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Short-chain fatty acids (SCFAs) are organic acids whose carbon chain is composed of less than six carbons. Short-chain

fatty acids (SCFAs) play a key role in health and disease, as they regulate gut homeostasis and their deficiency is

involved in the pathogenesis of several disorders, including inflammatory bowel diseases, colorectal cancer, and

cardiometabolic disorders. SCFAs play a significant anti-inflammatory role in the regulation of immune function, taking part

in the prevention of various inflammatory chronic disorders. SCFAs are metabolites of specific bacterial taxa of the human

gut microbiota, and their production is influenced by specific foods or food supplements, mainly prebiotics, by the direct

fostering of these taxa.

Keywords: short-chain fatty acids ; butyrate ; gut microbiota ; SCFA-producing bacteria ; gut health ; prebiotics ; probiotics

; diet

1. Introduction

Short-chain fatty acids (SCFAs) are organic acids whose carbon chain is composed of less than six carbons. Among

these, acetate (C2), propionate (C3) and butyrate (C4) are the most represented . Acetate contributes to approximately

60% of the total SCFAs while propionate and butyrate comprise 20% each . Additional acids, including lactate isomers,

valerate, and branched chain SCFAs such as isobutyrate and iso-valerate, can be found in our gut metabolome (the

metabolites of our gut microbiome), but their levels are noticeably lower compared with the main acids .

The main functions of SCFAs are carried out with the aid of Free Fatty Acid Receptor 2 (FFAR2) and FFAR3, while FFAR1

and FFAR4 are used by medium- and long-chain fatty acids. FFARs are G-protein-coupled transmembrane receptors

located on the surface of many different cells (neurons, colonocytes, pancreatic cells, neutrophils, adipocytes,

enteroendocrine cells, etc.) . Acetate, a C2 SCFA, is more effective in the activation of the FFAR2 receptor, while

propionate, a C3 SCFA, mainly effects the FFAR3 receptor. These receptors play key roles in various cells. FFAR2 and

FFAR3 could mediate both the anti-inflammatory effect of acetate and propionate, and the proinflammatory effect of

butyrate on innate immune system cells . Moreover, the action of those two receptors may influence the energy

consumption of neurons , insulin secretion from Langerhans islets beta cells  and enteroendocrine function .

The effects of SCFAs on the human gut are mediated by the presence of SCFA transporters on colonic epithelium. These

transporters can be grouped into three main transporter classes: proton-coupled transporters, such as MCT1 and MCT4;

sodium-coupled transporters, using the energy of two sodium ions, such as SMCT1; and ATP-dependent transporters,

such as ABCG2, also known as breast cancer resistance protein (BCRP) .

SCFAs have several beneficial effects on human health, at different levels and on body sites.

First, SCFAs promote the integrity and permeability of the gut barrier in different ways. These molecules, mainly butyrate,

increase the concentration of tight junctions, such as claudin-1, zonula occludens-1 and occludin through the upregulation

of genes that encode for these proteins . Moreover, butyrate is able to strengthen the mucus layer of the gut epithelium

by increasing the expression of Mucin 2 . Butyrate is also involved in the modulation of oxidative stress, as it reduces

H O -induced DNA damage, restoring the levels of antioxidant glutathione. Additionally, SCFAs can induce both the

differentiation and apoptosis of colonic cells, ideally preventing the development of colon cancer, as discussed further in

this research .

SCFAs also play an important role in the regulation of several physiological pathways within the nervous system. First,

SCFAs modulate brain-induced intestinal gluconeogenesis. In particular, when propionate is absorbed and passes

through the portal vein, it activates the FFAR3s present on the surface of afferent periportal neurons . SCFAs also

regulate the inhibition of histone deacetylase (HDAC), with a potential impact on several neuropsychiatric diseases such
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as depression, schizophrenia and Alzheimer’s disease . Moreover, SCFAs control systemic and neuroinflammation

through the modulation of functions and structures of microglia cells, resulting in the modulation of emotion, cognition and

mental disorders. Additionally, high concentrations of SCFAs seem to be related to the major expression of neurotrophic

factors ; SCFAs may induce the expression of tryptophan 5-hydroxylase 1, an enzyme involved in serotonin

biosynthesis , and there is also evidence that they may positively affect the brain barrier’s integrity .

SCFAs, especially acetate, are also involved in the regulation of appetite and human metabolism. In animal models, diets

with a high abundance of fermentable carbohydrates, whose catabolism in the colon generates SCFAs, relate to a minor

appetite . Moreover, acetate may reduce body weight through the secretion of glucagon-like peptide 1 and peptide YY

. SCFAs are also able to modulate both glucose and lipid metabolism. Propionate suppresses hepatic gluconeogenesis

, while both acetate and butyrate reduce lipogenesis and increase leptin secretion . Furthermore, SCFA

administration in animal models seems to reduce liver steatosis , and vinegar, a food rich in acetate, was

demonstrated to be useful in reducing body weight, serum triglycerides and body fat mass . However, most

experiences on humans are biased by a small sample size, and more evidence from adequately sized clinical studies is

needed to understand the effects of SCFAs on lipidic metabolism .

