarate (DMF) is the most

successful example . It was reported that DMF can alkylate Cys151 of KEAP1, leading to the dissociation of NRF2 and

KEAP1 . DMF metabolite monomethyl fumarate (MMF) was also demonstrated to react with KEAP1 through Cys151,

thereby stabilizing and activating NRF2 . DMF and its major metabolite MMF can reduce inflammatory responses and

exhibit a favorable tolerability profile in clinical trials, showing promise for cancer treatment . In addition, compounds

that show improved bioavailability compared with MMF, through improving the release rate, were synthesized, such as

TFM735, which is reported to activate NRF2 via the Cys151 in KEAP1, leading to the inhibition of IL-6 and IL-17 from

peripheral blood mononuclear cells . In addition, nitro fatty acids (NO2-FAs), such as nitro linoleic acid and nitro-oleic

acid, are endogenous signaling mediators that react with Cys273 and Cys288 in KEAP1 through nitro alkylation, resulting

in the activation of NRF2 and being implicated in anti-inflammatory activities . Recently, the non-covalent NRF2

activators were developed, which directly disrupt the KEAP1–NRF2 protein–protein interaction via a cysteine-independent

binding mechanism . For instance, the bis-carboxylic acid compound CPUY192018 is a high-affinity KEAP1 ligand,

which promotes the release of NRF2 from KEAP1 and enhances the expression of NRF2-target genes . The

sulfonamide-containing compounds were reported to inhibit the KEAP1–NRF2 interaction and enhance the expression of
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NAD(P)H: quinone oxidoreductase (NQO1), which reduces lung inflammation in animal models . The naphthalene bis-

sulfonamide was also reported to promote the expression of NRF2-target NQO1 and protect against dextran sulfate

sodium (DSS)-induced colitis . In addition to the above-mentioned compounds, (SRS)-5 and benzene-disulfonamides

were also demonstrated to function as potent non-covalent NRF2 activators that disrupt the interaction between KEAP1

and NRF2 . Altogether, these compounds are high-affinity ligands for KEAP1 and can directly block the KEAP1–

NRF2 interface, thereby activating NRF2 downstream antioxidant genes and protecting cells from oxidative stress.

Although current drugs mainly target KEAP1, it is noted that NRF2 might bind to ARE sequences in a KEAP1-independent

manner, possibly involving the regulation of transcriptional repressor BACH1 . Therefore, compounds that inhibit the

binding of BACH1 to ARE-driven genes, such as HMOX1, were also developed . Presently, more NRF2 activators

eliciting beneficial effects are arising. However, treatment with NRF2 activators may inactivate drug-induced oxidative

stress that normally would result in cell death. Therefore, it is necessary to monitor their clinical efficacy, given that the

activation of NRF2 may contribute to the development of chemoresistance . Taken together, NRF2 activators have

shown potential for cancer therapy, but further investigations are also needed to demonstrate their clinical efficacy,

especially in combination with chemotherapeutic drugs.

NAC is currently one of the most studied antioxidant agents that can be quickly absorbed via the anion exchange

membrane and deacetylate to produce cysteine, thus replenishing GSH . NAC can reduce cysteine conjugates and is

used therapeutically for many human diseases, including cancers . However, NAC was also reported to increase

melanoma cell metastasis in NOD-SCID-Il2rg  (NSG) mice . GSH esters, the derivatives of GSH, were developed for

GSH supplementation, since GSH cannot be effectively transported into cells and exogenously administered GSH is

rapidly cleared in plasma. Ester derivatives of GSH, such as monoethyl (GSH-MEE), diethyl (GSH-DEE), monomethyl

(GSH-OMe) and isopropyl esters have shown high efficiency in increasing cellular GSH level . In addition, compared

with oral administration, subcutaneous or intraperitoneal injection of GSH esters is more effective in elevating GSH levels

in various tissues . However, although the efficacy of GSH esters to alleviate oxidative stress in cells and animal

models was demonstrated, clinical trials with GSH ester are still needed.

As the most widely used dietary antioxidants, L-ascorbic acid (vitamin C) and α- tocopherol (vitamin E) are of great

interest in cancer therapy . Vitamin C is a type of water-soluble vitamin that cannot be synthesized endogenously in the

human body, but can only be provided by dietary supplement, making it an essential nutritional component .

Dehydroascorbic acid (DHA), the oxidized form of vitamin C, is absorbed from the renal tubules by renal epithelial cells

and functions as a reductant and an enzyme cofactor . It was described that high dose vitamin C shows promising

antitumor efficacy in patients with advanced cancer . However, the role of vitamin C in cancer treatment is still

controversial, as half of the studies indicate that vitamin C has no significant effect on the incidence and mortality of

cancer . Vitamin E is lipid soluble and mainly localizes to the plasma membrane, where it functions as a ROS

scavenger through reacting with free radicals, thus defending against oxidative stress . It was reported that vitamin E

only has low toxicity and causes no obvious side effects at high dose intake . However, several animal studies showed

that vitamin E supplements might promote carcinogenesis and cancer progression . Overall, the controversial effect of

antioxidants on cancer raises significant concerns regarding antioxidant supplements. Therefore, novel strategies are

warranted to resolve the double-edged effect of supplemental antioxidants, including vitamin C and vitamin E.

