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Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease after Alzheimer’s disease,

globally. Dopaminergic neuron degeneration in substantia nigra pars compacta and aggregation of misfolded

alpha-synuclein are the PD hallmarks, accompanied by motor and non-motor symptoms. Several viruses have

been linked to the appearance of a post-infection parkinsonian phenotype. Coronavirus disease 2019 (COVID-19),

caused by emerging severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, has evolved from a

novel pneumonia to a multifaceted syndrome with multiple clinical manifestations, among which neurological

sequalae appear insidious and potentially long-lasting.

Parkinson’s disease  SARS-CoV-2  exosomes  neuroinflammation  inflammation
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1. Introduction

Parkinsonism is a clinical syndrome defined by the presence of resting tremor, bradykinesia, rigidity and postural

instability . These motor symptoms are characteristically observed in Parkinson’s disease (PD) , which remains

the primary cause of parkinsonism, but there are other disorders with the same symptoms that mirror it . PD is

the second most prevalent neurodegenerative disease worldwide after Alzheimer’s disease (AD) and constitutes a

debilitating, progressive motor disorder characterized by degeneration of the nigrostriatal dopaminergic pathway .

The prevalence of PD is estimated to be approximately 0.5–1% among those 65–69 years of age, rising to 3%

among persons of 80 years and older , with an annual incidence rate of approximately 11–19/100,000 cases per

year . Although PD is generally an idiopathic disorder, there is 5–10% of PD cases that report a family history or

display a clear Mendelian inheritance . The incremental loss of dopaminergic neurons in the substantia nigra

pars compacta (SNpc) and striatum is the mechanistic cause of motor manifestations, with 60–70% dopaminergic

neuron loss required for the appearance of motor symptoms . However, prior to motor manifestation onset,

patients may display non-motor symptoms such as hyposmia, gastrointestinal dysfunction, and sleep disorders .

The neuropathological hallmark of PD is the misfolding and aggregation of alpha-synuclein (α-syn), which is the

major protein component of Lewy bodies (LB). Indeed, formation of α-syn protein clumps within neural cells

triggers the initiation of neurodegeneration processes .
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PD is a disease of multicomplex etiology, involving the interaction of aging, genetics, and environmental variables,

as well as infectious agents, such as viral infections . Additionally, there is now a wide range of data to

support the existence of viral parkinsonism, which often manifests following recovery from viral infections .

Although the precise mechanisms remain unclear, viruses have been implicated as potential etiological or trigger

factors for both PD pathogenesis  and viral parkinsonism . Recent data suggest that the emerging human

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the ongoing pandemic that has

already killed more than 6.4 M people worldwide , may be one of these viruses .

On cellular and molecular level, mitochondrial dysfunction, defective autophagy, oxidative stress, and

neuroinflammation are all thought to play a role in PD pathogenesis and they are linked to the accumulation and

spread of misfolded α-syn . The “prion-like” cell-to-cell dissemination of amyloidogenic proteins, such as α-

syn, principally refers to the formation and subsequent spread of self-propagating pathological α-syn aggregates

throughout brain regions and has lately garnered considerable attention in the quest to understand PD

pathophysiology . Several in vitro studies, both in animals and continuous human cell lines, have

supported this reminiscent of, yet distinct from prion diseases, mechanism of misfolded α-syn spread .

Exosomes, the nanosized vesicles and masters of intercellular communication , have been proposed to serve

as an efficient “vehicle” of transportation for such proteins , mainly because they are a priori involved in several

homeostatic procedures in the central nervous system (CNS) including myelination maintenance, synaptic

plasticity, antigen presentation, signal transduction, neurogenesis, and trophic support for neurons .

Interestingly, many viruses, including SARS-CoV-2, have been shown to regulate exosomal biogenesis and cargo

content upon release from infected host cells .

