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The development of plants and the interplay with its environment are highly linked to glycosylation of proteins and

lipids as well as metabolism and signaling of sugars.

glycosylation glycoproteins glycolipids plant development signaling sugars

carbohydrates

| 1. Plant Development and Sugars

Plant development is an overarching term for a plethora of processes, including embryonal development, seed
maturation and germination, and growth of the vegetative plant with specialized roots, shoots, leaves and flowers
(2B 1t has been shown that sugars, glycoproteins and glycolipids play a crucial role in various pathways such as
hormone signaling, cellular trafficking, development and growth AIRIEI7IE]

Glycoproteins, glycolipids and sugars are heavily involved in mediating environmental cues BIBIRILILL pyring the
course of a plant’s life cycle, cells undergo a multitude of changes: plant cells develop, grow and gain cellular
volume 12 As soon as germination is initiated, the cells of the growing hypocotyl, radicle and cotyledons multiply

fast. This rapid growth requires intense enzymatic as well as hormonal control mechanisms 131,

In general, the addition of a carbohydrate moiety to a protein or lipid is referred to as glycosylation. The process of
protein glycosylation is considered the most complicated but ubiquitous modification of secretory proteins 24, The
main types of glycosylation are N-, O-, P-, S- and C-glycosylation, referring to the atom which is involved in the
glycosidic linkage 2. However, N- and O-glycosylation are the most abundant in plants. It is estimated that
approximately 50% of all proteins are glycoproteins, of which the majority is N-glycosylated 1817, The presence or
absence of N- and O-glycans on glycoproteins has been shown to influence a proteins’ activity, stability and
functionality to a large extent, and plays a critical role in cellular signaling, molecular trafficking, plant development
and adaptation to biotic and abiotic stresses 18I (Figure 1).
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Figure 1. Graphical representation of the most important plant organs. The plant in this figure is generic and does

not necessarily represent tomato. For each organ, the most significant phenotypical traits when glycosylation

enzymes are knocked-out, knocked-down or over-expressed are highlighted. In the flowering parts, defects in

glycosylation cause abnormal development of anthers and pistils, pollen tube germination and elongation, and

defective gametogenesis which often leads to sterility. At the level of the fruit, glycosylation enzymes are important

for fruit ripening and softening. Seeds show aberrant seed morphology, seed set, (embryo) lethality and cell wall

defects when the expression of one or more glycosylation enzymes is disturbed. Vegetative tissues such as the

leaves and the roots also experience morphological changes due to aberrant protein glycosylation. This figure was

created with BioRender.com.

2. Developmental Consequences of Glycosylation: From

Flowers to Germinating Seeds

2.1. Flowers Have a Sweet Tooth

A flowers’ ultimate goal is to produce viable seeds, which will generate progeny and propagate further on.

However, flower development is not as straightforward as it seems, since a multitude of requirements have to be

met. One of those requirements is proper protein glycosylation, as it is responsible for a plethora of developmental

processes and even facilitates pivotal events during the plant’s life cycle 29 (Figure 2).
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Figure 2. Graphical representation of a generic flower and phenotypes caused by impaired activity of glycosylation
enzymes or glycoproteins. Disturbances cause phenotypes in both male and female gametes, anthers, pollen and
pollen sacs, pollen germination and pollen tube elongation. Abbreviations: APTG1 (ABNORMAL POLLEN TUBE
GUIDANCE1), EVN (EVAN), FucT (a-1,3-fucosyltransferase), GFAT1 (glutamine:fructose-6-phosphate
amidotransferase), GIcNAc.UT (GIcNAc-phosphate UDP-transferase), HAP6 (HAPLESS6), MTR1 (MICROSPORE
AND TAPETUM REGULATORL1), OFT (O-fucosyltransferase), PELP (Pistil-Specific Extensin-Like Proteins), SCR
(S-locus Cysteine Rich), SRK (S-locus Receptor Kinase), TTSO (Transmitting Tissue Specific O-glycoprotein),
TUN (TURAN), USP (UDP-sugar pyrophosphorylase). This figure was created with BioRender.com.

2.2. Eradication of Sweet Cell Walls Mediates Fruit Ripening

Fruit ripening encompasses the set of processes that facilitate fruit set, development and maturation of fruits
(Eigure 3). These are well-understood on a biochemical, physical and molecular level, and have been studied
thoroughly. Starting from anthesis and fertilization of the ovaries, the seed as well as the surrounding fruit develops
through cell division, cell enlargement and maturation 21221, Finally, fruits bearing mature seeds will abscise from

