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Situational Awareness (SA) is a fundamental capability of humans that has been deeply studied in various fields,

such as psychology, military, aerospace, and education. Nevertheless, it has yet to be considered in robotics,

which has focused on single compartmentalized concepts such as sensing, spatial perception, sensor fusion, state

estimation, and Simultaneous Localization and Mapping (SLAM).

simultaneous localization and mapping  scene understanding  scene graphs  mobile robots

1. Introduction

The robotics industry is experiencing an exponential growth, embarking on newer technological advancements and

applications. Mobile robots have gained interest from a commercial perspective due to their capabilities to replace

or aid humans in repetitive or dangerous tasks . Already, many industrial and civil-related applications employ

mobile robots . For example, industrial machines and underground mines’ inspections, surveillance and road-

traffic monitoring, civil engineering, agriculture, healthcare, search, and rescue interventions in extreme

environments, e.g., natural disasters, for exploration and logistics .

On one hand, mobile robots can be controlled in manual teleoperation or semi-autonomous mode with constant

human intervention in the loop. Furthermore, teleoperated mobile robots can be apprehended using applications

such as augmented reality (AR) , ref.  to enhance human–robot interactions. On the other hand, in fully

autonomous mode, a robot performs an entire mission based on its understanding of the environment given only a

few commands . Remarkably, autonomy reduces the costs and risks while increasing productivity and is the goal

of current research to solve the main challenges that it raises . Unlike the industrial scenario, where autonomous

agents can act in a controlled environment, mobile robots operate in the dynamic, unstructured, and cluttered world

domain with little or zero previous knowledge of the scene structure.

Up to now, the robotics community has focused chiefly on research areas such as sensing, perception, sensor

fusion, data analysis, state estimation, localization and mapping, i.e., Simultaneous Localization and Mapping

(SLAM), and Artificial Intelligence (AI) applied to various image processing problems, in a compartmentalized

manner. Figure 1 shows the mentioned targets’ data obtained from Scopus abstract and citation database.

However, autonomous behavior entails understanding the situation encompassing multiple interdisciplinary aspects

of robotics, from perception, control, and planning to human–robot interaction. Although SA  is a holistic concept

widely studied in fields such as psychology, the military, and in aerospace, it has been barely considered in
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robotics. Notably, Endsley  formally defined SA in the 1990s as “the perception of the elements in the

environment within a volume of time and space, the comprehension of their meaning and the projection of their

status shortly”, which remains valid to date .

Figure 1. Scopus database since 2015 covering the research in Robotics and SLAM. All the works focused on

independent research areas which could be efficiently encompassed in one field of Situational Awareness for

robots.

Therefore, a robot’s Situational Awareness (SA) system must continuously acquire new observations of the

surroundings, understand its essential elements and make complex reasoning, and project the world state into a

possible future outcome to make decisions and execute actions that would let it accomplish its goals. 

2. Situational Perception

Situational perception enables robots to perceive their known state as well as the situation around them using a

single or a combination of onboard proprioceptive and exteroceptive sensors. The continuous technological
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advances regarding chip developments have made many sensors suited for use onboard mobile robots , as

they come with a small form factor and possibly low power consumption. The primary sensor suite of the average

robot can count on a wide array of devices, such as Inertial Measurement Units (IMUs), magnetometers,

barometers, and Global Navigation Satellite Systems (GNSS) receivers, e.g., for the typical Global Positioning

System (GPS) satellite constellation. Sensors such as IMUs, which can be utilized by robotic platforms to measure

their attitude, angular velocities, and linear accelerations, are cheap and lightweight, making them ideal for running

onboard the platforms, though the performance of these sensors can degrade over time due to the accumulation of

errors coming from white Gaussian noise . Magnetometers are generally integrated within an IMU sensor,

measuring the accurate heading of the robotics platform relative to the Earth’s magnetic field. The sensor

measurements from a magnetometer can be corrupted when the robot navigates in environments with constant

magnetic fields interfering with the Earth’s magnetic field. Barometers can be utilized by flying mobile robots to

measure their altitude changes through measured pressure changes, but they suffer from bias and random noise in

measurements in indoor environments due to ground/ceiling effects . Wheel encoders are utilized by ground

mobile robots to measure the velocities of the platform and obtain its relative position. GNSS receivers, as well as

their higher-precision variants, such as Real-Time Kinematic (RTK) or differential GNSS, provide reliable position

measurements of robots in a global frame of reference relative to the Earth in outdoor environments. However,

these sensors can work reliably in uncluttered outdoor environments with multiple satellites connected or within a

direct line of sight with the RTK base station .

The adoption of cameras as exteroceptive sensors in robotics has become increasingly prevalent due to their

ability to provide a vast range of information in a compact and cost-effective manner . In particular, RGB

cameras, including monocular cameras, have been widely used in robotics as primary sensor as it provides the

robots with colored images which can be further processed to extract meaningful information from their

environment. Additionally, cameras with depth information, such as stereo or RGB-D cameras, have emerged as a

dominant sensor type in robotics given that they provide the robot with additional capabilities of perceiving the

depth of the different objects within the environment. As such, the use of standard cameras is expected to continue

playing a crucial role in developing advanced robotic systems. These standard cameras suffer from the

disadvantage of motion blur in the presence of a rapid motion of the robot, and the perceived quality can degrade

as the robot navigates in changing lighting conditions.