Increasing evidence suggests that SCFAs are able to influence other components of cardiometabolic health. Increased

levels of butyrate and propionate are associated with the reduction in blood pressure  and plasminogen activator

inhibitor-1 (PAI-1) levels, a pro-thrombotic factor .

Notably, SCFAs have a relevant impact on both innate and adaptive immunity. Regarding innate immunity, SCFAs can act

directly on neutrophils, reducing their production of reactive oxygen species (ROS) and myeloperoxidase (MPO), and can

even enhance their apoptosis . They also reduce the chemotaxis of inflammatory cells due to a decrease in the

expression of monocyte chemoattractant protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM1) and chemokines

signals . In addition, regarding the T cell lineage, SCFAs can increase the T  cell number and their activity and

inhibit CD4+ . Finally, treatment with SCFAs, and especially with butyrate, is able to reduce gut inflammation,

reducing the NF-κB signaling pathway and enhancing the expression of anti-inflammatory cytokines such as IL-10 .

In gut diseases, both acute and chronic inflammation are relevant. Transient acute inflammation, an essential defense

mechanism of the immune system against injurious stimuli, is of particular relevant . In this condition, when cells are

damaged, instead of directly targeting the injurious stimuli, such as any invading viruses or bacteria, the immune system

will use the “self-destroy and rebuild” strategy, targeting the damaged cells. By using a programmed cell death such as

pyroptosis  and necroptosis  to actively destroy the cells, stimuli such as viruses or bacteria are also effectively

cleared. On the other hand, chronic inflammation develops when the stimulus cannot be removed and is associated with

diseases like IBDs, where SCFAs play a key role .

2. SCFAs and IBD

IBD includes chronic inflammatory disorders of the gastrointestinal tract associated with a gut microbiota imbalance.

Patients with IBD are known to share, compared with healthy subjects, a reduction in butyrate producers of the Firmicutes

phylum, mainly Roseburia spp and Faecalibacterium prausnitzii, and an increase in opportunistic bacteria .

In addition to a reduced SCFAs production, the uptake and oxidation of butyrate appears to be inhibited in patients with

UC . This leads to a weakening of their anti-inflammatory activity, thus promoting disease progression. More

specifically, propionate and butyrate stimulate T-reg proliferation and function through GPR-43 pathways and HDACs’

inhibition . SCFAs also lead to a downregulation of proinflammatory cytokines levels because of the inhibition of

NF-κB and HDCAs activity , and to an increase in the anti-inflammatory ones through GPCRs .

Furthermore, acetate controls tissue homeostasis through NLRP-3 activation  and butyrate regulates the intestinal

barrier, which is known to be impaired in IBD, through increased AREG, IL-22 and claudin-1 production .

3. SCFAs and Colorectal Cancer (CRC)

CRC is a multifactorial disease and the gut microbiota play an important role in its development . Patients with CRC

showed an increase in pathogenic bacteria (e.g., Fusobacterium nucleatum) and a depletion in butyrate producers 

. The reduced production of SCFAs leads to a pro-inflammatory environment, which can contribute to the initiation and

progression of CRC . In addition, butyrate can change redox state and D-glucose metabolism, enhancing cancer cells’
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apoptosis , while the inhibition of HDCAs regulates the expression of p21, arresting cell cycle and consequent cancer

proliferation . Proliferation is also inhibited by propionate via GPR-43, which is often lost in colon cancer cells .

4. SCFAs and Cardiovascular Diseases (CVDs)

There is a large body of evidence suggesting that SCFAs play a role in the pathogenesis of CVDs, a group of disorders

that include hypertension and atherosclerosis. A reduction in butyrate producers in the gut microbiota and the deficient

intestinal absorption of SCFAs have been observed in patients with hypertension . Moreover, SCFAs appear to have

a dual effect on the regulation of blood pressure. For example, when binding Olfr-78, acetate and propionate lead to renin

release, increasing blood pressure . By contrast, when binding GPR-41, they reduce blood pressure via vasodilatation

, which is also obtained by the effect of butyrate on afferent vagal terminals . In atherosclerosis, a similar pathway

has been noted , as SCFAs, mainly butyrate, appear to play a protective role in the regulation of inflammation and

stabilization of plaques by downregulating the expression of CCL-2, VCAM-1, and MMP-2, resulting in the lower migration

of macrophages, increased collagen deposition and ultimate plaque stability .

5. SCFAs and Metabolic Diseases

As anticipated above, SCFAs regulate metabolic pathways and food intake, thereby playing a role in the development of

metabolic diseases. Obesity is associated with an imbalance in the gut microbiota, mainly an increased

Firmicutes/Bacteroidetes ratio, and an increase in fecal-SCFAs , although circulating SCFAs are reduced . Type 2

diabetes (T2D) is instead characterized by a decrease in butyrate producers in the gut microbiota .