2. Viral Ιnfections as Τriggers for Parkinsonism and PD
Development

Several studies have demonstrated that viruses may contribute to the etiology of PD and parkinsonism, despite the

fact that the underlying molecular and cellular mechanisms remain obscure. The first recorded association between

viral infections and parkinsonism was observed during the Spanish flu and the appearance of encephalitis

lethargica, an unknown disease with parkinsonian phenotype in survivors . Major human viruses, such as

hepatitis C virus (HCV) , herpes simplex virus-1 (HSV-1) , human immunodeficiency virus (HIV) , varicella-

zoster virus (VZV) , West Nile virus (WNV) , Japanese encephalitis virus (JEV) , and Epstein–Barr virus

(EBV) , have all been cited as risk factors for PD development or parkinsonism . Notably, the role of influenza

A virus (IAV) in the etiology of the transient parkinsonian phenotype  and in PD development  has been

documented in several in vivo and especially in vitro studies. A case-control study found that an influenza diagnosis

was linked to PD development 10 years following infection onset , while IAV was found postmortem in the

substantia nigra of PD patients . Furthermore, H5N1 infection in a mouse model resulted in Parkinson’s

phenomenology, sustained microglial activation, and α-syn aggregation, leading to dopaminergic neuron loss in

SNpc . Similarly, H1N1 infection in mice resulted in persistent microglial activation as a sign of chronic virus-

induced neuroinflammation that could potentially lead to neurodegeneration . More recently, another in vitro
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study has demonstrated that H1N1 replication can directly disrupt protein homeostasis, inducing α-syn aggregates

in Lund human mesencephalic dopaminergic cells, but failing to regulate TAR DNA-binding protein 43 (TDP-43) or

tau protein. Those results clearly hint at a selective effect of H1N1 virus on α-syn misfolding .

The key pathophysiological processes by which viruses contribute to parkinsonism development remain unclear;

however, direct neuronal damage, sustained neuroinflammation, cerebral edema due to virus-mediated damage of

brain endothelium, and induction of α-syn aggregation have all been proposed as crucial neurobiological pathways

of dopaminergic neuron loss and α-syn pathology . Notably, due to its tendency to entrap viral particles and

reduce viral replication, α-syn has been postulated to be a natural antiviral defense mechanism for neurons .

This notion was supported by in vivo experiments, where WNV-infected α-syn-knockout mice showed decreased

survival compared to the control group . Additionally, it has been suggested that viruses can cause α-syn

aggregation and oligomerization through molecular mimicry mechanisms . Taken together, these

observations strongly support the notion that virus-mediated neuronal deposition of pathological α-syn may induce

neurotoxicity and PD pathology.

The relationship between other members of the human Coronaviridae family, such as OC43 and 229E, and PD has

been previously described, since antibodies against these coronaviruses were found in the cerebrospinal fluid

(CSF) of PD patients . The novel coronavirus SARS-CoV-2 emerged in China at the end of 2019 and triggered

an outbreak of atypical viral pneumonia . Due to its enhanced transmissibility, this unusual coronavirus disease,

also known as coronavirus disease 2019 (COVID-19), marched fast over the world, constituting a huge public

health burden . SARS-CoV-2 spreads via infected secretions, such as saliva and respiratory droplets, through

direct, indirect, or close contact with infected patients, even if COVID-19 symptomatology is absent . While

symptoms of COVID-19 are primarily systemic or respiratory, several studies demonstrate the presence of a broad

spectrum of neuropsychiatric consequences including anosmia, ageusia, altered consciousness, headache,

seizures, and paresthesias . Several studies have shown that COVID-19-related neurological sequelae

might persist long after the acute phase of infection . The term “long” or “post”-COVID-19 syndrome refers to a

syndrome observed after the acute infection period and it is characterized by the presence of a combination of

COVID-19-related symptoms lasting for more than 12 weeks . These symptoms cannot be explained by an

alternative diagnosis and are considered a disability under the Americans with Disabilities Act (ADA) . The post-

COVID-19 syndrome includes a plethora of neurological manifestations such as fatigue, brain fog, cognitive

impairment, and olfactory dysfunctions , many of which are also present in PD . Thus, since SARS-CoV-

2 shares immunopathological similarities with other viruses linked to parkinsonism, such as influenza , and

because of COVID-19-related neurological consequences, it is reasonable to suspect that these persistent

symptoms might be a prologue to a post-COVID-19 new-onset neurological disease.

