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Membrane proteins (MPs) are essential for cellular functions. Understanding the functions of MPs is crucial as they

constitute an important class of drug targets. However, MPs are a challenging class of biomolecules to analyze

because they cannot be studied outside their native environment. Their structure, function and activity are highly

dependent on the local lipid environment, and these properties are compromised when the protein does not reside

in the cell membrane. Mammalian cell membranes are complex and composed of different lipid species. Model

membranes have been developed to provide an adequate environment to envisage MP reconstitution. Among

them, tethered-Bilayer Lipid Membranes (tBLMs) appear as the best model because they allow the lipid bilayer to

be decoupled from the support. Thus, they provide a sufficient aqueous space to envisage the proper

accommodation of large extra-membranous domains of MPs, extending outside. Additionally, as the bilayer

remains attached to tethers covalently fixed to the solid support, they can be investigated by a wide variety of

surface-sensitive analytical techniques.

biomimetic membranes  tethered-Bilayer Lipid Membranes  membrane proteins

1. Introduction

Cellular membranes, and more particularly the plasma membrane, are of upmost importance in the living cells.

Hosting a vast plethora of proteins, plasma membrane not only serves as a physical boundary, but also mediates

exchange processes between the cell and the extracellular matrix. Cellular membranes are also essential inside

the cell. They aid the different organelles to carry out their cellular functions. Furthermore, many vital biochemical

processes essential for cell life are managed by the biological membranes.

Only a few nanometers thick, biological membranes are very complex in terms of composition but exhibit a perfect

organization at the molecular level . Lipids, held together by hydrophobic interactions, play a structural role by

forming a continuous self-assembled bilayer acting as a passive diffusion barrier. Proteins associated with the

membrane, either transmembrane proteins or peripheral membrane proteins, respectively embedded within the

lipid bilayer or transiently associated with it, represent ~30% of the open reading frames in complex organisms .

Due to their abundance, they are the key factors of the cell metabolism, involving cell–cell communication, cell

adhesion, nutrient import, signal transduction, biocatalysis processes, energy production and others . As a result,

membrane receptors are currently the target of over 60% of medicinal drugs .

Nowadays, cell membranes are no longer considered as a simple double lipid layer but as a set of complex and

dynamic protein–lipid structures and segregated microdomains, that serve as functional spatiotemporal platforms
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for the interaction of lipids and proteins involved in cellular signaling pathways . The membrane

composition, and therefore the overall function of the cell membranes, is altered in a wide range of human

diseases, including cancer, neurodegenerative disorders, cardiovascular pathologies, obesity, etc. A lipid alteration

can affect the localization and activity of transmembrane proteins and thus impact on the intracellular cell signaling.

From this belief, a new concept of membrane lipid therapy (MLT) has emerged  with the idea that lipid

components of biological membranes can also be selectively targeted to induce membrane disorder and reverse

the malfunction . This approach now represents a target of choice for pharmaceutical companies . Hence,

investigating membranes and membrane proteins (MPs), including lipid–lipid, protein–lipid or ligand–protein

receptor interactions, is of critical importance. However, due to their complexity, in situ investigations to unlock the

secret of the biological membranes remains a great challenge. In this respect, the development of artificial models

that mimic the cell membrane by constitution and composition, is an asset to study biological membrane properties.

In the plasma membrane, hundreds of different lipid species can be found. For instance, some of them have a

negative charge, which can promote interactions with positively charged amino acids in proteins . Depending on

the size of their polar head group, certain lipids allow docking of bulky protein lipid anchors or form tightly packed

areas to help some membrane proteins to bind to regions where these lipids are abundant. It is now well-accepted

that the membrane lipid composition may have a profound role in membrane functioning and cell signaling . In

this respect, the crucial role of non-bilayer lipids present in large amounts in biological membranes on the MP

activities must be underlined . Conversely, reconstitution of functional membrane proteins after in vitro

production or purification is challenging. Due to their amphiphilic nature, they are prone to early denaturation during

in vitro handling. To properly evaluate their functionality, they require a native lipid environment. Ideally, MPs should

be reconstituted in natural lipid extracts as it is now well-known that lipids in the immediate vicinity of membrane

proteins influence their activity . As a result, there is a great need to develop biomimetic membrane

platforms, in which, not only one but several purified membrane lipid components can be used for in vitro

reconstitution, and in which reincorporated membrane proteins can retain their structural integrity and functional

activity.

