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Extracellular vesicles (EVs) act as multifunctional regulators of intercellular communication and are involved in

diverse tumor phenotypes, including tumor angiogenesis, which is a highly regulated multi-step process for the

formation of new blood vessels that contribute to tumor proliferation. EVs induce malignant transformation of

distinct cells by transferring DNAs, proteins, lipids, and RNAs, including noncoding RNAs (ncRNAs). However, the

functional relevance of EV-derived ncRNAs in tumor angiogenesis remains to be elucidated. 
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1. Characteristics of Extracellular Vesicles and ncRNAs

Extracellular vesicles (EVs) are extracellular structures enclosed in a lipid bilayer that can be secreted by almost all

known cell types . Several studies have indicated that EVs play an essential role in intercellular communication

between tumor cells and the tumor microenvironment (TME). EVs are highly heterogeneous; therefore, their

characterization and classification are crucial for further research to avoid generating inconclusive results. Based

on their size, biogenesis, and release pathways, EVs can be broadly divided into three main subtypes: exosomes,

microvesicles (MVs), and apoptotic bodies. Exosomes, also called small EVs, possess a diameter ranging from 30

to 150 nm and are derived from multivesicular endosomal pathways, which are formed by inward budding of the

endosomal membrane in a process that sequesters particular proteins and lipids . On the contrary, MVs are

generated by regulated outward budding of the plasma membrane . The mechanisms of exosomal biogenesis

involve multiple factors, and the most well-known regulator is endosomal sorting complex required for transport

(ESCRT) . Exosomal biogenesis involves inward budding of the plasma membrane to form endosomes, leading

to production of multivesicular bodies (MVBs), fusion of MVBs with the plasma membrane, and release of

exosomes into the extracellular space. A core component of this mechanism is the ESCRT machinery, which

consists of four protein complexes and auxiliary proteins that bind to future exosome cargoes and form intraluminal

vesicles that incorporate those cargoes . Several studies have found that exosomes can be formed despite the

depletion of the ESCRT complex, which reveals an ESCRT-independent approach . ESCRT-independent

exosomal biogenesis is regulated by sphingolipid ceramide, which is produced from the hydrolysis of

sphingomyelin by neutral sphingomyelinase 2 . The contents of EVs include various nucleic acids, lipids, and

proteins . ncRNAs carried by EVs can regulate various physiological and pathological processes through multiple

mechanisms (Figure 1).
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Figure 1.  Formation and release of EVs. The formation of EVs involves the following processes: Proteins are

transported from the Golgi apparatus or internalised from the cell surface, and nucleic acids are endocytosed and

transferred to early endosomes. Early endosomes gradually mature into late endosomes and MVBs, some of which

are degraded, whereas others are secreted as exosomes. These exosomes carry multiple biological components,

including proteins, lipids, and nucleic acids (e.g., ncRNAs), which are delivered to the recipient cell through

different ways: a. phagocytosis, b. receptor–ligand interaction, and c. direct fusion.

In the past few decades, the development of high-throughput sequencing technology has indicated that the

transcription rate of the human genome generally exceeds 70%. However, <2% of the transcript is translated into

proteins; most human transcriptomes are ncRNAs. Emerging studies have shown that despite being ‘transcriptional

junk’, ncRNAs, such as miRNAs, piRNAs, circRNAs, snoRNAs, and the attractive lncRNAs, play a versatile role in

manipulating gene expression . miRNAs, a type of endogenous small RNA with a length of 20–24 nucleotides

(nt), have many essential adjustable functions in cells. By complementarily binding to the 3’-untranslated region

(UTR) of targeted mRNAs, miRNAs act as regulators of gene expression, thereby inhibiting post-transcriptional

gene expression . Recent studies have reported that miRNAs are selectively sorted into EVs and

participate in intercellular communication in the TME . In addition, EV-derived miRNAs in biofluids can be used

as ideal biomarkers for various types of tumors due to their easy accessibility, high abundance, and good stability

. piRNAs, a type of small RNA with a length of 21–35 nt, specifically interact with PIWI protein to perform

multifaceted functions in germline development and somatic tissues .