3. SARS-CoV-2 Infection and PD Overlaps

3.1. Clinical Co-Manifestations
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To date, only few cases of parkinsonism have been reported in literature following COVID-19 infection 

. In these studies, the authors speculate a possible causative link between COVID-19 infection and a post-

COVID new-onset parkinsonian phenotype, but they do not address the possibility of prodromal, pre-symptomatic

PD, which became symptomatic as a result of biological or psychological stress processes associated with COVID-

19. In the latter case, SARS-CoV-2 infection could act as a trigger that unmasks an underlying PD phenotype,

possibly by stimulating neuroinflammatory and neurodegenerative cascades. In addition, SARS-CoV-2 infection

has been demonstrated to significantly worsen motor and non-motor symptoms in people with pre-existing PD 

. Considering the prevalence of post-COVID-19 syndrome , a multicenter study found that 23 out of 27 PD

patients developed post-COVID-19 symptoms, with the most common long term effects of COVID-19 being the

deterioration of motor function and the requirement for increased levodopa daily dose, followed by fatigue,

cognitive disturbances including brain fog, and sleep disorders .

Probably the clinical symptoms most commonly shared between PD and COVID-19 are gustatory and especially

olfactory dysfunctions. Indeed, both olfactory and gustatory impairments are among the earliest non-motor PD

features . Surprisingly, these are common early onset symptoms of COVID-19 and it has been observed that

hyposmia–anosmia and dysgeusia could persist long after viral load decline, constituting a key clinical

manifestation of the long COVID-19 syndrome . Due to lack of evidence regarding the definite CNS

infiltration, the olfactory route is discussed as a way for SARS-CoV-2 to gain access to the CNS. Indeed, a

postmortem study demonstrated that the highest levels of SARS-CoV-2 RNA and spike protein (S protein) among

various brain areas were found in the olfactory mucosal–nervous milieu, as well as in neuroanatomical areas

related to the olfactory tract. In this regard, the olfactory mucosa could serve as an “anatomical bridge” for SARS-

CoV-2 CNS invasion through axonal transport . Furthermore, angiotensin-converting enzyme 2 (ACE2), an

essential cell surface receptor responsible for S protein-mediated entry of SARS-CoV-2, was found to be

expressed by epithelial cells of the human olfactory mucosa . The extent of α-syn pathology in other brain

regions has been substantially linked with the pathological burden in the olfactory bulb, suggesting that PD

pathology extends along olfactory pathways . The Braak hypothesis proposes that LB are initially found in

olfactory structures, such as the olfactory bulb, and then they gradually spread towards the brain stem and

ultimately to the cerebral cortex, strengthening the scenario that the earliest lesions could develop at non nigral

areas . Accordingly, Beach and colleagues have demonstrated that the olfactory bulb constitutes a primary

affected area in α-synucleinopathies, including PD. In fact, it was suggested that the extent of α-synucleinopathy in

the olfactory bulb strongly predicts the neuropathological confirmation of PD and reflects the severity of α-

synucleinopathy in other brain regions . Based on these studies, one could hypothesize that the olfactory route

might pose a way for SARS-CoV-2 to gain access to the CNS, where it can modify neuropathological pathways

pertinent to PD development.