In robotics, RGB and RGB-D (i.e., with depth) cameras are thus complemented by infrared (IR) cameras, also

referred to as thermal cameras when detecting long-wave radiation, for gaining extended visibility during nighttime

or adverse weather conditions. These sensors can provide valuable information not detectable by human eyes or

traditional cameras, such as heat signatures and thermal patterns. By incorporating thermal and IR cameras into

the sensor suite, mobile robots can detect and track animated targets by following heat signatures, and navigating

low-visibility environments, thus operating in a broader range of conditions. These specialized sensors can

significantly enhance a robotic system’s situational awareness and overall performance.

Neuromorphic vision sensors , also known as event cameras , such as the Dynamic Vision Sensor (DVS) ,

overcome the limitations of standard cameras by encoding pixel intensity changes rather than an absolute
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brightness value and providing very high dynamic ranges as well as no motion blur during rapid motions. However,

due to the asynchronous nature of event cameras, measurements of the situations are only provided in case of

variations in the perceived scene brightness that are often caused by the motion of the sensor itself. Hence, they

can measure a sparse set of points, usually in correspondence with edges. To perceive a complete dense

representation of the environment, such sensors onboard mobile robots are typically combined with the traditional

pixels of RGB cameras, as in the case of the Dynamic and Active-Pixel Vision Sensor (DAVIS)  or Asynchronous

Time-Based Image Sensor (ATIS)  cameras. Nevertheless, algorithms have also been proposed to reconstruct

traditional intensity frames by integrating events over time to facilitate the reuse of preexisting image processing

approaches  or even produce a high-frame-rate video by interpolating new frames .

Ranging sensors, such as small-factor solid-state Light Detection and Rangings (LIDARs) or ultrasound sensors,

are the second most dominant group of employed exteroceptive sensors onboard mobile robots. One-dimensional

LIDARs and ultrasound sensors are used mainly in flying mobile robots to measure their flight altitude but only

measure limited information about their environments, while ground mobile robots can utilize the sensor to

measure the distance to nearest object. Two- and three-dimensional LIDARs accurately perceive the surroundings

in 360°, and the newer technological advancements have reduced their size and weight. However, utilizing these

sensors onboard small-sized robotic platforms is still not feasible, and the high acquisition cost hampers the

adoption of this sensor by the broad commercial market. Even for autonomous cars, a pure-vision system, which

may include event cameras, is often more desirable from an economic perspective.

Frequency-modulated continuous wave (FMCW) radio detection and ranging (RADAR) systems transmit a

continuous waveform with a changing frequency over time. This changing frequency creates a frequency sweep, or

chirp, continuously transmitted and reflected off objects in the radar’s field of view. An FMCW radar can determine

the detected objects’ range, velocity, and angle by measuring the frequency shift between the transmitted and

received signals. Millimeter-wave (mmWave) radars use short-wavelength electromagnetic waves in the GHz

range to obtain millimeter accuracy and are a valid alternative to LIDAR for range measurements in robotics .

Even though they have a lower angular resolution and more limited range than LIDAR, they offer a smaller form

factor and a lower cost. Additionally, they can estimate the speed of objects by leveraging the Doppler effect.

Nevertheless, mmWave radars can detect transparent surfaces that are challenging to see with LIDAR. As such,

they have become an attractive option for robotic applications where cost, form factor, and the detection of

transparent surfaces are crucial.

A Radiofrequency (RF) signal is another technology based on signal processing that allows a robot to infer its

global position by estimating its distance with one or multiple base stations. Differently from GPS, RF signals may

be able to provide positioning information in indoor environments as well, even though range measurements

require it to be fused with other sources of motion estimation, e.g., from an IMU. Contrary to mmWave radars, RF-

based localization or mapping is far less precise, but newer technology such as 5G promises superior

performance. However, a drawback of these approaches is that they require synchronization between the antenna

and the receiver for computing a time of arrival (TOA) and possibly line-of-sight (LOS) communication, especially

when only one antenna is available. Other RF measurements, such as the time difference of arrival (TDOA), allow
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the release of the synchronization requirement or the computation of the position in a non-line-of-sight (NLOS)

scenario by extracting information from matrices of channel state information (CSI). Kabiri et al.  provide an

exhaustive review of RF-based localization methods and give an outlook on current challenges and future research

directions.

3. Direct Situational Comprehension

Some research works focus on transforming the complex raw measurements provided by sensors into more

tractable information with different levels of abstraction, i.e., feature extraction for an accurate scene

understanding, without building a complex long-term model of the situation.

3.1. Monomodal

These algorithms utilize a single sensor source to extract useful environmental information. The two primary sensor

modalities used in robotics are vision-based sensors and range-based sensors for the rich and plentiful amount of

information in their scene observations.