In addition to small RNAs, large ncRNAs also participate in gene regulation in various biological processes.

lncRNAs, collectively referred to as transcripts with more than 200 nt, have limited potential to encode proteins .

They perform their functions through multiple molecular and cellular mechanisms, such as interacting with

epigenetic factors or TFs to modulate gene transcription, sequestering miRNAs, interacting with proteins, and

encoding functional small peptides . In addition, lncRNAs can also be selectively sorted into EVs and
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participate in cell-to-cell communication in the TME . circRNAs, generated by a particular form of alternative

splicing called back-splicing, regulate gene transcription and translation by interacting with DNAs, RNAs, and

proteins . Emerging studies have indicated that circRNAs participate in multiple physiological and pathological

processes, including tumor angiogenesis .

2. EV-Derived ncRNAs: New Players in Tumor Angiogenesis

Angiogenesis is a multi-step process and has two types: sprouting and intussusceptive angiogenesis . Various

types of cells, including endothelial cells (ECs), tumor cells, stromal cells, and immune cells, regulate angiogenesis

in the blood vessels. In addition, some regulatory and signalling molecules govern angiogenesis, including growth

factors (e.g., VEGF, PDGF, FGF, and EGF) and transcription factors, such as HIFs . Because

angiogenesis is crucial for tumor growth and metastasis, targeting tumor-associated angiogenesis is a promising

strategy for cancer treatment . Currently, anti-angiogenic therapies targeting VEGF and VEGFR are used

for the treatment of various tumors .

Several studies have indicated that EVs can be used as ncRNA carriers to play diverse roles in regulating tumor

hallmarks, including angiogenesis. For example, in non-small cell lung cancer (NSCLC), RCAN1.4 has been

identified as a target of miR-619-5p, and its suppression promotes angiogenesis . The exosomal lncRNA

FAM225A upregulates NETO2 and FOXP1 expression by sponging miR-206 to accelerate oesophageal squamous

cell carcinoma (ESCC) progression and angiogenesis . In addition, circSHKBP1 sponges miR-582-3p to

enhance HUR expression and VEGF mRNA stability, which promotes angiogenesis and gastric tumor progression

. Moreover, emerging studies have indicated that EV-derived ncRNAs can regulate tumor angiogenesis by

influencing a wide variety of tumor-associated molecules. The functions and mechanisms of EV-derived ncRNAs in

tumor angiogenesis are summarized in Table 1. These studies suggest that EV-derived ncRNAs play an essential

role in tumor angiogenesis. However, new technologies and animal models are required to further investigate the

precise mechanisms of EV-derived ncRNAs in the regulation of tumor angiogenesis.

Table 1. The emerging roles of EV-derived ncRNAs in tumor angiogenesis.
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