the parental plant and start their own life cycle.
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Figure 3. Graphical representation of the glycosylation-related enzymes and their role in fruit ripening and seed
development and germination. For fruits, specific glycan-degrading enzymes and CAZymes are important for
ripening and softening. Defects in glycosylation enzymes cause aberrant seed morphologies, cell wall
shortcomings, embryonal defects, (embryo)lethality and reduced seed set. For the germinating seed, disturbed
glycosylation enzymes will postpone germination, reduce germination capacity or will yield unviable seeds.
Additionally, the glycosylation state of endosperm glycoproteins will cause certain developmental phenotypes.
Abbreviations: ACINUS (Apoptotic Chromatin condensation Inducer in the Nucleus), AGPs (arabinogalactan
proteins), a-MAN (a-mannosidase), B-NAHase (B-N-acetylhexosaminidase), CAZymes (carbohydrate-active
enzymes), CYT1 (GTP:a-D-mannose-1-phosphate guanylyltransferase), DER1 (DEGRADATION IN THE
ENDOPLASMIC RETICULUM1), DGL1 (DEFECTIVE IN GLYCOSYLATION1), DPMS1 (dolichol phosphate
mannose synthase complex 1), ENGase (endo-N-acetyl-B-D-glucosaminidase), FucT (a-1,3-fucosyltransferase),
GALT (galactosyltransferase), GCSI (a-glucosidase 1), GCSII (a-glucosidase 1), GIcNAc.UT (GIcNAc-phosphate
UDP-transferase), GnT1 (N-acetylglucosaminyltransferase 1), KNF (KNOPF), LEW3 (Leaf Wilting 3), MN1
(Miniaturel), MNS1 (mannosidase 1), PNGase (peptide-N4-(N-acetyl-B-D-glucosaminyl) asparagine amidase),
RCN11 (Reduced Culm Number 11), RSW1 (RADIALLY SWOLLEN1), SEC (SECRET AGENT), SPY (SPINDLY),

XTH (xyloglucan endotransglycosylase/hydrolase). This figure was created with BioRender.com.

2.3. The Sugar-Craving Cell Wall of Seeds

2.3.1. The Ever-Changing Cell Wall

Plant cell walls are complex and dynamic organs which fulfil many essential functions. Cell walls are built up of O-
glycosidic biomolecules, grouped in cellulose, pectic polysaccharides, hemicellulose polysaccharides and lignin.
Pectin and lignin are unique to the primary cell wall and secondary cell wall, respectively, and the specific

composition of the cell wall varies between different plant species 231,

2.3.2. Cellulose Biosynthesis-Related Problems Cause Cell Wall Disruptions

Two classical examples of enzymes that are of great importance for both plant N-glycosylation and seed and
embryonal development are the trivalent dolichol phosphate mannose synthase (DPMS) complex 24 and a-
glucosidase | (GCSI) 23, Although DPMS and GCSI are involved in very different steps of the glycosylation
pathway, plants display comparable phenotypes whenever the coding gene is interrupted or over-expressed.
Whereas the DPMS complex plays a pivotal role in the synthesis of the lipid-linked glycan precursor 28, a-
glucosidase activity is required during glycan trimming after en bloc transfer of the N-glycan precursor 24 (Eigure
4).

Both over-expressed DPMS1 and knocked out gcs/ mutants display a lethal phenotype with detrimental defects on
embryonal development. One of the phenotypic particularities shared between over-expressed DPMS1 plants and
mutant gcsl plants is the aberrant seed morphology: either wrinkled or shrunken, or both. In both cases, the
aberrant phenotypes can be attributed to disturbances in seed coat cell wall formation and cellulose biosynthesis

(24127](25]  Shrunken seeds with defects in the embryonal stage were also observed when two GIcNA.UT genes
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were knocked down in Arabidopsis. However, the observed phenotype was not linked to cell wall defects [28], Other
o-glucosidase-encoding genes are Radially Swollen (RSW) 1 and KNOPF (KNF) and both are involved in cellulose
biosynthesis and morphogenesis during embryonal development. Embryos of rsw3 and knfl4 mutants showed
serious defects in embryogenesis, looked radially swollen and were highly reduced in cellulose content 22, The
observed phenotype was attributed to the UPR. These findings suggest that N-glycosylation is of importance for
cell wall formation through cellulose biosynthesis. Additionally, gcs/l mutants, also involved in glycan trimming
downstream of GCSI, have been reported and linked to cellulose biosynthesis. These mutants also displayed radial
swelling of the roots, lethal embryos and defects in seed setting 2289, Very comparable phenotypes have been
observed in mutants of the GTP:a-D-mannose-1-phosphate guanylyltransferase (CYT1) enzyme in Arabidopsis
which is, just like DPMS1, involved in N-glycan precursor synthesis by producing GDP-Man and GDP-Fuc (Figure
4). Distorted cell walls, disturbed embryonal development and lethality have been reported for cytl mutants 1.
Both GCSI and GCSII activity, and N-glycan precursor synthesis are important for cell wall construction through

cellulose biosynthesis [23132],

Lageed
e wrine Featamtaaral i
Tuareen bk

Figure 4. Overview of the most important glycosylated structures in the plant cell. N-glycan synthesis initiates in

the endoplasmic reticulum, after which the glycan is added onto a polypeptide. Well-folded proteins are then
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guided towards the Golgi apparatus through vesicular transport, where the glycan structure is modified. After
glycan maturation in the Golgi, glycoproteins are transported towards the vacuole, plasma membrane, cell wall or
secreted. O-glycosylation occurs mainly in the Golgi apparatus. The O-GIcNAc modification takes place in the

nucleus and cytoplasm. This figure was created with BioRender.com.

