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B7 family members, as immune checkpoint molecules, can substantially regulate immune responses. Since

microRNAs (miRs) can regulate gene expression post-transcriptionally, we conducted a scoping review to

summarize and discuss the regulatory cross-talk between miRs and new B7 family immune checkpoint molecules,

i.e., B7-H3, B7-H4, B7-H5, butyrophilin like 2 (BTNL2), B7-H6, B7-H7, and immunoglobulin like domain containing

receptor 2 (ILDR2).
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1. Introduction

Immune checkpoints can considerably regulate immune responses . These molecules are critical for maintaining

self-tolerance and preventing the stimulation of immune responses against normal peripheral tissues. Indeed,

suppressing inhibitory axes, e.g., the immune checkpoint axis of cytotoxic T lymphocyte antigen 4 (CTLA-4) and

programmed death-ligand 1 (PD-L1), has revolutionized cancer immunotherapy .

The B7 family is a group of immune checkpoints commonly expressed in different immune cells, such as antigen-

presenting cells, T cells, B cells, natural killer cells, and various tissues. They play a crucial role in immune

response; for example, they have substantial roles in directing the fate of T cells by binding their receptors. Various

members of the B7 family have been identified, e.g., B7.1 (CD80), B7.2 (CD86), B7-H1 (PD-L1, or CD274), B7-DC

(PD-L2, PDC1LG2, or CD273), B7-H2 (ICOSL: inducible T-cell co-stimulator ligand, or CD275), B7-H3 (CD276),

B7-H4 (VTCN1), B7-H5 (VISTA: V-domain Ig suppressor of T cell activation, Dies1: differentiation of embryonic

stem cells 1, or C10orf54), butyrophilin like 2 (BTNL2), B7-H6 (NCR3LG1: natural killer cell cytotoxicity receptor 3

ligand 1), B7-H7 (HHLA2: human endogenous retro virus–H long repeat-associating 2), and immunoglobulin like

domain containing receptor 2 (ILDR2) . Indeed, BTNL2 and ILDR2 are introduced as B7-like molecules,

and further investigation is needed. B7 family genes have been linked with various pathological conditions, e.g.,

cancers, infections, autoimmune diseases, and transplantation complications . Thus, a better understanding of

their biology might pave the way for introducing novel strategies to treat the abovementioned diseases and

complications.

MicroRNAs (miRs), as small, non-coding RNAs, can bind to their complementary sequences, which are often the

mRNA 3′-untranslated regions (3′UTR) of their targets. Since miRs can cleave their target mRNAs by guiding the
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RNA-induced silencing complex (RISC) to target mRNAs, in order to direct the cleavage of mRNA through

Argonaute (AGO) endonuclease activity , destabilize their target mRNAs via cutting their poly(A) tail, and make

the translation of their target mRNA less effective, they are considered potent post-transcriptional gene regulators

. In higher eukaryotes, miRs can regulate the expression of approximately 60% of genes. It is well-

established that miRs can contribute to many biological processes, e.g., cell growth, differentiation, metabolism,

and immune response regulation . Indeed, miRs can modulate the function of immune cells and regulate the

expression of immune checkpoints . Thus, alteration in miR expression is involved in the pathogenesis of

various human diseases, like cancers . Moreover, miRs can regulate the expression of B7 family members

in various diseases; thus, there is a need to properly understand the scope and effect of this regulation in human

diseases .

2. The Regulatory Cross-Talk between microRNAs and Novel
Members of the B7 Family in Human Diseases

2.1. B7-H3

B7–H3, also referred to as CD276, can regulate the stimulation and inhibition of T cells . A variety of cells,

e.g., natural killer cells, activated T-cells, dendritic cells, macrophages, and non-hematopoietic cells, can express

B7-H3 . Preliminary findings reported that B7-H3 could promote CD4+ and CD8+ T cell proliferation by T cell

receptor (TCR) stimulation using immobilized Ig fusion protein . However, it is well-established that B7–H3 can

suppress the activation of CD4+ T-cell and the release of effector cytokines . This suppression might facilitate

the function of transcription factors like nuclear factor of activated T cells (NF-AT), nuclear factor kappa B (NF-κB),

and activator protein 1 (AP-1), playing significant roles in T cell function . Moreover, B7-H3 overexpression has

been identified in various cancers, e.g., breast , lung , kidney, prostate , and ovarian cancer .