miR-155 Upregulated Tumor cell Promotes angiogenesis

via the c-MYB/VEGF axis

Gastric cancer

Upregulated Tumor cell Promotes angiogenesis

by inhibiting FOXO3a

Gastric cancer

miR-130a Upregulated Tumor cell Activates angiogenesis

by inhibiting c-MYB

Gastric cancer
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

miR-135b Upregulated Tumor cell Promotes angiogenesis

by inhibiting FOXO1

Gastric cancer

Upregulated Tumor cell Regulates the HIF/FIH

signalling pathway

Multiple myeloma

miR-23a Upregulated Tumor cell Inhibits PTEN and

activates the AKT

pathway

Gastric cancer

Upregulated Tumor cell Increases angiogenesis

by inhibiting ZO-1

Lung cancer

miR-200b-3p Downregulated Tumor cell Enhances endothelial

ERG expression

Hepatocellular 

carcinoma

miR-25-3p Upregulated Tumor cell Inhibits KLF2 and KLF4,

thereby elevating

VEGFR2 expression

Colorectal cancer

miR-1229 Upregulated Tumor cell Inhibits HIPK2, thereby

activating the VEGF

pathway

Colorectal cancer

miR-183-5p Upregulated Tumor cell Inhibits FOXO1, thereby

promoting expression of

VEGFA, VEGFAR2,

ANG2, PIGF, MMP-2, and

MMP-9

Colorectal cancer

miR-142-3p Upregulated Tumor cell Inhibits TGFβR1 Lung

adenocarcinoma
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

miR-103a Upregulated Tumor cell Inhibits PTEN, thereby

promoting the polarization

of M2 macrophages

Lung cancer

miR-126 Upregulated MSCs Upregulates CD34 and

CXCR4, thereby

promoting expression of

VEGF

Lung cancer

miR-141-3p Upregulated Tumor cell Inhibits SOCS5, thereby

activating JAK/STAT3 and

NF-κB signalling

pathways

Ovarian cancer

miR-205 Upregulated Tumor cell Regulates the PTEN/AKT

pathway

Ovarian cancer

miR-9 Downregulated Tumor cell Inhibits MDK, thereby

regulating the PDK/AKT

signalling pathway

Nasopharyngeal

carcinoma

Upregulated Tumor cell Promotes angiogenesis

by targeting COL18A1,

THBS2, PTCH1, and

PHD3

Glioma

miR-23a Upregulated Tumor cell Promotes angiogenesis

by inhibiting TSGA10

Nasopharyngeal

carcinoma

miR-210 Upregulated Tumor cell Enhances tube formation

by inhibiting EFNA3

Leukemia
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

Upregulated Tumor cell Promotes angiogenesis

by inhibiting SMAD4 and

STAT6

Hepatocellular

carcinoma

miR-26a Upregulated Tumor cell Inhibits PTEN, thereby

activating the PI3K/AKT

signalling pathway

Glioma

miR-27a Upregulated Tumor cell Inhibits BTG2, thereby

promoting VEGF,

VEGFR, MMP-2, and

MMP-9 expression

Pancreatic

cancer

miR-155-5p

/miR-221-5p

Upregulated M2

macrophages

Promotes angiogenesis

by targeting E2F2

Pancreatic

cancer

miR-21-5p Upregulated Tumor cell Promotes angiogenesis

by targeting TGFBI and

COL4A1

Papillary

carcinoma

miR-100 - - MSCs Regulates the

mTOR/HIF-1α signalling

axis

Breast cancer

miR-21 Upregulated Tumor cell Inhibits SPRY1, thereby

promoting VEGF

expression

Oesophageal

squamous cell

carcinoma

Upregulated Tumor cell Inhibits PTEN, thereby

activating PDK1/AKT

signalling

Hepatocellular

carcinoma
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

miR-181b-5p Upregulated Tumor cell Inhibits PTEN and

PHLPP2, thereby

activating AKT signalling

Oesophageal

squamous cell

carcinoma

miR-9 Upregulated Tumor cell Inhibits S1P, thereby

promoting VEGF

expression

Medulloblastoma

and

xenoglioblastoma

miR-10a-5p Upregulated CAFs Inhibits TBX5, thereby

activating Hedgehog

signalling

Cervical

squamous cell

carcinoma

miR-135b Upregulated Tumor cell Enhances angiogenesis

by targeting FIH-1

Multiple myeloma

miR-130b-3p Upregulated M2

macrophages

Regulates the miR-130b-

3p/MLL3/GRHL2

signalling cascade

Gastric cancer

lncGAS5 Downregulated Tumor cell Inhibits angiogenesis by

regulating the miR-29-

3p/PTEN axis

Lung cancer

lnc-CCAT2 Upregulated Tumor cell Promotes VEGFA and

TGF-β expression

Glioma

lnc-POU3F3 Upregulated Tumor cell Promotes bFGF, bFGFR,

and VEGFA expression

Glioma

lncRNA

RAMP2-AS1

Upregulated Tumor cell Promotes angiogenesis

through the miR-2355-

Chondrosarcoma
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EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

5p/VEGFR2 axis

OIP5-AS1 Upregulated Tumor cell Regulates angiogenesis

and autophagy through

miR-153/ATG5 axis

Osteosarcoma

FAM225A Upregulated Tumor cell Promotes angiogenesis

through the miR-

206/NETO2/FOXP1 axis

Oesophageal

squamous cell

carcinoma

UCA1 Upregulated Tumor cell Promotes angiogenesis

through the miR-96-

5p/AMOTL2 axis

Pancreatic

cancer

SNHG11 Upregulated Tumor cell Promotes angiogenesis

through the miR-324-

3p/VEGFA axis

Pancreatic

cancer

SNHG1 Upregulated Tumor cell Promotes angiogenesis

by regulating the miR-

216b-5p/JAK2 axis

Breast cancer

AC073352.1 Upregulated Tumor cell Binds and stabilizes the

YBX1 protein

Breast cancer

MALAT1 Upregulated Tumor cell Facilitates angiogenesis

and predicts poor

prognosis

Ovarian cancer

TUG1 Upregulated Tumor cell Promotes angiogenesis

by inhibiting caspase-3

activity

Cervical cancer
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3. Potential Clinical Applications of EV-Derived ncRNAs in
Cancers

