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Hepatitis E virus (HEV), a pathogen that causes acute viral hepatitis, is a small icosahedral, quasi-enveloped, positive

ssRNA virus. Its genome has three open reading frames (ORFs), with ORF1 and ORF3 encoding for nonstructural and

regulatory proteins, respectively, while ORF2 is translated into the structural, capsid protein. ORF2 is most widely used for

vaccine development in viral hepatitis. Hepatitis E virus-like particles (VLPs) are potential vaccine candidates against HEV

infection. VLPs are composed of capsid subunits mimicking the natural configuration of the native virus but lack the

genetic material needed for replication. As a result, VLPs are unable to replicate and cause disease, constituting safe

vaccine platforms. Currently, the recombinant VLP-based vaccine Hecolin® against HEV is only licensed in China.
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1. Introduction

Hepatitis E virus (HEV) is an enterically transmitted pathogen and a major cause of acute hepatitis in many developing

countries within Africa and Asia . Approximately one third of the world population live in areas in which HEV is endemic

and thus are at risk of infection . Unlike other viruses causing hepatitis, HEV-related disease is a zoonotic infection with

pigs, wild boars and certain other species such as deer and rabbits being considered as reservoirs for the virus .

Although the fatality rate during epidemics is low, i.e., between 0.2–5% , the mortality rate in pregnant women is as high

as 25%, possibly due to altered hormone status and decreased immunity . Even though HEV infection is considered

self-limiting or asymptomatic in healthy individuals, it can lead to severe disease in patients with preexisting liver

conditions, with high morbidity and mortality . Chronic infection could develop in immunocompromised patients such

as organ transplant recipients , individuals administered immunosuppressants , patients on chemotherapy for

hematological malignancies , HIV-infected patients  and cases of superinfection with other hepatitis viruses . In

10% of chronically infected patients, HEV leads to rapid progression to liver cirrhosis in less than 3 years . In addition, it

has become evident in recent years that HEV infections can be associated with neurological manifestations , renal

aliments , hematological disorders  and acute pancreatitis . Furthermore, recent data indicate a link between HEV

infection and progression to hepatocellular carcinoma in patients infected with hepatitis B virus (HBV) or hepatitis C virus

(HCV) . Atsama et al.  reported significantly higher prevalence of anti-HEV IgG in hepatocellular carcinoma (HCC)

patients infected with either HBV or HCV compared with HBV/HCV-infected patients with chronic liver disease but not

suffering from HCC . This finding suggests that infection with HEV could worsen liver inflammation and increase the

severity of other infections. Another study also reported that HEV superinfection accelerates the progression of chronic

HBV infection and increases 1-year mortality .

Traditional approaches for the development of an HEV vaccine have been ruled out because the manufacturing of either

live attenuated or inactivated vaccine would be impossible due to the complexity and low yield of viral culture. Even

though culturing the virus has been difficult in the past, a few strains have been adapted to cell culture, leading to a better

understanding of the HEV life cycle .

Presently, significant progress has been made in the development of HEV vaccines based on the ORF2 capsid protein as

either a subunit or virus-like particle (VLP) . VPLs represent one of the most attractive systems for vaccine

development due to their safety, immunogenic properties and ease of production . VLPs are generated from one or

more viral capsid proteins that self-assemble into high-molecular-weight structures that resemble the native virions but

lack the viral genome . As a result, VLPs are replication- and infection-incompetent, making them a safe alternative to

attenuated or inactivated viruses in vaccine development. Since they are structurally similar to the native virus, they can

induce stronger B and T cell responses than traditional small subunit vaccines . Additionally, VLPs can be better taken

up by professional antigen-presenting cells (APCs) as exogenous and endogenous antigens for processing and

presentation by MHC class II and I molecules, respectively. Cross-presentation by MHC class molecules activates CD4+

and CD8+ T cells that elicit specific cytotoxic T lymphocyte (CTL) responses resulting in infection control . Furthermore,
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VLPs can be assembled not only from proteins from a single virus, but also from proteins of distinct viruses or various

other pathogens, e.g., bacteria and protozoa . To date, several VLPs have been produced for protection against

infectious diseases in prokaryotic or eukaryotic expression systems , and in some cases assembled in cell-free

conditions . Some of these products have been licensed, including Engerix  (Hepatitis B virus) , Cervarix  (human

papilloma virus) , Recombivax HB  (HBV)  and Gardasil  (HPV) , while others are still under pre-clinical and

clinical evaluation .