Different types of models have been developed through the years to mimic cell membranes as well as possible and

reproduce the basic functions of cell membranes. These models are solid-supported lipid membranes ,

polymer-cushioned membranes , hybrid lipid bilayers , free-standing lipid layers or suspended-

lipid bilayers  and tethered-bilayer lipid membranes or tBLMs . All these

models are suitable for systematic studies of different types of membrane-related processes and provide the lipid

environment required for the study of membrane-associated proteins. They correspond to models of planar

membranes confined to a solid support and localized at the bulk interface, allowing the application of a manifold of

surface-sensitive techniques for their own characterization  or biosensing applications .

Besides all these advantages, tBLMs appear as very attractive platforms for the reinsertion of transmembrane

proteins. Because they are lifted from the support, they best mimic the cellular environment, and transmembrane

proteins with protrudant domains extending outside the membrane can “comfortably” reinsert into the bilayer

without steric hindrance or loss of mobility due to a close contact of the membrane with the support .
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2. Design of Tethered-Bilayer Lipid Membranes

tBLMs are a natural progression from the planar supported lipid bilayers (SLBs), first reported by McConnell et al.

. SLBs, classically obtained by the spreading of small unilamellar vesicles on hydrophilic solid supports ,

including glass, mica, titanium and silicon oxides, or gold (for recent reviews see articles by Lind & Cardenas 2016

 and Clifton et al. 2020 ), consist in a lipid bilayer deposited and separated from the solid substrate by an

ultrathin film of water (0.5–2 nm) . This aqueous layer acts as a lubricant and confers to SLBs the

fluidity required for lateral diffusion in 2D space . In this model, lateral and rotational mobility of individual lipids

are preserved and anything linked to the phospholipids or glycolipids in the upper leaflet retains this mobility .

Given this key feature, SLBs have been used extensively over the past decades to study the spatially and

temporally regulated lipid–lipid or lipid–protein lateral interactions , lipid segregation , protein

clustering and cell adhesion  and membrane dynamics .

However, the close proximity of SLBs to the substrate affects the diffusion of lipids and proteins, which is more than

twice slower than in free-standing bilayers under the same conditions . This limitation is due to the fact that the

substrate exerts a greater influence on the behavior of the proximal leaflet than the distal leaflet of the SLBs, due to

its closer proximity to the surface . The roughness of the substrate and the complementarity between the

surface and lipid charge will determine the magnitude of this surface influence . Furthermore, SLBs suffer from

the crucial drawback of not possessing a large hydration reservoir on both sides of the membranes, which limit

examination of transmembrane proteins. The fundamental requirement for a membrane protein to function properly

is to be surrounded by buffered-saline solution on both sides of membranes . In SLBs, hydration layer is often

not thick enough for proper folding of large extra-membranous domains of transmembrane proteins, which can

extend to several tens of nanometers far out from the bilayer . The limited membrane-substrate distance, which

can lead to strong non-physiological interactions with the solid support , can cause both a loss of protein

dynamics and a partial loss of its functionality, or even complete denaturation of the protein . In addition,

anionic substrates (such as quartz, mica, silica, silicon oxide) may hinder (in the absence of divalent cations) the

formation of SLBs enriched in negatively charged lipids in the proximal leaflet, due to electrostatic repulsions 

. However, negatively charged lipids, like phosphatidylglycerol (PG), phosphatidylinositol (PI), cardiolipin (CL) or

even lipopolysaccharide (LPS) in the Gram-negative bacteria membrane, are important signaling lipids which can

trigger membrane protein association and affect membrane-regulated pathways. They are essential in membrane

function, and studies of the membrane phenomenon regulated by these lipids are becoming crucial for a realistic

understanding of membrane-related events. The use of mimetic sample systems with ever greater biological

precision in lipid composition is now required.