Vision-based comprehension started with the early works of Viola and Jones  presenting an object-based

detector for face detection using Haar-like features and Adaboost feature classification. Following works for visual

detection and classification tasks such as  utilized well-known image features, e.g., Scale-Invariant

Feature Transform (SIFT) , Speeded-Up Robust Features (SURF) , Histogram of Oriented Gradients (HOG)

, along with Support Vector Machine (SVM)-based classifiers . The mentioned methods focused on extracting

only a handful of helpful information from the environment, such as pedestrians, cars, and bicycles, showing

degraded performance in difficult lighting conditions and occlusions.

With the establishment of DL in computer vision and image processing for robot vision, recent algorithms in the

literature robustly extract the scene information utilizing Convolutional Neural Networks (CNNs) in the presence of

different lighting conditions and occlusions. In computer vision, different types of DL-based methods exist based on

the kind of scene-extracted information. Algorithms such as Mask-RCNN , RetinaNet , TensorMask ,

TridentNet , and Yolo  perform detection and classification of several object instances, and they either provide

a bounding box around the object or perform a pixelwise segmentation for each object instances. Other algorithms

such as  perform a dense semantic segmentation, being able to extract all relevant information from

the scene. Additionally, Kirillov et al. , Cheng et al.  aimed to detect and categorize all object instances in an

image, regardless of their size or position, through a panoptic segmentation while still maintaining a semantic

understanding of the scene. This task is particularly challenging because it requires integrating pixel-level

semantics and instance-level information. Two-dimensional scene graphs  could then connect the semantic

elements detected by the panoptic segmentation in a knowledge graph that let one reason about relationships.

Moreover, this knowledge graph facilitates the inference of single behaviors and interactions among the

participants in a scene, animate or inanimate .
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To overcome the limitations of the visible spectrum in the absence of light, thermal infrared sensors have been

researched to augment situational comprehension. For instance, one of the earlier methods  found humans in

nighttime images by extracting thermal shape descriptors that were then processed by Adaboost to identify positive

detection. In contrast, newer methods  utilize deep CNNs on thermal images for identifying different objects in

the scene, such as humans, bikes, and cars. Though research in the field of event-based cameras for scene

understanding is not yet broad, some works such as  present an approach for dynamic object detection and

tracking using event streams, whereas  present an asynchronous CNN for detecting and classifying objects in

real time. Ev-SegNet  is an approach that introduced one of the first semantic segmentation pipelines based on

event-only information.

Range-based comprehension methods with earlier works such as  and ref.  presented object detection for

range images from 3D LIDAR using an SVM for object classification. However, the authors in  utilized range

information to identify the terrain around the robot and objects and used an SVMs to classify each category.

Nowadays, deep learning is also playing a fundamental role in scene understanding using range information. Some

techniques utilize CNNs for analyzing range measurements translated into camera frames by projecting the 3D

points onto an abstract image plane. For example, Rangenet++ , SqueezeSeg , and SqueezeSegv2 

project the 3D point-cloud information onto 2D range-based images for performing the scene understanding tasks.

The above-mentioned methods argue that CNN-based algorithms can be directly applied to range images without

using expensive 3D convolution operators for point cloud data. Others apply CNNs directly on the point cloud

information for maximizing the preservation of spatial information. Approaches such as PointNet , PointNet++

, TangentConvolutions , DOPS , and RandLA-Net  perform convolutions directly over the 3D point cloud

data to semantically label the point cloud measurements.

3.2. Multimodal

The fusion of multiple sensors for situational comprehension allows algorithms to increase their accuracy by

observing and characterizing the same environment quantity but with different sensor modalities . Algorithms

combining RGB and depth information have been widely researched due to the easy availability of the sensors

publishing RBG-D information. González et al.  studied and presented the improvement of the fusion of multiple

sensor modalities (RGB and depth images), numerous image cues, and various image viewpoints for object

detection, whereas Lin et al.  combined 2D segmentation and 3D geometry understanding methods to provide

contextual information for classifying the categories of the objects and identifying the scene in which they are

placed. Several algorithms classifying and estimating the pose of objects using CNNs, such as , PoseCNN ,

DenseFusion , rely extensively on RBG-D information. These methods are primarily employed for object

manipulation tasks, using robotic manipulators fixed on static platforms or mobile robots.

Alldieck et al.  fused RGB and thermal images from a video stream using contextual information to access the

quality of each image stream to combine the information from the two sensors accurately, whereas methods such

as MFNet , RTFNet , PST900 , and FuseSeg  combined the potential of RGB images along with

thermal images using CNN architectures for the semantic segmentation of outdoor scenes, providing accurate
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segmentation results even in the presence of degraded lighting conditions. Zhou et al.  proposed ECFFNet to

perform the fusion of RGB and thermal images at the feature level, which provided complementary information,

effectively improving object detection in different lighting conditions. Spremolla et al. , Mogelmose et al. 

performed a fusion of RGB, depth, and thermal camera computing descriptors in all three image spaces and fused

them in a weighted average manner for efficient human detection.