2. Hepatitis E Genome Organization

Previously known as non-A non B hepatitis, HEV is currently classified in the Hepeviridae family with the two genera

Orthohepeviruses and Pischihepeviruses . The Orthohepevirus A genus includes genotypes 1 and 2 isolated from

humans, genotypes 3 and 4 from both humans and animals, the newly proposed genotypes 5 and 6 from wild boars and

genotype 7 from dromedary camels .

HEV is a quasi-enveloped, icosahedral, single-stranded positive-sense RNA virus that was molecularly characterized for

the first time in 1990 . Its genome is around 7.2 kb with features of a eukaryotic mRNA, including a 5′ cap and 3′ poly A

tail, 5′ and 3′ untranslated regions (UTRs), and three open reading frames, including ORF1, ORF2, and ORF3 . During

HEV genome replication two viral RNA species are generated, i.e., the full-length genomic RNA and a subgenomic RNA

. The subgenomic RNA allows the expression of ORF2 and ORF3 (Figure 1).

Figure 1. Genome organization of Hepatitis E virus. (a) Hepatitis E-Virus (HEV) genome generates the full-length

genomic RNA and subgenomic RNA with 5′ cap, 3′ Poly A tail, 5′ UTR and 3′ UTR. (b) The genomic RNA has three open

reading frames: ORF1, ORF2, and ORF3. ORF1 encodes the nonstructural proteins for viral replication; ORF2 is

translated into the capsid protein with three potential glycosylation sites ( ), with a small multifunctional protein encoded

by ORF3. Three different capsid proteins have been discovered in vitro during infection, i.e., gORF2-glycosylated, iORF2-

infectious and cORF2-cleaved ORF2.

ORF1 encodes nonstructural proteins involved in viral replication . A small multifunctional 13 kDa protein is

expressed from ORF3, which facilitates HEV transport throughout the cell and acts as viroporin for the release of the

infectious virus from the host cell . ORF2 encodes the 72 kDa capsid protein comprising 660 amino acids that

contains a hydrophobic stretch of 14–34 amino acids at the N-terminus, which functions as a signal sequence for its

secretion . ORF2 is involved in virion assembly, attachment to the host cell and immunogenicity . Additionally,

the capsid protein has three potential glycosylation sites (Asn 132, 310 and 562) .

Native HEV particles are round non-enveloped with spikes covering the surface . It is considered that 180 copies of

the ORF2 protein form the HEV virion giving it T = 3 icosahedral symmetry . Recently, a few strains have been adapted

for replication in cell culture, providing novel insights into the HEV cycle. Even though HEV particles present in the bile

and feces are non-enveloped, it was demonstrated that in patient serum and cell cultures, HEV particles are partially

associated with lipids and the ORF3 protein . Moreover, recent studies have identified different forms of ORF2 in

cultured cells. Large ORF2 protein amounts are released from HEV-infected cells in vitro and found in serum from HEV-

infected patients. This secreted protein (ORF2s) was shown to be glycosylated form of the capsid protein that is not

associated with the HEV virion. The other intracellular protein (ORF2c), a translation product of the same gene starting

with the second AUG codon, is involved in HEV assembly . Montpellier et al. reported iORF2 (infectious), gORF2

(glycosylated) and additional ORF2 truncated protein (ORF2c) are not involved in virion assembly using another genotype

and cell culture for replication .

[30]

[31]

[32] ® [33] ®

[34] ® [35] ® [36]

[37][38]

[39]

[40][41]

[42]

[43]

[44]

[45][46]

[47][48]

[49] [50][51][52]

[53]

[54][55]

[56]

[57]

[58]

[59]



Great efforts have been made towards understanding the HEV life cycle in recent years by developing cellular systems

and infectious HEV clones . Polarized cell models have been developed to closely mimic in vivo infection with HEV,

which are highly permissive to infection, making them a good tool for molecular studies of the HEV cycle. For example,

human hepatoma-derived HepaRG and porcine hepatocyte-like PICM-19 cell lines have been shown to support HEV

replication, and are useful for studying virus–host interactions and species barrier crossing, especially since HEV infection

is a zoonosis in developed countries . Capelli et al.  showed that different HEV genotypes release more than 90%

of the virus from the apical membrane after infecting polarized human hepatocellular carcinoma HepG2/C3A cells,

suggesting the main route of release for infectious virions . In recent years, the key steps of HEV’s natural infectious

cycle in vivo have been confirmed by employing polarized human stem-cell-derived, hepatocyte-like cells (HLCs).

Infection of these cells with HEV results in the secretion of two different progeny particle types, including quasi-enveloped

particles from the basolateral membrane and naked highly infectious virions from the apical membrane . These findings

provide novel insights into the HEV infectious cycle. The release of HEV particles basolaterally could spread the infection

in the host and lead to extrahepatic manifestations .
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