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Brain tumor segmentation plays a crucial role in the diagnosis, treatment planning, and monitoring of brain tumors.

Accurate segmentation of brain tumor regions from multi-sequence magnetic resonance imaging (MRI) data is of

paramount importance for precise tumor analysis and subsequent clinical decision making. The ability to delineate

tumor boundaries in MRI scans enables radiologists and clinicians to assess tumor size, location, and

heterogeneity, facilitating treatment planning and evaluating treatment response. Traditional manual segmentation

methods are time-consuming, subjective, and prone to inter-observer variability. Therefore, the automatic

segmentation algorithm has received widespread attention as an alternative solution. For instance, the self-

organizing map (SOM) is an unsupervised exploratory data analysis tool that leverages principles of vector

quantization and similarity measurement to automatically partition images into self-similar regions or clusters.

Segmentation methods based on SOM have demonstrated the ability to distinguish high-level and low-level

features of tumors, edema, necrosis, cerebrospinal fluid, and healthy tissue.
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1. Attention Mechanisms in Convolutional Neural Networks 

The channel attention mechanism  focuses on enhancing important channel information while suppressing less

relevant channels, achieved by computing attention weights along the channel dimension. It typically involves

global average pooling and a multi-layer perceptron (MLP) to generate attention weights, which are then used to

weight the original feature maps. On the other hand, the spatial attention mechanism  aims to highlight important

spatial locations and suppress unimportant ones. It can be implemented through convolutional operations with

different kernel sizes or using self-attention mechanisms to compute attention weights between spatial positions.

These attention mechanisms, when combined, form the Convolutional Block Attention Module (CBAM) , which

integrates both channel and spatial attention. Additionally, a recently proposed attention mechanism called

coordinate attention  focuses on modeling the relationships between different positions in the feature maps by

incorporating coordinate information. It utilizes an MLP to process the coordinate information and generates

position weights, which are then multiplied with the original feature maps. The 3D structures of these commonly

used attention mechanisms are illustrated in Figure 1. While these attention mechanisms enhance the modeling

capability of CNNs by capturing important channel, spatial, and positional information, they also introduce

additional computational overhead.
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Figure 1. Attention mechanisms with (a) channel attention, (b) spatial attention, (c) CBAM, and (d) coordinate

attention.

2. Single-Path and Multi-Path Convolutional Neural Networks
for Brain Tumor Segmentation

CNNs have shown great promise in achieving accurate and efficient segmentation results, revolutionizing the way

brain tumors are analyzed and diagnosed due to their ability to automatically learn discriminating features from

input data . Initially, single-path CNNs were employed, where a single data processing stream was utilized .

These networks, which take multi-modal brain tumor magnetic resonance imaging (MRI) scans as input,

sequentially pass the data through a combination of convolutional layers, pooling layers, and non-linear activation

layers, ultimately performing segmentation using a classifier at the end of the model. Single-path CNNs are

characterized by their simplicity in structure and shallow hierarchy, but their segmentation performance may be

sub-optimal. As brain tumor images are inherently complex and diverse, relying solely on a single processing path

may limit the network’s ability to capture and represent the intricate details present in different modalities.

To address this limitation, multi-path CNNs have been introduced, featuring multiple parallel convolutional

pathways . This architecture allows for the processing of input information at multiple scales, providing a larger

receptive field and the potential for enhanced segmentation accuracy. However, it is worth noting that multi-path

CNNs tend to exhibit a higher level of complexity and require a larger model size to accommodate the increased

number of pathways. Furthermore, an inherent challenge arises from the uneven distribution of tumor regions,

where certain tumor areas may exhibit varying sizes and proportions compared to others.

To tackle this class imbalance issue, cascaded CNNs have been proposed as a potential solution . By cascading

multiple network models, each designed to segment a specific region of interest, cascaded CNNs enable the

transformation of the multi-region tumor segmentation problem into a series of binary segmentation tasks. One of

the key advantages of cascaded CNNs is their ability to consider the unique relationships between sub-regions

when predicting subsequent segmentation tasks. This can be particularly beneficial in minimizing false positives, as

each network operates on regions extracted from the output of the previous network. However, an important point

[5] [6]

[7]

[8]



Brain Tumor  Segmentation | Encyclopedia.pub

https://encyclopedia.pub/entry/55738 3/7

to consider is that cascaded CNNs, in contrast to single-path and multi-path CNNs, are not end-to-end and require

additional time for training and testing due to the sequential nature of the cascaded segmentation process.