Furthermore, the inhibition of B7-H3 has decreased angiogenesis in medulloblastoma, indicating its essential role

in tumor angiogenesis . As an overexpressed oncogene in various cancers, MYC has a critical role in cancer

development, e.g., angiogenesis, apoptosis, proliferation . Since MYC inhibition has been associated with the

suppressed expression of B7-H3 in medulloblastoma cells, the MYC-B7-H3 regulatory axis can play an essential

role in regulating angiogenesis . It has been indicated that B7-H3 knockdown can repress the PI3K/Akt pathway,

resulting in decreased STAT3 activity. Since STAT3 can promote the expression of matrix metalloproteinase 2

(MMP2) and matrix metalloproteinase 9 (MMP9), B7-H3 can regulate the expression of MMP2 and MMP9 .

Moreover, B7-H3 can be involved in inflammatory conditions, e.g., sepsis and bacterial meningitis . Since the

mRNA expression of B7–H3 is not as remarkable as its protein expression, the post-transcriptional regulating

process might have a considerable effect .

2.2. B7-H4

B7-H4, also known as B7x, B7S1, and VTCN1, can inhibit cytokine production, proliferation, cell cycle progression,

and the stimulation of CD4  and CD8  T cells . Although its transcripts can be found in various tissues, its

protein has low expression in most human normal tissues . B7-H4 expression is positively correlated with cancer
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development in patients with gastric cancer , glioma , squamous cell esophageal carcinoma , renal cell

carcinoma , pancreatic cancer , cholangiocarcinoma , ovarian cancer , and lung cancer . Since B7-

H4 has been associated with cancer development, it can be an appealing target for treating cancer patients .

It has been shown that miR-125b-5p has an anti-inflammatory role and can regulate interleukin (IL)-1β-induced

inflammatory genes by targeting the TNF receptor associated factor (TRAF6)/mitogen-activated protein kinase

(MAPK)/NF-κB pathway in human osteoarthritic chondrocytes . However, miR-125b-5p overexpression in

macrophages can increase IL-2 secretion and the proliferation of CD8  T cells. Indeed, miR-125b-5p can target

B7-H4 and facilitate inflammation . In line with this, B7-H4 overexpression has been associated with poor

prognosis in colorectal cancer patients . In 24.4% of colorectal cancer patients, single-nucleotide polymorphism

(SNP) rs13505 GG of B7-H4 can confer an alternate binding site for miR-1207–5p, which might result in

downregulation of this gene . Furthermore, TGF-β1 can upregulate B7-H4 and facilitate immune escape via the

miR-155/miR-143 axis in colorectal cancer .

In 2017, 62 hsa-miRs were identified as regulating B7-H4 in pancreatic cancer . These miRs were mentioned

above in the Results section.

2.3. B7-H5

B7-H5, also known as VISTA, C10orf54, Dies1, and PD-1H, is a type-I membrane protein that can stimulate

terminal differentiation of embryonic stem cells (ESCs) into cardiomyocytes/neurons via the bone morphogenetic

protein (BMP) signaling pathway . It has been reported that miR-125a-5p can directly repress the transcription of

B7-H5 and inhibit ESC differentiation . B7-H5 also plays a pivotal regulatory function in adipocyte differentiation

independently from BMP signaling. In particular, the elevated level of B7-H5 has been shown exclusively in

differentiated fat cells and blocked adipocyte differentiation . In B7-H5 knockout mice, the elevation of

inflammatory cytokines can result in chronic multi-organ inflammation, indicating the critical role of B7-H5 in

suppressing inflammation . In Crohn’s disease, there is a negative association between B7-H5 expression and

hsa-miR-16–1 . B7-H5 can serve as a ligand and receptor on T cells, suppressing the activation of naïve and

memory T cells . The presence of two PKC binding sites in the cytoplasmic region of B7-H5 might indicate

that B7-H5 is a receptor . B7-H5 can be overexpressed in cancer-associated/cancer-adjacent gastric

myofibroblasts. However, B7-H5 expression is generally downregulated in epithelial gastric cancer cells. This can

be explained by B7-H5 promoter methylation, the overexpression of miR-125a-5p, or a combination of both, and

even the existence of mutant p53 . Indeed, the downregulation of B7-H5 has been associated with de-

differentiation and triggered epithelial–mesenchymal transition (EMT) in epithelial cells.

