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In conventional point-line visual inertial odometry systems under indoor environment, consideration of spatial position

recovery and line feature classification can improve localization accuracy. A monocular visual inertial odometry based on

structured and unstructured line features of vanishing points is proposed. First, degeneracy phenomenon caused by

special geometric relationship between epipoles and line features is analyzed in process of triangulation, and a

degeneracy detection strategy is designed to determine the location of the epipoles. Then, considering the property that

vanishing point and epipole coincide at infinity, vanishing point feature is introduced to solve the degeneracy and direction

vector optimization problem of line features. Finally, threshold constraints are used to categorize straight lines into

structural and non-structural features under the Manhattan world assumption, and the vanishing point measurement

model is added to the sliding window for joint optimization. Comparative tests on the EuRoC and TUM-VI public datasets

validated the effectiveness of the proposed method.
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1. Introduction

With the rapid development of unmanned aerial vehicles (UAVs), self-driving vehicles, and mobile robots, the

requirements for positioning technology are increasing . While traditional simultaneous localization and mapping (SLAM)

methods are low-precision, perturbation-prone, and poor in real time , the visual–inertial odometer (VIO) method

realizes navigation of the carrier by combining measurement data from inertial sensors and visual information from

camera images , thus basically solving the shortcomings of technologies such as GPS . Among them, VIO fuses a

monocular camera with an IMU as a sensor to jointly realize the pose estimation of the moving body and the

reconstruction of the 3D environment . Monocular vision is categorized into feature and direct methods based on front-

end visual odometry . The feature-point method calculates camera pose with respect to map points by minimizing the

reprojection error, whereas the direct method minimizes photometric error and uses pixel gradients for semi-dense or

dense map building in feature-deficient settings . Filter-based and optimization-based approaches in state estimation for

dynamic systems with given noise measurements dominate the field of VIO . Meanwhile, initialization methods of VIO

are divided into two categories: loosely coupled , where the results are fused after the IMU and camera perform their

own motion estimation separately , and tightly coupled, where state estimation is performed after the IMU and camera

jointly construct the equations of motion . Tight coupling can add new states to the system vector according to the

characteristics of each sensor, which better utilizes the complementary nature of various types of sensors .

In VIO algorithms, point features have the advantage of being easy to detect and track, and are often used as the basic

unit of pose estimation in many traditional methods . However, point features are susceptible to environmental

complexity, illumination, and camera motion speed , and cannot systematically meet the robustness requirements in

some challenging scenarios . Straight lines carry a lot of scene information and provide more constraints for the

optimization process ; therefore, line features with high dimensional characteristics have often been used as

compensation for point feature extraction in recent years . PL-VIO  integrates the measurement of line features into

VIO and successfully adds the error term of line feature construction by designing two representation methods of line

features. However, the tracking and matching of line features varies widely based on different algorithms. PL-VINS  and

PLF-VINS  optimize and complement the extraction of features to achieve a high degree of line feature reduction. PL-

SVO  adds equidistant sampling of line feature endpoints to the semi-direct monocular visual, which avoids feature

matching steps by virtue of the advantage of the direct method, effectively shortens the processing time of line features,

and improves the stable pose estimation in semantic environments. However, since the line features are arranged and

combined with countless point features, a lot of errors will inevitably occur in many point feature-based processing

methods, thus affecting the localization performance of the system. UV-SLAM  proposes vanishing point features,
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which are obtained from line features under the premise that vanishing point measurements are the only mapping

solution, thus solving geometrical problems and improving the robustness of the system.

2. Line Feature Analysis

In the VIO study, line features had higher stability in harsh environments. The PL-SLAM  system proposed by Pumarola

et al. adds a line segment detector (LSD)  on top of ORB-SLAM , which implements point feature and line feature

extraction in SLAM. Fu et al. achieved real-time extraction by modifying the hidden parameters of the LSD algorithm .

Lee et al. fused corner point and line features to construct point-line residuals by utilizing the similarity of their positions,

and the two features complemented each other to enrich the structural information of the carried environment . In the

above study, LSD was widely used as a line feature extractor, but it still failed to be accurate in scenarios with noise.

Akinlar et al. proposed an EDLines linear timeline segment detector , which utilizes the edge drawing (ED) algorithm to

detect edge pixels continuously, ultimately improving the detection speed while controlling the number of false detections.

Liu et al. proposed a line segment extraction and merging algorithm to achieve feature tracking between points and lines

with geometric constraints based on the removal of short and useless line segments . Suárez et al. proposed ELSED,

which utilizes a local line segment growth algorithm to align pixels by connecting gradients at breakpoints, greatly

improving the efficiency of line segment detection . The PLI-VINS proposed by Zhao et al. designs adaptive thresholds

for line segment extraction algorithm and constructs an adjacency matrix to obtain the orientation of the line segments,

which greatly improves the efficiency of the line feature processing in indoor point and line vision SLAM systems .