Another common pathology shared between PD and COVID-19 is the deregulation and dysfunction of the

gastrointestinal (GI) tract. GI symptoms and intestinal inflammation may emerge years before clinical indications of

PD become apparent . Specifically, gastrointestinal dysbiosis has been proposed to be involved in PD

pathogenesis  and the enteric nervous system has been previously identified as a primary region for abnormal

α-syn aggregation, which may then spread from the periphery to the CNS . Specifically, the dorsal motor
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nucleus of the vagus nerve (DMV) receives signals from vagal parasympathetic neurons that project to the entire

GI system. The DMV is involved in the PD–neuroanatomical pathway, since a monosynaptic nigro–vagal pathway

that connects the SNpc to the DMV has been identified in the rat . In postmortem PD studies, the DMV and the

vagus nerve itself are among the most frequently afflicted structures  and they constitute principal areas of LB

accumulation, even at the earliest stages of disease development . In vitro research has shown that pathological

α-syn may spread from the gut to the brain through the vagus nerve, with DMV being the first area of the brain to

be impacted. From there, α-syn can spread to other PD brain regions including the SNpc, resulting in dopaminergic

neuron loss and the appearance of the parkinsonian phenotype . Interestingly, the vagus nerve has been

proposed as a pathway through which SARS-CoV-2 can retrogradely invade the CNS, thus enhancing its

neuroinvasiveness .

Importantly, other GI manifestations, such as diarrhea, emerged as common clinical symptoms of COVID-19, while

SARS-CoV-2 RNA detection in fecal samples may persist post-infection . On top of that, gut microbiota

imbalance due to extrapulmonary SARS-CoV-2 infection has also been observed in COVID-19 . This

warrants further investigation because GI microbiota equilibrium plays an important role in several physiological

processes ensuring brain integrity and neurogenesis . Taken together, the above observations suggest that

SARS-CoV-2 infection could promote PD development and progression through a virus-exerted dysfunction of the

GI system.

3.2. Inflammatory and Molecular Overlapping Pathways

Common inflammatory events unraveling during PD development and observed in the acute phase of SARS-CoV-2

infection, as well as after COVID-19 remission, may indicate a link between these two disorders. Virus-mediated

sustained or aberrant neuroinflammation could be a decisive pathobiological process for the initiation of a

neurodegenerative disease, such as PD, long after recovery from the viral infection . Indeed, growing

evidence indicates that SARS-CoV-2 induces neuroinflammation  through its neurotropic, neuroinvasive, and

neurovirulence effects  or even via immune-mediated pathways . SARS-CoV-2 infection also triggers

systemic inflammatory responses and induces cytokine release . Severe COVID-19 is characterized by a

cytokine storm syndrome, which is a major cause of mortality . Several studies have demonstrated the

presence of inflammatory mediators, such as increased levels of pro- and anti-inflammatory interleukins (IL-1, IL-2,

IL-6, IL-10) and tumor necrosis factor-alpha (TNF-α) in the serum of COVID-19 patients .

Interestingly, a small prospective observational study had previously found that high levels of IL-6 were linked to a

higher chance of developing PD . Evidently, an exacerbated systemic infection that causes a huge release of

inflammatory mediators, including cytokines, chemokines, and antibodies, could lead to increased blood–brain

barrier (BBB) permeability . Functional and structural integrity of the BBB is pivotal in maintaining brain

homeostasis . A neurovascular unit (NVU) consists of multiple cell types, including brain microvascular

endothelial cells (BMVECs), astrocytes, pericytes, microglia, and neurons, connected together with extracellular

matrix components, and is a rigorous regulator of BBB permeability . NVU disruption has been previously

associated with neurodegenerative diseases . In particular, BMVECs constitute an important component of

NVU and are intricately interconnected through tight junction (TJ) proteins. However, inflammation affects BBB
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integrity and stability mainly through cytokine-induced degradation of TJ proteins . SARS-CoV-2-mediated brain

endothelial inflammation, upregulation of inflammatory mediators, and most significantly, disruption of BBB stability,

have also been observed in human BMVECs . According to in vitro studies, SARS-CoV-2 was shown to infect

human BMVECs and cause a decrease in TJ protein expression . Furthermore, incubation of human

BMVECs with S protein resulted in enhanced ACE2 expression, thereby facilitating viral entry and inducing

neuroinflammation .