2.2. Targeting ROS with Enzymatic Antioxidants

As mentioned above, the NOX family is a major source of ROS and excessive activation of NOXs can contribute to

oxidative stress. Thus, agents that would efficaciously target NOXs to scavenge ROS might hold significant promise for

cancer therapy . There are two types of NOXs inhibitors, including peptidic inhibitors and small-molecule inhibitors,

both of which are based on the mechanism of inhibiting NOX enzyme activity or suppressing the assembly of the NOX2

enzyme . Small peptide inhibitors of NOX complexes have shown therapeutic potential. The first peptidic inhibitor is

Nox2ds-tat ([H]-R-K-K-R-R-Q-R-R-R-C-S-T-R-I-R-R-Q-L-[NH2], also known as gp91ds-tat). Nox2ds-tat was reported to

inhibit the assembly of NOX2, a complex that consists of six subunits: the Nox2 subunit (also known as gp91phox);

p22phox, and four cytosolic components; p47phox (organizer subunit); p67phox (activator subunit); p40phox, and the

small Rho-family GTP binding protein Rac1 or Rac2 . Nox2ds-tat selectively blocks NOX2 activity through

interrupting the Nox2–p47phox interaction . The inhibitory effects of Nox2ds-tat were demonstrated both in vitro and in

vivo. For instance, Nox2ds-tat was reported to inhibit the production of angiotensin II-induced O   . Moreover,

administration of Nox2ds-tat by subcutaneous infusion significantly attenuated the production of vascular O   and

subsequent vascular inflammation in angiotensin II-infused rat model . In summary, the viability of Nox2ds peptide

as a NOX2 inhibitor was demonstrated, which is important for suppressing NOX2 activity and preventing excessive ROS

production.
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Currently, multiple small-molecule global inhibitors that inhibit NOXs or flavoproteins in general, were synthesized,

including diphenyleneiodonium (DPI), ebselen and diapocynin . Among them, DPI is the first identified and commonly

used potential inhibitor of NOXs, which inhibits the production of ROS by forming adducts with FAD, potentially

contributing to the reduction of ROS and showing anticancer properties in colon cancer cells . However, as a

nonselective inhibitor, DPI might target other flavin-dependent enzymes, such as xanthine oxidase and nitric oxide

synthase. Ebselen and diapocynin are described as NOX inhibitors but were also previously found to display unrelated

effects . Unlike DPI, apocynin specifically prevents the activation of NOX2 by inhibiting the translocation of p47phox,

thereby repressing the production of O   in vitro and exhibiting anti-inflammatory activity in vivo . In addition, other

specific NOX inhibitors, were also identified via cellular and membrane assays . For instance, fulvene-5, one of the

fulvene derivatives that have a chemical similarity to DPI, could inhibit NOX2 and NOX4 in vitro, as well as block the

growth of endothelial cell-derived neoplasia in mice . However, despite the great efforts made by researchers, few

NOXS inhibitors have yet reached clinical trials. It remains challenging to identify compounds that target NOX specifically

and show a profound impact in alleviating cancer. Much more work is still needed to develop NOX inhibitors for the

treatment of oxidative-stress-associated disorders, including cancer.

SOD is a metalloprotein that can efficiently eliminate O  with a dismutation mechanism. SOD was developed as a drug

known as orgotein, to defend against oxidative stress in mammalian cells . The anti-inflammatory property of orgotein

was demonstrated through preclinical and clinical studies . It was also reported that orgotein can effectively prevent or

reduce the side effects of radiation therapy in bladder cancer patients . In addition, several types of SOD mimics were

synthesized, such as metalloporphyrins, Mn (II) polyamines, Mn (III) salens, Mn (III) corroles and Mn (IV) biliverdins 

. Although the rate constants are much lower than the enzymes, SOD mimics appear to be effective in extracellular

fluids where the antioxidant enzymes are absent or at deficient concentrations . Moreover, some SOD mimics may act

as pro-oxidants rather than antioxidants, thereby activating rather than mimicking SOD .

Metalloporphyrins have emerged as the most studied SOD mimics, such as Mn porphyrins. Various Mn porphyrin

compounds, including MnTM-2-pYp , MnTE-2-pYp  and MnTDE-2-ImP , have shown high SOD activity that dismutates

O   to H O   . The protective and therapeutic potential of Mn porphyrins were demonstrated in animal models of

diseases, including cancers. To date, more porphyrins or porphyrin-based SOD mimics were synthesized with the

establishment of the structure–activity relationships between SOD and metal-site redox ability . The Mn (II)-containing

penta-aza macrocyclic manganese compound GC4419 (known as avasopasem manganese, AVA) was reported to

enhance tumor-killing activity when synergized with radiation in head and neck cancer . In addition, GC4419 can

enhance the toxicity of high-dose vitamin C in a H₂O₂-dependent manner, promoting radiation-induced cancer cell killing

. Furthermore, GC4419 also exhibits therapeutic potential in the inflammation animal model . Unlike GC4419, the

Mn (III)- containing salen complexes, such as EUK-8, EUK-134 and EUK-189, are not specific and have dismutation

activity on both O  and H O , showing protective effects for various types of cancer .

In summary, multiple antioxidant therapeutic strategies were developed for cancer treatment, which can be classified into

two different categories of groups according to their targets: enzymatic antioxidants and nonenzymatic antioxidants, both

of which have shown potential to act as antioxidant drugs in pre-clinical and clinical research.
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