Dubeau et al.  fused the information from an RGB and depth sensor with an event-based camera cascading the

output of a deep Neural Network (NN) based on event frames with the output from a deep NN for RBG-D frames

for a robust pose tracking of high-speed moving objects. ISSAFE  is another approach that combines event-

based CNN with an RGB-based CNN using an attention mechanism to perform semantic segmentation of a scene,

utilizing the event-based information to stabilize the semantic segmentation in the presence of high-speed object

motions.

To improve situational comprehension using 3D point cloud data, methods have been presented that combine

information extracted over RGB images with their 3D point cloud data to accurately identify and localize the objects

in the scene. Frustrum PointNets  performed 2D detection over RGB images which were projected to a 3D

viewing frustum from which the corresponding 3D points were obtained, to which a PointNet  was applied for

object instance segmentation, and an amodal bounding box regression was performed. Methods such as AVOD

 extract features from both RGB and 3D point clouds projected to a bird’s eye view and fuse them to provide

3D bounding boxes for several object categories. MV3D  extract features from RGB images and 3D point cloud

data from the front view as well as a bird’s eye view to fuse them in a Region of Interest (RoI) pooling, predicting

the bounding boxes as well as the object class. PointFusion  employs an RGB and 3D point cloud fusion

architecture which is unseen and object-specific and can work with multiple sensors providing depth.

Direct situational comprehension algorithms only provide the representation of the environment at a given time

instant and mostly discard the previous information, not creating a long-term map of the environment. In this

regard, the extracted knowledge can thus be transferred to the subsequent layer of accumulated situational

comprehension.

4. Accumulated Situational Comprehension

A greater challenge consists of building a long-term multiabstraction model of the situation, including past

information. Even small errors not considered at a particular time instant can cause a high divergence between the

state of the robot and the map estimate over time. 

4.1. Motion Estimation

The motion estimation component is responsible for estimating the state of the robot directly, using the sensor

measurements from single/multiple sources and the inference provided by the direct situational comprehension

component (see Section 3.1). While some motion estimation algorithms only use real-time sensor information to
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estimate the robot’s state, others estimate the robot’s state inside a pregenerated environment map. Early methods

estimated the state of the robot based on filtering-based sensor fusion techniques such as an Extended Kalman

Filter (EKF), an Unscented Kalman Filter (UKF), and Monte Carlo Localization (MCL). Methods such as those in

 use MCL, providing a probabilistic hypothesis of the state of the robot directly, using the range

measurements from a range sensor. Anjum et al.  performed a UKF based fusion of several sensor

measurements such as gyroscopes, accelerometers, and wheel encoders to estimate the motion of the robot.

Kong et al. , Teslic et al.  performed an EKF based fusion of odometry from robot wheel encoders and

measurements from a prebuilt map of line segments to estimate the robot state, whereas Chen et al.  used a

prebuilt map of corner features. Ganganath and Leung  presented both UKF and MCL approaches for

estimating the pose of the robot using wheel odometry measurements and a sparse prebuilt map of visual markers

detected with an RGB-D camera. In contrast, Kim and Kim  presented a similar approach using ultrasound

distance measurements with respect to an ultrasonic transmitter.

The simplified mathematical models are subject to several assumptions that limited earlier motion estimation

methods. Newer methods try to improve these limitations by providing mathematical improvements over the earlier

methods and accounting for delayed measurements between different sensors, such as the UKF developed by

Lynen et al.  and the EKF by Sanchez-Lopez et al. , which compensate for time-delayed measurements in

an iterative nature for a quick convergence to the actual state. Moore and Stouch  presented an EKF/UKF

algorithm, well-known in the robotics community, which can take an arbitrary number of heterogeneous sensor

measurements for the estimation of the robot state. Wan et al.  used an improved version of a Kalman filter

called the error-state Kalman filter, which used measurements from RTK GPS, LIDAR, and IMU for a robust state

estimation. Liu et al.  presented a multi-innovation UKF (MI-UKF), which utilized a history of innovations in the

update stage to improve the accuracy of the state estimate; it fused IMU, encoder, and GPS data and estimated

the slip error components of the robot.

The motion estimation of robots using a Moving-Horizon Estimation (MHE) has also been studied in the literature

where methods such as in  fuse wheel odometry and LIDAR measurements using an MHE scheme to estimate

the state of the robot, claiming a robustness over any outliers in the LIDAR measurements. Liu et al. , Dubois et

al.  studied a multirate MHE sensor fusion algorithm to account for sensor measurements obtained at different

sampling rates. Osman et al.  presented a generic MHE-based sensor fusion framework for multiple sensors

with different sampling rates, compensating for missed measurement, outlier rejection, and satisfying real-time

requirements.

Recently, motion estimation algorithms of mobile robots using factor-graph-based approaches have also been

extensively studied as they have the potential to provide a higher accuracy. Factor graphs can encode either the

entire history of the robot state or go back up to a fixed time, i.e., fixed-lag smoothing methods, capable of handling

different sensor measurements in terms of nonlinearity and varying frequencies optimally and intuitively.