When BBB becomes impaired, pro-inflammatory cytokines and factors, innate immune cells from the periphery,

and SARS-CoV-2 could possibly pass through and infiltrate the CNS. In that case, the CNS professional immune

cells, microglia and astrocytes, may also become activated . Neuroinflammation is then likely to set in fast,

leading to elevated production of cytokines, chemokines, reactive oxygen species (ROS), and secondary

messengers . Microglia, which are highly susceptible to pro-inflammatory stimuli, are concentrated in areas

harboring dopaminergic neurons, making them particularly vulnerable to inflammatory mediators .

Interestingly, the S1 subunit of S protein was found to efficiently trigger neuroinflammation, including microglia

activation, release of multiple pro-inflammatory cytokines, and cause behavioral deficits in rats . Consequently,

these neuroinflammatory cascades lead to enhanced apoptotic activity, increased ROS levels, mitochondrial

dysfunction, and eventually neurodegeneration .

Finally, cellular senescence is a core homeostatic event that provides yet another, age- and state-dependent

substrate for neurodegeneration and the development of diseases like AD and PD . Cellular senescence in

the aging brain affects both neuronal and non-neuronal cells, and it is characterized by a broad array of

interconnected disruptions, such as disruptions in autophagy, bioenergetics, and mitochondrial dynamics, as well

as the onset of low-grade inflammation . This cumulative array of dysfunction culminates in the accumulation of

proteopathic seeds, including tau, amyloids, and α-syn, and tissue-wide remodeling . It has been shown that

SARS-CoV-2 infection induces “immunosenescence” and enhances the senescence-associated secretory

phenotype (SASP) in infected tissues, via disruption of host antiviral mechanisms, such as interferon signaling

pathways . Taken together, all the aforementioned studies strongly indicate that the COVID-19 cytokine

storm and innate immunity dysregulation may cause neuroinflammation and, in consequence, neurodegeneration.

Neuropathological findings in postmortem brain tissues from COVID-19 patients further support the involvement of

COVID-19-related neuroinflammatory processes in PD development. A postmortem brain study of 43 COVID-19

patients has shown activation of microglia and CNS infiltration by cytotoxic T-lymphocytes, more apparent in the

brainstem . Regardless of COVID-19 disease severity, significant inflammatory responses such as astrogliosis,

microglia activation, and perivascular T-lymphocyte infiltration were observed postmortem in both white and gray

matter of patient brains . Performing single-nucleus RNA sequencing and immunohistochemistry on tissue from

a group of individuals who died with COVID-19 and a group of individuals who died from other causes, Yang and

colleagues revealed glia transcriptomic changes that indicated a COVID-19-associated activation of inflammatory

pathways. The ensuing dysregulation of homeostatic pathways could potentially lead to neurodegeneration .

Specifically, microglia and astrocytic subpopulations were enriched by inflammatory genes and deregulated

neuroprotective ones that had been previously linked to PD and other human neurodegenerative diseases, such as
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the glial fibrillary acidic protein (GFAP), the interferon-induced transmembrane protein-3 (IFITM3), and others 

.

Another mechanism that may contribute to PD pathogenesis involves the renin–angiotensin system and ACE2,

which are implicated in the pathophysiology of COVID-19 and may play a role in neuroinflammation-mediated

neurodegeneration in PD . ACE2 is highly expressed in several brain areas , including striatum , the

substantia nigra, the olfactory bulb , and the brain endothelium . Induced pluripotent stem cells

(IPCS) derived from midbrain dopaminergic neurons were shown to be vulnerable to SARS-CoV-2 infection in vitro

, unravelling the potentially direct neurotrophic effect of SARS-CoV-2 in strategic PD areas. Furthermore,

SARS-CoV-2-induced Toll-like receptor (TLR) overactivation led to ACE2 upregulation and promoted the

neurotrophic and neuroinflammatory outcomes of SARS-CoV-2 infection . TLRs belong to the family of innate

immune receptors and play an important role in the activation of innate immunity, including activation of glial cells.

