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Iron oxides are chemical compounds which havedifferent polymorphic forms, including γ-Fe2O3 (maghemite),

Fe3O4(magnetite), and FeO (wustite). Among them, the most studiedare γ-Fe2O3 and Fe3O4,as they possess

extraordinary properties at the nanoscale (such as superparamagnetism, high specific surface area, biocompatible

etc.),because at this size scale, the quantum effectsaffect matter behavior and optical, electrical and magnetic

properties.Therefore, in the nanoscale, these materials become ideal for surface functionalization and modification in

various applications such as separation techniques, magnetic sorting (cells and other biomolecules etc.), drug delivery,

cancer hyperthermia, sensing etc., and also for increased surface area-to-volume ratio, which allows for excellent

dispersibility in the solution form.The current methods used are partially and passively mixed reactants, and,thus, every

reaction has a different proportion of all factors which causes further difficulties in reproducibility.Direct active and

complete mixing and automated approaches could be solutions to thissize- and shape-controlled synthesis, playing a key

role in its exploitation for scientific or technological purposes. An ideal synthesis method should be able to allow reliable

adjustment of parameters andcontrol over the following: fluctuation in temperature;pH, stirring rate;particle distribution;

size control;concentration; and control over nanoparticle shape andcomposition i.e., crystallinity, purity, and rapid

screening. Iron oxide nanoparticle (IONP)-based available clinical applications are RNA/DNAextraction and detection of

infectious bacteria andviruses. Such technologies are important at POC (point of care) diagnosis.IONPs can play a key

role in these perspectives.Although there are various methods for synthesis of IONPs,one of the most crucial goals is to

control size and properties with high reproducibility to accomplish successful applications.Using multiple characterization

techniques to identify and confirm the oxide phase of iron can provide better characterization capability. It is very

important to understand the in-depth IONP formation mechanism, enabling better control over parameters and overall

reaction and, by extension, properties of IONPs.This workprovides an in-depth overview ofdifferent properties, synthesis

methods, and mechanisms of iron oxide nanoparticles (IONPs) formation, and the diverse range of theirapplications.

Differentcharacterization factors and strategiesto confirm phase purity in the IONP synthesis field are reviewed.First,

properties of IONPs and various synthesis routes with their merits and demerits are described. We also describe different

synthesis strategies and formation mechanisms for IONPs such as for: wustite (FeO), hematite(α-Fe2O3), maghemite(ɤ-

Fe2O3) and magnetite(Fe3O4). We also describe characterization of these nanoparticles and various applications in

detail. In conclusion, we present a detailed overview on the properties, size-controlled synthesis, formation mechanisms

and applications of IONPs.
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1. Introduction

Iron oxide nanoparticle (IONP)-based technologies are catalyzing rapid developments in nanotechnology. Due to

technological importance, extensive research has been carried out on the development of various synthetic routes to yield

IONPs with desired properties . Among IONPs, mainly Fe O  and γ-Fe O are extensively studied . In general, iron

oxides are classified into different phases (magnetite, hematite, maghemite, wustite). In the nano form, a material

possesses interesting optical, magnetic, and electrical properties which cannot be found in their bulk form. This

phenomenon can be described as the "quantum size effect" . In the nanometer range of IONPs, the quantum effect

dominates the behavior-affecting magnetic, electric, and optical properties of the matter. In the nanoscale, there is an

impact of specific individual atoms or molecules, while in the bulk form, property is attributed to the average of all the

quantum forces that affect all of the atoms. For example, magnetic Fe O  nanoparticles are superparamagnetic below the

size of 20 nm . As the nanoparticle size decreases, this property tends towards paramagnetic or superparamagnetic

magnetization. Therefore, a decrease in nanoparticle size will enhance superparamagnetic behavior and decrease

ferromagnetic behavior. As the size of nanoparticles decreases, the relative oxygen concentration decreases; therefore, a

slight reduction in the iron valance state occurs. Because of this ferrous ion content increase, an increase in

magnetization should also be observed . Similarly, γ-Fe O  nanoparticles have gained technological importance due to

their magnetic and catalytic properties. High magnetization and hysteretic heating make them potential candidates in
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separation and biomedical areas, and the semiconducting property and chemically active surface allow catalytic activities

such as photocatalytic ability . Iron oxide nanoparticles (IONPs) have a broad range of significant applications in

electronics , biomedicine , energy , agriculture , and animal biotechnology , as shown in

Figure 1. In a small size of about 10–20 nm, the superparamagnetic properties of Fe O  and γ-Fe O nanoparticles

become apparent, therefore, better performance can be achieved for the above-mentioned applications. Additionally, due

to the increased surface-to-volume ratio, they show excellent dispensability in solutions .