3.1. EV-Derived ncRNAs as Promising Tumor Biomarkers

EVs that possess great potential as disease biomarkers and therapeutic carriers have attracted increasing

attention . Biomarkers are molecules that can be used for diagnosis or prognosis. An ideal biomarker should

have the following four most important characteristics: specificity, sensitivity, stability, and easy accessibility in a

relatively non-invasive way. Most studies have focused on extracellular ncRNAs as potential biomarkers because

they are stable and can be easily extracted from liquid biopsy, such as blood, urine, or other body fluids, using

simple, sensitive, and relatively inexpensive assays. It has been reported that the quality of EV-derived ncRNAs is

almost unaffected even after the samples are stored for many years because of the uniqueness of the source cell

components and protection via encapsulation in the membrane . Therefore, EVs are stable in circulation and

under various storage conditions. Researchers conducted a comprehensive literature search of EV-derived

ncRNAs from different sources and found valuable biomarkers for the diagnosis and prognosis of multiple cancers

(Figure 2A).

Figure 2. The potential clinical application of EV-derived ncRNAs in tumor angiogenesis (A) EV-derived ncRNAs

can be detected from patient samples and are potential diagnostic and prognostic biomarkers. (B) A combination of

targeting EV-derived ncRNAs and using conventional anti-angiogenic agents can enhance therapeutic efficacy.

EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

LINC00161 Upregulated Tumor cell Promotes angiogenesis

and metastasis by

regulating the miR-590-

3p/ROCK axis

Hepatocellular

carcinoma

H19 Upregulated Cancer stem

cell

Promotes VEGF

production and release in

ECs

Liver cancer

circSHKBP1 Upregulated Tumor cell Enhances VEGF mRNA

stability by the miR-582-

3p/HUR axis

Gastric cancer

circRNA-

100,338

Upregulated Tumor cell Facilitates HCC

metastasis by enhancing

invasiveness and

angiogenesis

Hepatocellular

carcinoma

circCMTM3 Upregulated Tumor cell Promotes angiogenesis

and HCC tumor growth

by the miR-3619-

5p/SOX9 axis

Hepatocellular

carcinoma

circ_0007334 Upregulated Tumor cell Accelerates CRC tumor

growth and angiogenesis

by the miR-577/KLF12

axis

Colorectal cancer

CircFNDC3B Downregulated Tumor cell Inhibits angiogenesis and

CRC progression by the

miR-937-5p/TIMP3 axis

Colorectal cancer
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Researchers are interested in investigating candidate miRNAs, lncRNAs, and circRNAs carried by EVs that may

serve as biomarkers for the diagnosis, prognosis, and treatment of tumors . For example, in a study, ROC curve

analysis demonstrated that plasma miR-601 and miR-760 could both be used as promising diagnostic biomarkers

for advanced CRC . In a study involving patients with CRC, Ogata et al. reported that the area under the curve

(AUC) was 0.953, 0.948, and 0.798. In another study, exosomal miR-23a, miR-1246, and miR-21 could distinguish

CRC (all stages) from the control area . Furthermore, higher levels of plasma miR-320-EV and miR-126-EV in

patients with high-risk LC can promote angiogenesis and can be significantly associated with poor overall survival

. A similar study showed that serum exosomes of patients with GC were rich in lncRNA ZFAS1. In addition, the

upregulation of ZFAS1 was significantly associated with tumor lymphatic metastasis and TNM staging. These

studies indicate that exosomal ZFAS1 may serve as a potential prognostic biomarker for GC . Another study

reported that exosomal ENSG00000258332.1 and LINC00635 could be used to differentiate patients with HCC

from those with chronic hepatitis B with high specificity. Therefore, serum exosomal ENSG00000258332.1 and