Ranganathan et al.  presented one of the first graph-based approaches using square-root fixed-lag smoothing

, for fusing information from odometry, visual, and GPS sensors, whereas Indelman et al.  presented an

improved fusion based on an incremental smoothing approach, iSAM2 , fusing IMU, GPS and visual
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measurements from a stereocamera setup. The methods presented in  utilized sliding-window factor graphs

for estimating the robot’s state by fusing several wheel odometry sources along with global pose sources. Mascaro

et al.  also presented a sliding-window factor graph combining visual odometry information, IMU, and GPS

information to estimate the drift between the local odometry frame with respect to the global frame, instead of

directly estimating the robot state. Qin et al.  presented a generic factor graph-based framework for fusing

several sensors. Each sensor served as a factor connected with the robot’s state, quickly adding them to the

optimization problem. Li et al.  proposed a novel graph-based framework for sensor fusion that combined data

from a stereo visual–inertial navigation system, i.e., S-VINS, and multiple GNSS sources in a semitightly coupled

manner. The S-VINS output was an initial input to the position estimate derived from the GNSS system in

challenging environments where GNSS data are limited. By integrating these two data sources, the framework

improved the robot’s global pose estimation accuracy.

4.2. Motion Estimation and Mapping

This section covers the approaches which estimate not only the robot motion given the sensor measurements but

also the map of the environment, i.e., they model the scene in which the robot navigates. These approaches are

commonly known as SLAM, which is one the widely researched topics in the robotics industry , as it enables a

robot to use scene modeling without the requirement of prior maps and in applications where initial maps cannot be

obtained easily. Vision and LIDAR sensors are the two primary exteroceptive sensors used in SLAM for map

modeling . As in the case of motion estimation methods, SLAM can be performed using a single-sensor

modality or using information from different sensor modalities and combining it with scene information extracted

from the direct situational comprehension module (see Section 3). SLAM algorithms have a subset of algorithms

that do not maintain the entire map of the environment and do not perform stages of loop closure called odometry

estimation algorithms, where Visual Odometry (VO) becomes a subset of visual SLAM (VSLAM) and LIDAR

odometry a subset of LIDAR SLAM.

4.2.1. Filtering

Earlier SLAM approaches such as in  applied an EKF to estimate the robot pose by simultaneously

adding/updating the landmarks observed by the robots. However, these methods were quickly discarded as their

computational complexity increased with the number of landmarks, and they did not efficiently handle nonlinear

measurements . Accordingly, FastSLAM 1.0 and FastSLAM 2.0  were proposed as improvements to EKF-

SLAM, which combined particle filters to calculate the trajectory of the robot with individual EKFs for landmark

estimation. These techniques also suffered from the limitations of sample degeneracy when sampling the proposal

distribution and problems with particle depletion.

4.2.2. Metric Factor Graphs

Modern SLAM, as described in , has moved to a more robust and intuitive representation of the state of the

robot along with sensor measurements, as well as the environment map to create factor graphs as presented in
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. Factor-graph-based SLAM, based on the type of map used for the environmental

representation and optimization, can be divided into metric and metric–semantic factor graphs.

A metric map encodes the understanding of the scene at a geometric level (e.g., lines, points, and planes), which is

utilized by a SLAM algorithm to model the environment. Parallel tracking and mapping (PTAM) was one of the first

feature-based monocular algorithms which split the tracking of the camera in one thread and the mapping of the

key points in another, performing a batch optimization for optimizing both the camera trajectory and the mapped 3D

points. Similar extensions to the PTAM framework are ORB-SLAM  and REMODE  which create a

semidense 3D geometric map of the environment while estimating the camera trajectory. As an alternative to

feature-based methods, direct methods use the image intensity values instead of extracting features to track the

camera trajectory even in featureless environments such as semidense direct VO, called DSO  and LDSO ,

improving the DSO by adding loop closure into the optimization pipeline, whereas LSD-SLAM , DPPTAM ,

and DSM  perform a direct monocular SLAM tracking camera trajectory along with building a semidense model

of the environment. Methods have also been presented that combine the advantages of both feature-based and

intensity-based methods, such as SVO  performing high-speed semi-direct VO, CPA-SLAM , and loosely

coupled semidirect SLAM  utilizing image intensity values for optimizing the local structure and image features

to optimize the key-frame poses.

Deep Learning models may be used effectively to learn from data to estimate the motion from sequential

observations. Hence, their online prediction could be better before initializing the factor-graph optimization problem

closer to the correct solution . MagicVO  and DeepVO  study supervised end-to-end pipelines to

learn monocular VO from data not requiring complex formulations and calculations for several stages, such as

feature extraction and matching, keeping the VO implementation concise and intuitive. There are also some

supervised approaches such as LIFT-SLAM , RWT-SLAM , and  that utilize deep neural networks

for improved feature/descriptor extraction. Alternatively, unsupervised approaches  exploit the

brightness constancy assumption between frames in close temporal proximity to derive a self-supervised

photometric loss. The methods have gained momentum, enabling the learning from unlabeled videos and

continuously adapting the DL models to newly seen data . Nevertheless, monocular visual-only methods

suffer from the considerable limitation of being unable to estimate the metric scale directly and accurately track the

robot poses in the presence of pure rotational or rapid/acrobatic motion. RAUM-VO  mitigates the rotational drift

by integrating an unsupervised learned pose with the motion estimated with a frame-to-frame epipolar method .