2.4. B7-H6

B7-H6, also known as NCR3LG1, is a ligand for the NKp30 . B7-H6 sequence is functionally similar to the other

B7 family members. Although B7-H6 is not found in normal human tissues, it is highly expressed in cancers, e.g.,

renal cell carcinoma, leukemia, breast cancer, ovarian cancer, and sarcomas . Various factors can regulate B7-

H6 expressions, e.g., protease inhibitors, proinflammatory cytokines, natural killer cells, and miRs. Histone
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deacetylase inhibitors (HDACi) and metalloprotease inhibitors can regulate the B7-H6 expression at transcription

and post-transcriptional levels, respectively . Following stimulation of CD14 CD16  neutrophils and monocytes,

B7-H6 can be expressed on these proinflammatory immune cells . Tumoral B7-H6 can be recognized and

eliminated via natural killer cells. However, metalloproteases can cleave B7-H6 and shield tumor cells from natural

killer-mediated immune responses . Bioinformatics analysis has predicted that miR-93, miR-195, and miR-340

can regulate immune responses by targeting B7-H6 in breast cancer cells .

2.5. B7-H7

B7-H7, which has previously been referred to as B7-H5, is known as the human endogenous retro virus–H long

repeat-associating 2 (HHLA2) . Its receptors can be found on various immune cells, e.g., monocytes, T cells,

B cells, and dendritic cells. TMIGD2, which is referred to as CD28 homolog, is one of the identified B7-H7

receptors . In antigen-presenting cells, B7-H7 co-stimulates the proliferation of naïve T cell and cytokine

production across TMIGD2 by serine–threonine kinase AKT phosphorylation. However, the second B7-H7 receptor

on activated T cells can exert a coinhibitory role, because activated T cells do not express TMIGD2. The

identification of the second receptor might clarify the role of B7-H7 in T cell activation and the tumor

microenvironment . It has been reported that B7-H7 is upregulated in lung cancer, osteosarcoma, and breast

cancer, and its elevated expression is correlated with a poor prognosis in affected patients . BATF in B

lymphocytes and SMAD in monocytes might be involved in the dysregulation of B7-H7 in kidney clear-cell

carcinoma. It has been indicated that hsa-miR-6870–5p and hsa-miR-3116 might have a role in this modulatory

mechanism .

2.6. Bioinformatics Analysis

Based on our results, four potential new interactions between B7 family members and miRs have been identified:

(1) the hsa-miR-29b-3p/B7-H3 axis, (2) the hsa-miR-29a-3p/B7-H3 axis, (3) the hsa-miR-125a-5p/B7-H4 axis, and

(4) the hsa-miR-486-5p/B7-H4 axis. Of these four interactions, the association of different isoforms of miR-29 with

B7-H3 has been investigated in previous studies (see above). As mentioned earlier, hsa-miR-125a-5p regulates

B7-H5 expression in gastric cancer, but its association with B7-H4 has not been studied. Recent findings have

shown that miR-125a-5p plays a pivotal role in suppressing the classical activation of macrophages (M1-type)

induced by lipopolysaccharide (LPS) stimulation, while promoting IL-4-induced expression of the alternative M2

macrophages by targeting KLF13, a transcriptional factor that is involved in T lymphocyte activation and

inflammation . In addition, miR-486-5p is an immunomodulatory tumor suppressor miR that has been reported to

have key roles in various oncological and non-oncological disorders . Although our knowledge about the role of

miR-125a-5p/B7-H4 and miR-486-5p/B7-H4 axes in the immune pathways and the pathogenesis of various

diseases is still preliminary, our in silico analysis can pave the way for further investigations.
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