TLR-mediated stimulation of intracellular signaling pathways culminates in the release of proinflammatory

mediators such as IL-6, IL-1, TNF-a, and nuclear factor-κB (NF-κB) . Protein-to-protein interaction between

SARS-CoV-2 S protein and TLR-4 has been previously recorded . SARS-CoV-2-mediated overactivation of the

TLRs may lead to hyperinflammation, ACE2 upregulation and microglia switching from the neuroprotective to the

neurotoxic phenotype . In sequel, sustained gliosis and prolonged neuroinflammation could lead to α-syn

aggregation and finally loss of dopaminergic neurons in the SNpc .

Aside from neuroinflammation, dysregulation of several homeostatic molecular pathways has been identified in PD

onset and development. These alterations also occur during host–virus interactions as the virus attempts to direct

critical cellular infrastructure towards completion of its own lifecycle. SARS-CoV-2 viral proteins were shown to

post-translationally reconfigure the biological function of 24 host proteins expressed in lung. The latter act as

perturbators and interact with 44 CNS proteins that are known to be implicated in PD pathogenesis .

Specifically, SARS-CoV-2-mediated deregulation of Rab7a and nucleoporin-62 (NUP62) could be strongly involved

in PD pathogenesis, because Rab7 lysosomal protein decreases α-syn aggregation and associated neurotoxicity

, while NUP62 is crucial for autophagosome development . Furthermore, SARS-CoV-2 proteins can interact

and bind to a variety of human protein trafficking molecules. Protein trafficking, translation, transcription, and

ubiquitination regulation are all coordinated by these biomolecules, leading to neuroprotection, protection of BBB

integrity, and neurogenesis . A recent study demonstrated a direct interaction between SARS-CoV-2

nucleocapsid protein (N-protein) and α-syn, which led to the aggregation of the latter into amyloid fibrils, a highly

pathogenic form of the protein, linked to PD. Co-administration of SARS-CoV-2 N protein and α-syn to a PD cell

model resulted in twice the neuron loss due to neurotoxicity compared to control cells treated with α-syn alone .

Other important cellular processes implicated in the loss of dopaminergic neurons in SNpc are thought to be

oxidative stress and mitochondrial dysfunction, endoplasmic reticulum stress, and the impairment of protein

degradation systems .

A key molecular factor in PD development and progression is mitochondrial dysfunction and oxidative stress 

. An imbalance between ROS generation and cellular antioxidant activity leads to oxidative stress and ROS can
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further affect mitochondria, attenuating adenosine triphosphate (ATP) production as well as causing damage to

mitochondrial DNA . In addition to causing direct cellular damage, oxidative stress can speed up neuron

degeneration by inducing inflammatory or apoptotic pathways, such as NF-κB or caspase activation . In PD

studies, mitochondrial dysfunction may occur months before the onset of striatal dopaminergic neuron loss  and

PD patients have been well documented to possess reduced or deficient mitochondrial complex I activity in the

SNpc . In mice, accumulation of wild-type α-syn in dopaminergic neurons reduced mitochondrial complex I

activity and elevated ROS production, leading to cell death . SARS-CoV-2 seems to interact with and

manipulate mitochondria in order to hijack and evade mitochondria-mediated immune response for its own

replication and survival . In this effort, SARS-CoV-2 may induce mitochondrial impairment ,

mitochondria-mediated oxidative stress, and mitochondrial damage through mitochondrial membrane

depolarization, mitochondrial permeability transition pore opening, and enhanced ROS release .

Furthermore, the virus prevents mitophagy by blocking the binding of p62 and microtubule-associated protein

1A/1B-light chain 3 (LC3), thereby hindering viral RNA breakdown .

Finally, mitochondria aid the antiviral immune response by allowing release of pro-inflammatory cytokines .

ACE2 has been suggested to regulate mitochondrial function . Its expression is decreased when SARS-CoV-2

S protein binds to ACE2 on microglia cells, causing ATP reduction and activation of the ROS-generating enzyme

NADPH oxidase . The ensuing increase in ROS production and oxygen consumption may lead to

neuroinflammation and loss of neighbor dopaminergic neurons .