To overcome these limitations, cameras are combined with other sensors, for example, synchronizing them with an

IMU, giving rise to the research line working on monocular Visual–Inertial Odometry (VIO). Methods such as

OKVIS , SVO-Multi , VINS-mono , SVO+GTSAM , VI-DSO , BASALT  are among the most

outstanding examples. Delmerico and Scaramuzza  benchmarked all the open-source VIO algorithms and

compared their performance on computationally demanding embedded systems. Furthermore, VINS-fusion 

and ORB-SLAM2  provide a complete framework capable of fusing either monocular, stereo, or RGB-D

cameras with an IMU to improve the overall tracking accuracy of the algorithms. ORB-SLAM3  presents
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improvement over ORB-SLAM2 by performing even multimap SLAM using different visual sensors along with an

IMU.

Methods have been presented that perform thermal inertial odometry for performing autonomous missions using

robots in visually challenging environments . The authors in TI-SLAM  not only performed

thermal inertial odometry but also provided a complete SLAM back end with thermal descriptors for loop closure

detection. Mueggler et al.  presented a continuous-time integration of event cameras with IMU measurements,

improving by almost a factor of four the accuracy over event-only EVO . Ultimate SLAM  combines RGB

cameras with event cameras along with IMU information to provide a robust SLAM system in high-speed camera

motions.

LIDAR odometry and SLAM for creating metric maps have been widely researched in robotics to create metric

maps of the environment such as Cartographer  and Hector-SLAM , performing a complete SLAM using 2D

LIDAR measurements, and LOAM  and FLOAM  providing a parallel LIDAR odometry and mapping

technique to simultaneously compute the LIDAR velocity while creating accurate 3D maps of the environment.

SUMA  improves the performance over LOAM using dense projective ICP over surfel-based maps. To further

improve the accuracy, techniques have been presented which combine vision and LIDAR measurement as in

LIDAR-monocular visual odometry (LIMO)  and LVI-SLAM , combining monocular image tracking with

precise depth estimates from LIDAR measurements for motion estimation. Methods such as LIRO  and VIRAL-

SLAM  couple additional measurements such as ultrawide band (UWB) with visual and IMU sensors for robust

pose estimation and map building. Other methods such as HDL-SLAM  and LIO-SAM  tightly couple IMU,

LIDAR, and GPS measurements for globally consistent maps.

While significant progress has been demonstrated using metric SLAM techniques, one of the limitations of these

methods is the lack of information extracted from the metric representation, such as (1) a lack of semantic

knowledge of the environment, (2) an inefficiency in identifying static and moving objects, and (3) an inefficiency in

distinguishing different object instances.

4.2.3. Metric–Semantic Factor Graphs

As explained in Section 3, the advancements in direct situational comprehension techniques have enabled a

higher-level understanding of the environments around the robot, leading to the evolution of metric–semantic

SLAM overcoming the limitations of traditional metric SLAM and providing the robot with the capabilities of human-

level reasoning. Several approaches to address these solutions have been explored, which are discussed in the

following.

Object-based metric–semantic SLAM builds a map of the instances of the different detected object classes on the

given input measurements. The pioneer works SLAM++  and  created a graph using camera pose

measurements and the objects detected from previously stored database to jointly optimize the camera and the

object poses. Following these methods, many object-based metric–semantic SLAM techniques were presented,
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such as  not requiring a previously stored database and jointly optimizing the camera

poses, 3D geometric landmarks, as well as the semantic object landmarks. LIDAR-based metric–semantic SLAM

techniques such as LeGO-LOAM  extract planar/edges features from semantics such as ground planes to

improve the performance over metric SLAM LOAM . SA-LOAM  utilizes semantically segmented 3D LIDAR

measurements to generate a semantic graph for robust loop closures. The primary sources of inaccuracies of

these techniques are due to an extreme dependence on the existence of objects, as well as (1) the uncertainty in

object detection, (2) the partial views of the objects which are still not handled efficiently, and (3) no consideration

of the topological relationship between the objects. Moreover, most of the previously presented approaches cannot

handle dynamic objects. Research works on filtering dynamic objects from the scene, such as DynaSLAM , or

adding dynamic objects to the graph, such as VDO-SLAM  and RDMO-SLAM , reduce the influence of the

dynamic objects on the robot pose estimate obtained from the optimized graph. Nevertheless, they cannot handle

complex dynamic environments and only generate a sparse map without topological relationships between these

dynamic elements.

SLAM with a metric–semantic map augments the output metric map given by SLAM algorithms with semantic

information provided by scene understanding algorithms, as in  or with SemanticFusion , Kimera

, and Kimera-Multi . These methods assume a static environment around the robot; thus, the quality of the

metric–semantic map of the environment can degrade in the presence of moving objects in the background.

Another limitation of these methods is that they do not utilize useful semantic information from the environment to

improve the robot’s pose estimation and thus the map quality.