Normally, SCFAs moderate food intake, stimulating the secretion of satiety hormones such as PYY and GLP-1 via GPR-

41 and GPR-43  and through the inhibition of HDACs . Furthermore, acetate can cross the blood–brain barrier,

causing a decreasee in appetite . SCFAs can also improve glucose homeostasis in an AMPK-dependent manner

involving PPARγ-regulated effects on gluconeogenesis and lipogenesis . Moreover, propionate enhances glucose-

stimulated insulin release via GPR-43 and increases β-cell mass . SCFAs can stimulate adipocyte differentiation 

and decrease lipid plasma levels through the inhibition of lipolysis and stimulation of lipogenesis  and cholesterol

plasma levels, enhancing its hepatic uptake .

Overall, these mechanistic pathways of SCFAs in different disorders pave the way for the therapeutic use of SCFAs in

clinical practice. Table 1.

Table 1. The role of short-chain fatty acids in different disorders.

Disease SCFA Model Function Ref.

Inflammatory
bowel disease Acetate Gpr43−/−, Gpr109a−/−, Nlrp3−/−

and Nlrp6−/− mice
Induces NLRP3 inflammosome activation

to maintain tissue homeostasis

  Butyrate Niacr1+/− Apc min/+ and
Niacr1−/− Apc min/+ mice

Increases colonic DCs and macrophages’
production of IL-10, inducing Treg

generation

   
Foxp3 ΔCNS1, Foxp3 GFP,

Foxp3 Thy1.1 and Gpr109a−/−
mice

Promotes Treg differentiation through
enhancing Foxp3 activity

    GPR109a−/− and WT mice Inhibits AKT and NF-κB p65 signaling
pathways in macrophages

   
BMDM cells,

C57BL/6 and CX3CR1-GFP/+
mice

Reduces NO, IL-6 and IL-12p40 secretion
by macrophages

    GPR43−/−, Prdm1−/− and WT
mice

Increases AREG expression levels in DCs
to promote tissue repair

    Cdx2-IEC monolayer Induces production of claudin-1 to
enhance barrier functions

  Propionate Gpr43−/− and Gpr43+/+ mice Promotes Treg differentiation through
GPR-43

  All SCFAs HeLa and HEK293 cell lines Inhibit NF-κB activity through GPR43—
βarrestin interactions
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Disease SCFA Model Function Ref.

    Isolated human neutrophils,
monocytes and PBMC

Promotes anti-inflammatory effects via the
regulation of PGE2, cytokine and

chemokine release

    CD4+ T cells and ILCs Induces production of IL-22 to promote
barrier functions

Colorectal cancer Butyrate Caco-2 cell line
Enhances cancer cells’ apoptosis by
alterations in the redox state and D-

glucose metabolism

    MCF-7 (T5) and MDA MB 231 cell
lines

Arrests cancer cells’ proliferation through
upregulation of p21

  Propionate
Caco-2, HCT116, HCT8, HT-29,
SW620, SW480, CBS, FET and

MOSER cell lines

Arrests cancer cells’ proliferation through
p21 upregulation and decrease in cyclin

D3, CDK-1 and CDK-2

Hypertension Acetate and
propionate Olfr78−/− and Gpr41−/− mice Increase blood pressure through Olfr-78

    Gpr41−/− and WT mice Reduces blood pressure by binding GRP-
41

  Butyrate Vagotomized Sheffield strain
male Wistar rats

Reduces blood pressure through the
regulation of afferent vagal terminals

Atherosclerosis Butyrate ApoE −/− mice
Reduces CCL-2, VCAM-1, and MMP-2
production to stabilize atherosclerotic

plaques

Obesity Acetate C57BL/6 male mice Decreases appetite through central
hypothalamic mechanisms

  Propionate Isolated human colonic cells Reduces food intake through the secretion
of PPY and GLP-1 via GPR-41

  Propionate
and butyrate NCI-h716 and HuTu-80 cells Reduce food intake through the secretion

of PPY via inhibition of HDACs

Metabolic
syndrome Acetate Isolated adipocytes from GPR43

knockout mice
Decreases lipid plasma levels through

inhibition of lipolysis via GPR-43

  Propionate Human subjects and in vitro
isolated human islets

Enhances glucose-stimulated insulin
release and increases β-cell mass

    Human adipose tissue culture Decreases lipid plasma levels by
stimulating lipogenesis

  Propionate
and butyrate

Stromal vascular fraction of the
porcine subcutaneous fat Stimulates adipocyte differentiation

  All SCFAs PPARγ f/f and PPARγ lox/lox
mice

Regulate gluconeogenesis and
lipogenesis through PPARγ

downregulation

    Male Golden hamsters Decrease cholesterol plasma levels by
enhancing its hepatic uptake
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