2.4. Glycosylation Decides over Seed Germination

In germinating rice seeds, the number of N-linked glycosites equaled 242, distributed over 191 glycoproteins,

highlighting the abundance and importance of (N-linked) glycosylation for the germinating seed 17,

| 3. Glycoproteins during Root and Leaf Development
3.1. The Deal with Glycosylation in Roots

N-glycosylation of different proteins is important for root development. The OST complex, necessary for transfer of
the oligosaccharide from the lipid-linked oligosaccharide to a nascent polypeptide chain, consists of multiple

subunits and mutations of some of these subunits disturb root growth (Figure 1, Figure 4 and Figure 5) B3l The

under-glycosylation due to mutations of genes involved in the OST-complex, often results in increased osmotic and
salt sensitivity 34133186137 Numerous examples of plants mutated in genes encoding enzymes involved in N-

glycan maturation displayed defective root growth and root architecture due to aberrant protein glycosylation 2832

(401141 (Figure 5).
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Figure 5. Graphical representation of the glycosylation-related enzymes and their role in leaf development,
trichome morphology and root (hair) development. Both abnormal N-glycosylation and O-glycosylation result in
changes of phenotype and morphology. Abbreviations: ALG10 (a-1,2-glucosyltransferase 10), BZ1 (Brittle stem and
Zebra Leaf 1), DGL1 (DEFECTIVE IN GLYCSOYLATION1), EXAD (extensin arabinose deficient transferase),
FUCTc (01,4-fucosyltransferase), GALT (B1,3-galactosyl-transferase), GLCAT (B-glucuronosyltransferases), GnT1
(N-acetylglucosaminyltransferase 1), HPAT1-2 (Hyp O-arabinosyltransferases 1 and 2), HPGT (Hydroxyproline O-
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galactosyltransferase), Hyp-O-GALT (hydroxyproline-O-B-galactosyltransferase), MANII (a-mannosidase Il), MNS
(a-mannosidase 1), MOGS (mannosyloligosaccharide glucosidase), OST3/6 (oligosaccharyltransferase subunit
3/6), P4H (prolyl 4-hydroxylase), PSL (premature senescence leaf), RAY1 (REDUCED ARABINOSE YARIV1), RRA
(REDUCED RESIDUAL ARABINOSE), SEC (SECRET AGENT), SGT (serine O-a-galactosyltransferase), SPY
(SPINDLY), STT3a (STAUROSPORIN AND TEMPERATURE SENSITIVE3A), XEG113 (Xylo-endoglucanase113).

This figure was created with BioRender.com.

Similar to N-glycosylation, O-glycosylation also affects root growth (Eigure 5). O-glycans determine the role and
molecular properties of the hydroxyproline-rich glycoprotein and of small hormone peptides 4. Prior to the addition
of a sugar moiety, modifying the proline to a Hyp residue is essential. The generation of Hyp residues is regulated
by prolyl 4-hydroxylase (P4H) 42, Mutational analysis of several P4Hs in Arabidopsis resulted in transgenic plants
possessing short root hairs 434411451 Several adverse effects were observed when O-glycosylation is altered such

as defective root (hair) growth or even increased root growth 481471,

3.2. Phenotypical Disturbances in Leaves

3.2.1. Abnormal O-Glycosylation: Leaves in Distress

Aberrant glycosylation affects several stages of plant development, resulting in a clear phenotype of the transgenic
plant (Figure 1). The majority of the leaf phenotypes were reported in plants with aberrant O-glycosylation, and
include abnormal leaf size, different number of leaves, enhanced leaf senescence and even altered leaf
morphology “#8I49BABI There are also examples of leaf phenotypes in plants with abnormal N-glycosylation. For
instance, the morphological analysis of transgenic plants with a mutation in the ALG10 gene, displayed inhibited

growth and smaller leaves (22, Dwarfism is observed regularly in transgenic plants with N-glycosylation defects L7
s3],

3.2.2. Specialized Leaf Tissues Are Annoyed by Absent Glycosylation

Trichomes are protuberances on the aerial part of the plant that differentiated from epidermal cells. Aberrant protein
glycosylation can affect the architecture and development of trichomes. The majority of the trichome phenotypes
were found in plants with impaired O-glycosylation. For instance, mutation of three B-glucuronosyltransferases

(GLCATSs) caused reduced trichome branching and sizel®4l.

| 4. Perspectives

Although sugars are important during glycosylation of plant proteins by functioning directly as the substrates for
glycosylation, new evidence is emerging that interplay between sugar signaling events and glycosylation might also
exist. At this stage, it is not clear if there is a direct correlation between cellular sugar levels and the level of
glycosylation. However, with numerous findings showing differential glycosylation patterns during stress conditions,
and the importance of sugar signaling events to alleviate stresses it is likely that a high level of communication

between these pathways exists. Of particular interest for future studies will be to determine how the glycosylation of
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proteins that are targets of sugar signalling cascades are affected, and whether such events can alter their
regulation by sugar signaling kinases. Additionally, future studies should also look at glycosylation patterns in
plants lacking functional components of major sugar signalling pathways under a variety of growth conditions to

establish if sugar signaling events act as upstream regulators of glycosylation.
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