SLAM with semantics to filter dynamic objects utilizes the available semantic information of the input images

provided by the scene understanding module only to filter badly conditioned objects (i.e., moving objects) from

pictures given to the SLAM algorithms, as in  for image-based approaches or SUMA++  for a

LIDAR-based approach. Although these methods increase the accuracy of the SLAM system by filtering moving

objects, they neglect the rest of the semantic information from the environment to improve the robot’s pose

estimation.

4.3. Mapping

This section covers the recent works which focus only on the complex high-level representations of the

environment. Most of these methods assume the SLAM problem to be solved and focus only on the scene

representation. An ideal environmental representation must be efficient concerning the required resources, capable

of reasonably estimating regions not directly observed, and flexible enough to perform reasonably well in new

environments without any significant adaptations.

Occupancy mapping is a method for constructing an environment map in robotics. It involves dividing the

environment into a grid of cells, each representing a small portion of the space. The occupancy of a cell represents

the likelihood of that cell being occupied by an obstacle or not. Initially, all cells in the map can be considered

unknown or unoccupied. As the robot moves and senses the environment, the occupancy of cells is updated based
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on sensor data. One of the most popular approaches in this category is Octomap . It represents the grid of cells

through a hierarchical structure that allows a more efficient query of the occupancy probability in a specific location.

The adoption of Signed-Distance Field (SDF)-based approaches in robotics is well-established to represent the

robot’s surroundings  and enable a planning of a safe trajectory towards the mission goal . In general, an

SDF is a three-dimensional function that maps points of a metric space to the distance to the nearest surface.

SDFs can represent distances in any number of dimensions, define complex geometries and shapes with an

arbitrary curvature, and are widely used in computer graphics. However, a severe limitation of SDFs is that they

can only represent watertight surfaces, i.e., surfaces that divide the space between inside and outside .

An SDF has two main variations, Euclidean Signed-Distance Field (ESDF) and Truncated Signed-Distance Field

(TSDF), which usually apply to a discretized space made of voxels. On the one hand, an ESDF gives the distance

to the closest obstacle for free voxels and the opposite for occupied ones. They have been used for mapping in

FIESTA , where the authors exploited the property of direct modeling free space for collision checking and the

gradient information for planning , while dramatically improving their efficiency. On the other hand, a TSDF

relies on the projective distance, which is the length measured along the sensor ray from the camera to the

observed surface. The distances are calculated only within a specific radius around the surface boundary, known

as the truncation radius . This helps improve computational efficiency and reduce storage requirements while

accurately reconstructing the observed scene. TSDFs have been demonstrated in multiple works such as

Voxgraph , Freetures , Voxblox++ , or the more recent Voxblox-Field . They can create and maintain

globally consistent volumetric maps that are lightweight enough to run on computationally constrained platforms

and demonstrate that the resulting representation can navigate unknown environments. A panoptic segmentation

was rated with TSDFs by Narita et al.  for labeling each voxel semantically while differentiating between stuff,

e.g., the background wall and floor, from things, e.g., movable objects. Furthermore, Schmid et al.  leveraged

pixelwise semantics to maintain temporal consistency and detect changes in the map caused by movable objects,

hence surpassing the limitations of a static environment assumption.

Implicit neural representations (INR) (sometimes also referred to as coordinate-based representations) are a novel

way to parameterize signals of all kinds, even environments parameterized as 3D points clouds, voxels, or

meshes. With this in mind, scene representation networks (SRNs)  have been proposed as a continuous scene

representation that encodes both geometry and appearance and can be trained without any 3D supervision. It has

been shown that SRNs generalize well across scenes, can learn geometry and appearance priors, and are helpful

for novel view synthesis, few-shot reconstruction, joint shape, and appearance interpolation in the unsupervised

discovery of nonrigid models. In , a new approach was presented, capable of modeling signals with fine details

and accurately capturing their spatial and temporal derivatives. Based on periodic activation functions, that

approach demonstrated that the resulting neural networks referred to as sinusoidal representation networks

(SIRENs) were well suited for representing complex signals, including 3D scenes.

Neural radiance fields (NeRF)  exploit the framework of INRs to render realistic 3D scenes by a differential

process that takes as input a ray direction and predicts the color and density of the scene’s structure along that ray.
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Sucar et al.  pioneered the first application of NeRF to SLAM for representing the knowledge of the 3D

structure inside the weights of a deep NN. For their promising results, that research prospect attracted numerous

following works that continuously improved the fidelity of the reconstructions and the possibility of updating the

knowledge of the scene while maintaining previously stored information .

Differently from the previous dense environment representation methods, which are helpful for autonomous

navigation, sparser scene representations also exist, such as point clouds and surfel maps, which are more

commonly used for more straightforward tasks such as localization. Remarkably, a surfel, i.e., a surface element, is

defined by its position in 3D space, the surface normal, and other attributes such as color and texture. Their use

has been extensively explored in recent LIDAR-based SLAM to efficiently represent a 3D map that can be

performed as a consequence of optimization following revisited places, i.e., loop closure .