Bevilacqua et al. proposed probabilistic clustering methods using descriptors based on grid computation, which reduces

the number of samples within the grid through a special pixel selection process to design new image representations for

hyperspectral images . The analysis of line features is summarized in Table 1.

Table 1. Summary of line feature analysis.

Line Feature Analysis Characteristics

Combining line features with point features using the LSD algorithm.

Modifying the parameters of the LSD algorithm for real-time extraction of line features.

Fusing line features and corner features using positional similarity.

Detection of line features using the ED algorithm to improve extraction speed.

An algorithm capable of extracting line features with geometric constraints is proposed.

Improving line segment detection efficiency with ELSED with a local line segment growth algorithm.

Setting an adaptive threshold algorithm for the line segment extraction process.

Proposed probabilistic clustering of line segments using descriptors based on grid computing.

3. Vanishing Points Analysis

Geometrically, a vanishing point on a spatial line is formed by intersecting the image plane with a ray parallel to the line

and passing through the center of the camera . Lee et al. searched for line features based on vanishing points before

fusing parallel 3D straight lines and constructed parallel line residuals by removing anomalies during the clustering of

multi-view lines . In the camera calibration method  proposed by Chuang et al., multiple vanishing points are utilized

to estimate the camera’s internal parameters, simplifying the calculations associated with calibration. Liu et al. proposed a

two-module approach for estimating vanishing points, where the two modules are used to track clustered line features and

generate a rich set of candidate points, respectively . Camposec et al. detected vanishing points based on the inertial

measurement and constantly updated it by the least squares method, which provided a global rotation observation around

the gravity axis, thus correcting the yaw angle drift in pose estimation . Li et al. projected the direction of the vanishing

point of the 3D line and plane normal onto the tangent plane of the unit sphere, which estimates the rotation matrix of

each image frame . Li et al. involved the vanishing point in a deep multi-task learning algorithm, which was used to

realize the adjustment of the camera, and then went through three sub-tasks to improve the detection accuracy of the

vanishing point, and finally followed the track segmentation to determine the perimeter of the intruded area . The

analysis of vanishing points is summarized in Table 2.

Table 2. Summary of vanishing points analysis.
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Vanishing Points
Analysis Characteristics

Proposing parallel line features based on clustering of vanishing points.

Estimating the intrinsic parameters of the camera using vanishing points for camera calibration.

Proposing a two-module method for estimating vanishing points to ensure precise vanishing points
for each frame’s cluster of line features.

Inertial-based measurements to detect vanishing points and continuous updating by the least squares
method.

Involvement of vanishing points in deep multitask learning algorithms for camera tuning.

Projecting the vanishing point directions of 3D lines and plane normals onto the tangent plane of a
unit sphere for estimating the rotation matrix.

4. Manhattan World Analysis

In the Manhattan world hypothesis, all planes in the world are aligned with three main directions, and utilizing the

constraint relationship of the three axes can improve the building effect of the map and participation of line segments in

SLAM. Kim et al. used structural features to estimate rotational and translational motions in RGB-D images, which were

used to reduce drift during motion . Li et al. first utilized a two-parameter representation of line features, using

Manhattan world structure lines as features of the mapping, which not only encodes the global orientation information but

also eliminates the cumulative drift of the camera . StructVIO, proposed by Zou et al., uses the Atlanta world model,

which contains the Manhattan world with different orientations, defines the starting frame coordinate system to represent

each heading direction, and is constantly corrected by the state estimator as a state variable . Lu et al. redefined the

classification of line features based on the advantage that unstructured lines are not constrained by the environment and

proposed frame-to-frame and frame-to-map line matching methods to initialize the two types of line segments, which

significantly improved the trajectory accuracy of the system . Peng et al. proposed a new Manhattan frame (MF) re-

identification method based on the rotational constraints of MF-matched pairs, and a spatiotemporal consistency

validation method to further optimize the global beam method parity energy function . The analysis of the Manhattan

world assumption is summarized in Table 3.

Table 3. Summary of Manhattan world analysis.

Manhattan World
Analysis Characteristics

Utilizing structural features in RGB-D images to estimate rotational and translational motion, reducing
drift during motion.

Utilizing structured lines in the Manhattan world as mapping features to encode global directional
information.

Utilizing the Atlanta world model containing different Manhattan directions to define a starting frame
coordinate system representing each heading direction.

Redefining the classification of line features is based on the advantage that unstructured lines are not
constrained by the environment.

Proposing a new Manhattan frame re-identification method based on rotation constraints from MF
match pairs, improving the accuracy of vanishing point estimation.

Projecting the vanishing point directions of 3D lines and plane normals onto the tangent plane of a unit
sphere for estimating the rotation matrix.
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