Endoplasmic reticulum (ER) stress has been linked to neurodegenerative diseases, including PD . ER

homeostasis disruption and extended ER stress lead to misfolded protein accumulation and may stimulate

particular proapoptotic pathways through the activation of the transcription factor C/EBP homologous protein

(CHOP) and cysteine proteases caspase-4/12 . Growing evidence suggests that SARS-CoV-2 proteins

interact with the ER compartment and may induce ER stress . SARS-CoV-2 open reading frame 8 (ORF8)

is capable of inducing ER stress by triggering the activating transcription factor 6 (ATF6) and inositol-requiring

enzymes 1 (IRE1) branches of the ER stress pathway , potentially leading to α-syn accumulation . Aside

from initiating apoptotic pathways, ER stress is a powerful stimulator of NF-κB activation and inflammatory gene

transcription . SARS-CoV-2 also appears to activate NF-κB, causing inflammation, possibly through ER

stress or via interaction with the non-structural protein Nsp5 . Notably, NF-κB is a crucial transcription factor

that regulates inflammation and dopaminergic neurons loss in PD patients . Hence, deregulation of this

signaling pathway has been linked to PD onset and pathology  by favoring α-syn accumulation, aggregation,

and spreading, oxidative stress-induced neuron apoptosis, neuroinflammation, and dopaminergic neuron loss 

.

When aggregation and deposition of misfolded α-syn elicit dopaminergic neuron loss, protein degradation systems

come to the rescue. The ubiquitin–proteasome system (UPS) and the autophagy–lysosomal pathway (ALP) are

important proteolytic systems in neurons and critical for refolding or elimination of misfolded proteins; therefore,

they play a significant role in cellular homeostasis . Impairment or even failure of these systems may contribute

to PD pathogenesis and progression . SARS-CoV-2 virulent components, such as ORF proteins, seem to
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modify autophagy formation and function, leading to SARS-CoV-2-induced autophagy disruption and potentially

neuron damage . Specifically, ORF3a was shown to impede autophagosome–lysosome (A-L) fusion and

ALP formation by interacting directly with the VPS39 subunit of the homotypic fusion and protein sorting (HOPS)

complex. ORF3a further damages lysosomes and impairs their function. Remarkably, this feature of HOPS-VPS39-

mediated A-L fusion inhibition appears to be unique to SARS-CoV-2, since the quite similar ORF3a of SARS-CoV

was ineffective in inhibiting A-L fusion . Furthermore, another study found that although ORF7a protein

stimulates autophagy, it also limits A-L fusion progression by downregulating the SNAP29 protein via caspase 3

(CASP3) activation, providing a mechanism through which SARS-CoV-2 uses the autophagic system to facilitate its

own propagation . Interestingly, a SARS-CoV-2 papain-like protease has been identified to directly cleave

serine/threonine unc-51-like kinase (ULK1) and prevent ULK1-ATG13 complex formation . ULK1 is an

upstream autophagy orchestrator, which phosphorylates key regulatory proteins in autophagosome formation .

In this regard, ULK1 cleavage is expected to completely inhibit the ALP function, due to lack of autophagosome

formation. Evidently, autophagy is crucially involved in the regulation of the antiviral immune response. The striking

correlation between SARS-CoV-2-induced aberrant inflammation and the observed autophagy defects 

suggests that the virus-induced cytokine storm could be mediated by the failure of autophagy mechanisms to

maintain cellular homeostasis.

Overall, SARS-CoV-2 seems to interfere and disrupt several host cellular and molecular pathways involved in

proper neuronal functions, potentially promoting PD pathogenesis. A summary of these overlaps is depicted in

(Figure 1).

Figure 1. A schematic diagram of SARS-CoV-2 infection and Parkinson’s disease (PD) development overlaps

listing shared clinical manifestations, common neuroinflammatory events, and mutually activated molecular

[203][204]

[205]

[206]

[207]

[208]

[209]
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pathways.
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