For all these reasons, more advanced planar model membranes are currently in development with the aim to

create more accurate biomimetic systems adapted for integral (trans-)membrane protein characterization, where

the substrate interactions are minimized and large solution reservoirs on both sides of the bilayer are provided. In

tBLMs, the lipid bilayer is separated from the surface of the substrate by insertion of a soft and flexible hydrophilic

layer of “tethering” molecules that anchor the proximal leaflet . This layer solves the substrate

proximity by lifting the membrane off the surface and provides a reservoir underneath the bilayer in which the
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membrane proteins can fold into a native-like conformation, while keeping the membrane anchored to the support

(Figure 1).

Figure 1. Different types of tethered-Bilayer Lipid Membranes (or tBLMs) obtained by a “bottom-up” approach. :

represents either anchorlipid (i.e., Telechelics) mainly 2,3-di-O-phytanyl-sn-glycerol-1-tetraethylene glycol-d,l-α-

lipoic acid ester lipid (DPhyTL), lipopolymer tethers or thio(lipo)peptides; : Backfillers, mainly β-mercaptoethaonl

(βME) or 6-mercaptohexanol (6-MH); : benzyl-disulfide (tetra-ethyleneglycol)  C20-phytanyl tether (or DLP); :

ethyleneoxy-linked cholesterol (or EO C).

The large variety of assembling molecules capable of forming a tethering layer offers multiple possibilities for fine-

tuning the properties of tBLMs . Whatever its proper nature, the role of the anchor (spacer group) is multiple. It

should at the same time (i) maintain bilayer fluidity and provide a sufficient well-hydrated sub-membrane space to

accommodate incorporated proteins, (ii) cover small surface roughness features in order to reduce the hydrophobic

influence of the metal surface and the unfavorable frictions to the support, (iii) provide a hydrated reservoir

between the substrate and the membrane, and (iv) supply ample space to harbor membrane protein ectodomains.

The different types of tBLMs vary mainly in the chemical structure of the tethers and in their density, two factors

significantly influencing the structural characteristics of the bilayer as well as the functional reincorporation of

membrane components . Ideally, and in order to mimic a natural membrane, a tBLM should have a high

electrical impedance and a low capacitance—to be sure that transport across the membrane is mainly due to the

function of the embedded protein, as well as high fluidity and high sub-membrane hydration—to ensure protein

function. However, increases in membrane hydration and fluidity are generally accompanied by a reduction of the

n=2

3
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electrical sealing properties, resulting from a higher defect density . Subsequently, applying ultrasensitive

surface imaging techniques allowing the direct characterization of all the steps of the tBLM formation with a high

lateral resolution could lead to an optimization, step-by-step during the tBLM building, in order to reduce the

number of defects.

3. Characterization of Tethered-Bilayer Lipid Membranes

Because they are firmly held in place, tBLMs are considerably more robust than supported lipid bilayers such as

black or bilayer lipid membranes (BLMs) , also renamed free-standing lipid layer or suspended-lipid bilayers,

which are originally formed across on a microsized-aperture, and more recently, on nanopores . Generally

speaking, tBLMs typically show a high robustness and long-term stability and hence, they are accessible to a

portfolio of different analytical tools operating at a bulk interface . They include imaging techniques, like atomic

force microscopy (AFM)  and fluorescence microscopy (FM) , fluorescence

recovering after photobleaching (FRAP) , neutron reflectometry (NR) 

 and X-ray photoelectron spectroscopy (XPS) , spectroscopic techniques such as

ellipsometry , infrared reflection absorption spectroscopy (IRRAS)  or surface-enhanced infrared

absorption spectroscopy (SEIRAS) , surface plasmon resonance (SPR) 

or quartz crystal micro-balance with dissipation monitoring (QCM-D) , as well as electrochemical

methods such as electrochemical impedance spectroscopy (EIS)  and current-

voltage (CV) analysis . These techniques, sensitive to net changes in packing or interfacial

mass (QCM-D or ellipsometry), bilayer morphology (AFM, FM), the presence of chemical groups (IR, XPS), the

structure and composition (NR), have been used so far to evaluate the full picture of the lipid membranes (i.e.,

structure, composition and functional properties) and represent a very powerful combination to unravel the

mechanism of biomolecular interactions.