Figure 1. Various applications of iron oxide nanoparticles (IONPs).

However, reproducible synthesis of IONPs with desired properties is still a problem . This is because existing synthesis

methods show a passive approach towards synthesis reaction. The main challenges and key points to overcome them are

explained in Figure 2. In existing methods, reactants are mixed partially and passively. Unreacted components therefore

effect the final product when undesired reactions takes place, as the proportion of all these factors is different in every

reaction, making it difficult to achieve reproducibility in the desired properties . Immediate purification of nanoparticles

after reaction becomes necessary to minimize error. Direct active and complete mixing of reactants and automated

approaches could solve this issue. Researchers are mainly focused on size- and shape-controlled synthesis, as size

determines the surface area, which plays a key role in its exploitation for scientific or technological purposes .

Figure 2. Challenges and key points in reproducible synthesis of nanoparticles.

2. Manipulation of reaction parameters

Manipulation of reaction parameters is necessary to obtain controlled nanoparticles in terms of size, shape, purity,

crystallinity, and morphology. A synthetic route should enable control over reaction parameters: temperature;

concentration; fluctuation in temperature; pH; stirring rate; particle distribution; size control; control over shape;

nanoparticle composition and structure, which includes crystallinity, purity, rapid screening, and reliable adjustment of

parameters .

In our opinion, the established synthetic routes of iron oxide nanoparticles have difficulty in controlling the particle size,

shape, and properties. Many of the reported methods have their own pros and cons, as described in Table 1. It is

necessary to develop a new synthetic route for IONPs that yields nanoparticles in a reproducible manner with excellent

size control. This review explains various dimensions associated with synthesis of IONPs and their applications, and

different synthesis mechanisms are summarized. Figures S1–7 represented in supplementary materials corresponds to

various IONPs synthesis methods graphically presented which also includes key points for each corresponding method.

Table 1. Merits and demerits of different IONP nanoparticle synthesis methods.

Type of Synthesis Pros Cons Reference

Microwave

Short reaction time, higher

yields, excellent

reproducibility, easy

handling

Expensive, unsuitable for

scale-up and reaction

monitoring
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Spray pyrolysis

Finely dispersed particles

of predictable size, shape

and variable composition

Aggregated particles,

expensive

Laser pyrolysis

Small particle size, narrow

particle size distribution,

near absence of

aggregation

Complicated, very

expensive

Pulsed wire discharge

method

Fast process, higher purity

of NPs

Batch process, limited

production, high vacuum

systems, costly process,

contaminations in product

Chemical vapor

condensation

Suitable for preparing small

quantities to demonstrate

desired properties in the

laboratory

Low production, difficult to

control size and particle

size distribution

Co-precipitation

Convenient method, simple

and rapid preparative

method, easy control of

particle size and

composition

Extensive agglomeration,

poor morphology and

particle size distribution

Thermal

decomposition

Producing highly

monodispersed particles

with a narrow size

distribution

High cost, long-time

synthesis reaction, high

temperature

Microemulsion

Monodispersed

nanoparticles with various

morphology can be

produced

Not very efficient and

difficult to scale up

Polyol

Uniform size particles can

be prepared, easy to

scaleup

Needs high temperature,

long time

Sol–Gel

Low processing cost,

energy efficiency, high

production rate, and rapid

productivity

Limited efficiency, high

cost
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Sonochemical

Simple, low cost, safe,

environment friendly,

absence of many reactants

Very small concentration

of prepared NPs, particle

agglomeration is very

narrow

Biological synthesis of

nanoparticles using

plants and bacteria

Selectivity and precision for

nanoparticle formation, cost

effective, eco friendly

Limited knowledge,

difficulty in controlling size

and properties
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