Three-dimensional scene graphs have also been researched to represent a scene, such as in , which

build a model of the environment, including not only metric and semantic information but also essential topological

relationships between the objects of the environment. They can construct an environmental graph spanning an

entire building, including the semantics of objects (class, material, and shape), rooms, and the topological

relationships between these entities. However, these methods are executed offline and require an available 3D

mesh of the building with the registered RGB images to generate the 3D scene graphs. Consequently, they can

only work in static environments.

Dynamic Scene Graphs (DSGs) are an extension of the aforementioned scene graphs to include dynamic

elements (e.g., humans) of the environment in an actionable representation of the scene that captures geometry

and semantics . Rosinol et al.  presented the first method to build a DSG automatically using the input of a

VIO . Furthermore, it allowed the tracking of the pose of humans and optimized the mesh based on the

deformation of the space induced by detected loop closures. Although these results were promising, their main

drawback was that the DSG was built offline, and the VIO first created a 3D-mesh-based semantic map fed to the

dynamic scene generator. Consequently, the SLAM did not use these topological relationships to improve the

accuracy of the spatial reconstruction of the robot trajectory. Moreover, except for humans, the remaining

topological relationships were considered purely static, e.g., chairs or other furniture were fixed to the first detection

location.

More recently, Hydra  has implemented the scene graph construction into a real-time capable system relying on

a highly parallelized architecture. Moreover, it can optimize an embedded deformation graph online, after a loop

closure detection. Remarkably, the information in the graph allows the creation of descriptors based on histograms

of objects and visited places that can be matched robustly with previously seen locations.

Therefore, DSGs, although in their infancy stage, are shown to be a practical decision-making tool that enables

robots to perform autonomous tasks. For example, Ravichandran et al.  demonstrated how they could be used

for learning a trajectory policy by turning a DSG into a graph observation that served as input to a Graph Neural
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Network (GNN). A DSG may also be used for planning challenging robotic tasks, as proposed in the Taskography

benchmark .

Lastly, one of the main features of a DSG is the possibility to perform queries and predictions of the future evolution

of the scene based on dynamic models linked with the agents or physical elements . In addition, an even more

intriguing property is their application to scene change detection or to the newly formalized semantic scene

variability estimation task, which sets as a goal the prediction of long-term variation in location, semantic attributes,

and topology of the scene objects .

5. Situational Projection

In robotics, the projection of the situation is essential for reasoning and the execution of a planned mission .

The comprehended information can be projected in the future to predict the future state of the robot by using a

dynamic model  as well as the dynamic entities in the environment. In order to predict the future state of a

robot, the projection component requires more effort in producing models that can forecast the dynamic agents’

behavior and how the scene is affected by changes that shift its appearance over time. Remarkably, numerous

research areas address specific forecast models, the interactions between agents, and the surrounding

environment’s evolution. 

Behavior Intention Prediction

Behavior intention prediction (BIP) focuses on developing methods and techniques to enable autonomous agents,

such as robots, to predict the intentions and future behaviors of humans and other agents they interact with. This

research is essential for effective communication, collaboration, and decision-making. BIP typically involves

integrating information from multiple sources, such as visual cues, speech, and contextual information, e.g.,

coming from the comprehension layer. This research has numerous applications, including human–robot

collaboration, autonomous driving, and healthcare.

Scene contextual factors, such as traffic rules, uncertainties, and interpretation of goals, are crucial for inferring the

interaction among road actors  and the safety of the current driving policy . Specifically, interaction may be

due to social behavior or physical events such as obstacles or dynamic clues, e.g., traffic lights, that influence the

decision of the driver . Multimodal perception is exploited to infer whether pedestrians are about to cross  or

vehicles to change lanes . Mostly, recent solutions rely on DL models such as CNNs , Recurrent Neural

Networks (RNNs) , GNNs , or on the transformer attention mechanism, which can estimate the crossing

intention using only pedestrian bounding boxes as input features . Otherwise, causality relations are studied by

explainable AI models to make risk assessment more intelligible . Lastly, simulation tools of road traffic and car

driving, such as CARLA , can be used as forecasting models provided that mechanisms to adapt synthetically

generated data to the reality are put in place .
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BIP then requires fulfilling the task of predicting the trajectory of the agents. For an AV, the input to the estimation is

represented by the historical sequence of coordinates of all traffic participants and possibly other contextual

information, e.g., velocity. The task is then to generate a plausible progression of the future position of other

pedestrian vehicles. Methods for predicting human motion have been exhaustively surveyed by Rudenko et al.

, and regarding vehicles, by Huang et al. , who classified the approaches into four main categories: physics-

based, machine learning, deep learning, and reinforcement learning. Moreover, the authors determined the various

contextual factors that may constitute additional inputs for the algorithms similar to those previously described.

Finally, they acknowledged that complex deep learning architectures were the de facto solution for real-world

implementation for their performance.

Additionally, DL allows for multimodal outputs, i.e., the generation of a diverse trajectory with an associated

probability, and for multitask learning, i.e., simultaneously producing a likelihood of a specific behavior. Behavior

prediction is, in fact, a separate task, more concerned with assigning to the road participants an intention of

performing a particular action.
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