3. The U-Net and Its Variants for Brain Tumor Segmentation

The U-Net architecture consists of an encoder–decoder structure coupled with skip connections . The encoder

path incorporates a series of convolutional and pooling layers to progressively extract hierarchical features and

reduce spatial resolution. The decoder path utilizes up-sampling and transposed convolutional layers to recover the

spatial information and generate segmentation maps. Skip connections connect the corresponding encoder and

decoder layers, allowing for the model to fuse low-level and high-level features. This design enables U-Net to

capture both local and global contextual information, facilitating the accurate delineation of tumor boundaries.

Initially, the research focused on 2D segmentation networks operating within individual 2D image planes. U-Net 

has demonstrated its efficacy in capturing tumor boundaries and distinguishing tumor regions from healthy brain

tissue. U-Net++  extends the U-Net architecture by incorporating nested and dense skip pathways, enabling the

capture of multi-scale contextual information for precise brain tumor segmentation. SegResNet  combines U-Net

architecture with the residual network (ResNet) to enhance feature representation and segmentation performance,

effectively capturing both local and global contextual information. To further improve feature representation, DynU-

Net  integrates a dynamic routing algorithm inspired by capsule networks into the U-Net architecture, enabling

the capture of hierarchical relationships among different tumor regions. MS-Net  is a medical image

segmentation technique based on a codec structure composed of a Multi-Scale Attention Module (MSAM) and a

Stacked Feature Pyramid Module (SFPM). MSAM dynamically adjusts the receptive fields to capture different

levels of context details, while SFPM adaptively increases the weight of the features of interest to focus the

network’s attention on the target region. Fusion factor  is introduced to control the amount of information

transferred from deep to shallow layers in Feature Pyramid Networks (FPN) for tiny object detection. The paper

explores how to estimate the effective value of the fusion factor for a specific dataset by statistical methods.

However, these 2D networks may disregard the crucial depth information inherent in the MRI images, consequently

impeding their ability to comprehensively utilize the rich local and global contextual information available.

Therefore, 3D U-Net  was developed to extend the U-Net framework for processing volumetric data, enabling

the segmentation of brain tumors in 3D medical images. By considering spatial dependencies along the three

dimensions, SCAR U-Net  improves the accuracy of tumor segmentation in volumetric scans. V-Net  is

another extension of U-Net that incorporates a volumetric residual learning framework. It leverages 3D

convolutional neural networks and residual connections to capture fine-grained details in volumetric data. The

evolution of mainstream 2D segmentation networks into their 3D counterparts has resulted in significant

improvements in brain tumor segmentation performance . DSTGAN  presents a spatiotemporal generative

adversarial learning approach for segmentation and quantification of myocardial infarction without contrast agents.

The approach utilizes a generator and a discriminator module, which consist of three seamlessly connected

networks to extract the morphological and motion abnormalities of the left ventricle, learn the complementarity

between segmentation and quantification tasks, and leverage adversarial learning to enhance the accuracy of
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estimation. However, it remains crucial to strike a balance between model complexity and computational feasibility,

considering the practical constraints and available computational resources.

Simultaneously, the transformer  architecture has gained significant popularity in natural language processing

(NLP) and has found applications in medical image analysis . Initially developed for sequence modeling

tasks, transformers have showcased their ability to capture long-range dependencies and capture contextual

information effectively. Building upon this success, researchers have extended transformers to medical image

analysis, leading to the emergence of models. UNETR  combines the transformer architecture with the U-Net

framework, enabling the modeling of long-range dependencies and achieving state-of-the-art performance in brain

tumor segmentation. Similarly, SwinUNETR  integrates the Swin Transformer, a hierarchical vision transformer,

with the U-Net framework, effectively capturing global and local dependencies with reduced computational

complexity. nnFormer  is a novel approach using a 3D transformer to segment medical images based on

interleaved convolution and self-attention operations. It introduces local and global volume-based self-attention to

learn volume representations and outperforms previous transformer-based methods on three public datasets.

SeMask  proposes a semantically masked transformer network for semantic segmentation of images. The

network leverages an additional semantic layer to incorporate semantic information about the image, which

improves the performance of the pre-trained transformer backbone. However, these transformer-based U-Net

models face challenges such as increased model size, longer training time, and higher computational

requirements, which can limit their practicality in real-world applications.
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