LINC00635, which are highly sensitive and can be obtained non-invasively, may be used as biomarkers for HCC

. Similarly, recent studies have reported serum exosomal circRNAs as novel and useful tools for the non-

invasive diagnosis of cancer . Exosomal circPRMT5 is highly expressed in the serum and urine of patients with

bladder cancer and is closely related to tumor metastasis . In addition, certain diagnostic clinical trials are

currently underway. In one such trial, exosomal lncRNAs are isolated from serum samples for the diagnosis of lung

cancer (NCT03830619).

A large number of studies have focused on the diagnostic, prognostic, and therapeutic significance of EV-derived

ncRNAs in different tumor types. However, the specific role of EV-derived ncRNAs in angiogenesis-related

diseases remains unclear. Furthermore, almost all studies have focused on cellular experiments and EV-ncRNA-

associated applications in vitro; therefore, further studies are required to validate the findings for in vivo models. In

addition, the potential of EV-derived ncRNAs as biomarkers remains to be further verified in multi-center, large-

scale clinical trials.

3.2 EV-Derived ncRNAs as Potential Anti-Angiogenic Therapeutic Targets

Because of their negligible antigenicity, minimal cytotoxicity, and ability to bypass endocytic pathways and

phagocytosis, EVs are considered ideal natural carriers for the delivery of ncRNAs . In a study, engineered

exosomes modified with DSPE–PEG2K–RGD loaded with miR-92b-3p produced synergistic anti-tumor and anti-

angiogenesis effects with apatinib in nude mice models of abdominal tumors . Another study showed that the

delivery of miR-29a/c using cell-derived MVs inhibited angiogenesis in GC . Furthermore, EV-derived ncRNAs

have been demonstrated to be functional towards tumor hallmarks in different cell lines. Huang et al. showed that

exosomes derived from HCC cells silenced with circRNA-100338 could significantly decrease the invasive ability of

HCC cells. In addition, these exosomes could reduce cell proliferation, angiogenesis, permeability, vasculogenic

mimicry (VM) formation ability of HUVECs, and tumor metastasis . Bai et al. demonstrated that exosomal miR-

135b secreted by GC cells inhibited the expression of FOXO1 protein and enhanced the growth of blood vessels in

mouse models of tumor transplantation . Using an NPC model, Wang et al. found that overexpressed EBV-miR-

BART10-5p and hsa-miR-18a upregulated VEGF and HIF-1α in a Spry3-dependent manner and strongly promoted

EV-Derived
ncRNAs

Expression Source Cell Function and
Mechanism

Tumor Type Reference

circGLIS3 Upregulated Tumor cell Induces endothelial cell

angiogenesis by

promoting Ezrin T567

phosphorylation

Glioma

piRNA-823 Upregulated Tumor cell Promotes VEGF and IL-6

expression

Multiple myeloma
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angiogenesis. Moreover, in both in vitro and in vivo NPC models, treatment with iRGD-tagged exosomes enclosing

antagomiR-BART10-5p and antagomiR-18a inhibited angiogenesis . Therefore, exosome engineering is a

promising tool in RNA-based therapeutics for cancer treatment (Figure 2B). Recently, RNA interference (RNAi)-

based strategies, CRISPR/Cas9-mediated circRNA knockout, CRISPR/Cas13-mediated circRNA knockdown and

circRNA-induced overexpressed plasmids were developed to target ncRNAs for therapeutic purposes both in vitro

and in vivo . In a study, the expression of pro-angiogenic factors in HUVECs was significantly reduced after

miR-92a-3p was knocked down in exosomes using an miR-92a-3p inhibitor (miR-92a-3p-i) . Furthermore,

because EV-derived ncRNAs perform significant biological functions, specifically targeting EV-derived ncRNAs may

be a promising strategy for treating many types of tumors. Currently, many studies aimed at regulating the

production of EVs or blocking the uptake of EVs to achieve the goal of treating patients with cancer are underway.

Using EVs as a delivery platform is a promising strategy; however, due to high costs and strict ethical regulations,

the mass production of EVs is not easy to achieve to develop commercial viability.
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