While SPR and QCM-D allow real-time monitoring of the tBLM formation in a label-free format, fluorescence

microscopy (FM) and FRAP investigate domain morphology and membrane dynamics with the measurement of the

lateral diffusion of lipids, respectively. AFM has been used to gather surface details in terms of occurrence of

peculiar structure and defects. One of the unique features of this latter technique is that it can measure surface

forces with a nanometer lateral resolution. Recently, single-molecule force spectroscopy (FS) measurements have

provided in-depth insight to assess the orientation of reconstituted transmembrane proteins in tBLMs . NR also

provides high resolution structural information on lipid bilayer stacking and internal distribution of components after

interaction between intrinsic proteins and disordered membrane . EIS is an excellent tool to characterize the

electric properties of membrane including resistance and capacitance.

This large panel allows a fine characterization of tBLMs during and after their formation, in terms of structure,

(optical or acoustic) thickness, fluidity and sealing . It shows that the chemical nature of the sub-membrane

space has a significant impact on both the structure of the lipid bilayer and the functional incorporation of

membrane components . The possible combination of multiple complementary measurements with biologically

accurate samples is key for a realistic understanding of membrane related phenomena. Only through the use of
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complementary techniques, such as the ones hereby mentioned, does it become a realistic aim to resolve the

relative position, orientation and distribution of the membrane components to obtain detailed information on

molecular mechanisms by which peptides, proteins or other chemical compounds (e.g., drugs) interact with

biomembranes. Table 1, adapted from Rossi and Chopineau , Sondhi et al. , Clifton et al. , presents a

synoptic of the characteristics of all the techniques useful for the study of supported planar membrane models,

including tBLMs. For more details, see the recent review by Clifton et al. , which presents the main information

that can be deduced from model membranes due to the different surface-sensitive techniques listed above.

Table 1. Characteristics of main surface-sensitive analytical techniques useful for investigation of supported planar

model membranes included tBLMs (adapted from ).

[126] [70] [40]

[40]
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Techniques Bilayer Characterization Surfaces

Surface plasmon
resonance (SPR)

imaging

Optical thickness of the bilayer, highly sensitive real-time
monitoring of interactions without labeling of the analytes or

the ligand, real-time monitoring of bilayer formation

Gold, silver,
aluminum

Quartz crystal
microbalance with

dissipation (QCM-D)

Interfacial wet mass determination and viscoelasticity
(dissipation sensitive to viscoelastic properties of the adsorbed

material), (acoustic) film thickness, real-time monitoring of
bilayer formation

Gold, SiO , mica,
metal oxides

Imaging ellipsometry
(IE)

Indirect quantitative characterization of structural and
functional properties of bilayers such as thickness and dry

adsorbed mass (i.e., lipids in the adsorbed layer), anisotropy
(lateral uniformity and phase separation), molecular area, and

receptor-protein interaction affinities. Real-time large area
imaging with high sensitivity

Oxide (silicon)
substrates

Fluorescence recovery
after photobleaching

(FRAP)

Dynamics, fluidity, and mobility characterisation of lipids and
proteins (peripheral or integral), intergrity of artificial

membranes

Optically
transparent

substrates: glass,
silica, silcon, gold

Electrochemical
impedance

spectroscopy (EIS)

Electrical properties (resistance and capacitance) of lipid
bilayer membranes, formation process in real-time, stability of
the membrane, characterization of incorporated ion channels

Gold, silicon

Atomic force microscopy
(AFM)

In-plane structure and morphology: surface roughness
determination, investigation of bilayer surface at the nanoscale

range in real-time and in aqueous environment, direct
measure of physical properties at high spatial resolution,

phase separation (domain formation) and quantification of
bilayer thickness

Atomically flat
surfaces: mica,
silicon, quartz,

flat gold

(AFM) single-molecule
Force Spectroscopy

(FS)

Membrane stiffness and mechanical stability on the nanometer
length scale, in-depth insight of the orientation of reconstituted

transmembrane proteins

Mica, silicon,
quartz, flat gold

2
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