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The subgenus Bryophyllum belongs to genus Kalanchoe (Crassulaceae family) and includes about 25 plant

species native to Madagascar, which are widely used in traditional medicine in vast regions throughout Africa, Asia

and South Africa. Different formulations from bryophyllum (this term is proposed to be the common name to

collectively refer to these species) have been employed for the treatment of several ailments, including infections,

gynecological disorders, and chronic diseases, such as diabetes, neurological and neoplastic diseases. Two major

families of secondary metabolites have been reported as responsible for these bioactivities: phenolic compounds

and bufadienolides. These compounds are found in limited amounts in plants because they are biosynthesized in

response to different biotic and abiotic stresses. Therefore, novel approaches should be undertaken with the aim of

achieving the phytochemical valorization of Bryophyllum sp., allowing a sustainable production that prevents from a

massive exploitation of wild plant resources. This review focuses on the study of phytoconstituents reported on

bryophyllum; the application of plant tissue culture methodology as a reliable tool for the valorization of bioactive

compounds; and the application of machine learning technology to model and optimize the full phytochemical

potential of bryophyllum. As a result, bryophyllum species can be considered as a promising source of plant

bioactive compounds, with enormous antioxidant and anticancer potential, which could be used for their large-scale

biotechnological exploitation in cosmetic, food, and pharmaceutical industries.
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1. Introduction

The genus Kalanchoe (Adanson, 1736 ) belongs to the Crassulaceae family and comprises 150 to 200 succulent

species native to Madagascar and naturalized across Africa, South America, and Asia . Kalanchoe constitutes a

complex genus with an intricate taxonomy, not yet clearly elucidated. Authors disagree whether the classification is

based on a single genus called Kalanchoe (sensu lato) or three separate sections: Kalanchoe (sensu stricto),

Bryophyllum Kahl. (Salisbury, 1805 ), and Kitchingia (Baker, 1881 ). However, other authors propose a three-

subgenera classification of the genus Kalanchoe, due to different evolutive arguments, morphological traits   and

molecular analyses , including Kalanchoe, Bryophyllum and Calophygia . Amongst the different subgenera, the

subgenus Bryophyllum includes around 25 species, endemic to Madagascar   that gained much interest on plant

science research, as they are considered model plants for different physiological features: the Crassulacean Acid
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Metabolism (CAM) , vegetative reproduction , plant cell regeneration , and a source of therapeutical

compounds . Nevertheless, the most relevant feature associated to this subgenus is the use of their constitutive

species in the traditional medicine worldwide, thus considering Bryophyllum sp. as medicinal plants, due to their

associated bioactivities .

CAM photosynthesis is an advantageous adaptative strategy that enables plant adaptation to arid ecosystems, as

it is the case of the whole Kalanchoe genus . Bryophyllum species present a flexible CAM regime, with no time

restriction on CO  uptake, which is fixed at night  . On the other hand, Bryophyllum sp. present a highly

specialized asexual reproductive mechanism, based on the symmetric plantlet development along the leaf margins

or leaf tips of adult plants (Figure 1) . Such clonal-spreading reproductive mechanism is driven by a complex

phenomenon that combines both embryogenic and organogenetic events that has not been fully elucidated to date

. Both the metabolic and reproductive patterns found on Bryophyllum sp. contribute to the

invasiveness of these species. It allows them a rapid colonization of unexplored territories with high adaptative

efficiency, which has contributed to their worldwide naturalization .

Figure 1. In vitro-cultured plants of B. daigremontianum (left); B. × houghtonii (center); and B. tubiflorum (right).

Bars = 1 cm; arrows indicate plantlets formed asexually on leaf margins. Original figure.

Bryophyllum and other Kalanchoe species have been widely used in the traditional medicine of vast regions

throughout Africa, South America, and Asia . Because of its wide distribution and ubiquitous medicinal use,

much research on this subgenus has focused on Bryophyllum pinnatum (Lam.) Oken ; however, there is

an extensive variety of other species that have also been exploited in Ethnomedicine, such as: B. daigremontianum

(Raym.-Hamet et Perr.) Berg. , B. tubiflorum Harv.  and B. × houghtonii D.B. Ward (syn. B.

daigremontianum × tubiflorum) . Leaf and root-derived formulations have been mostly used for the treatment of

several common illnesses such as burns, wounds, insect bites, skin diseases, cough, fever or several infections,

and chronic diseases, such as diabetes, and neurological and neoplastic diseases (Table 1).

Table 1. Ethnobotanical uses of Bryophyllum species.

[10] [11] [12]

[13]

[13]

[14]

2
[15]

[12][16]

[17][18][19][20][21]

[22][23]

[24]

[25][26][27]

[28] [29][30]

[31]



Bryophyllum sp. | Encyclopedia.pub

https://encyclopedia.pub/entry/5955 3/31

 Locations where the ethnobotanical uses have been reported.

The great therapeutic potential reported on Bryophyllum sp.  has promoted in-depth phytochemical analysis to

adequately evaluate its biological and pharmacological properties . Several authors have demonstrated the

whole bioactive potential of Bryophyllum-derived extracts, acting as multifaceted agents.

The anti-inflammatory activity of Bryophyllum extracts has been determined by different methods using both in vivo

and in vitro models. For instance, aqueous extracts from B. pinnatum were shown to exert a relevant effect against

croton oil-induced ear edema and carrageenan-induced paw edema in murine models, driven by a decrease in pro-

inflammatory cytokines . Moreover, different flavonoids produced by B. tubiflorum showed an inhibitory effect on

nitric oxide production by lipopolysaccharide-induced macrophage in vitro RAW264.7 cell line .

Species Ethnobotanical Uses Plant
Organ Locations References

B. crenatum (Andr.)
Baker

Wounds, smallpox, otitis, cough,
asthma, palpitations, headache,
abscesses, convulsions, general
debility, diabetes, obstetrics and
gynecology, vermifuge, abortion,

antimicrobial treatment

Leaves
Roots

Africa

B.
daigremontianum
Raym.-Hamet et

Perr.

Leucorrhea, dysmenorrheal,
carminative, psychic agitation,

anxiety, restlessness
Leaves Bangladesh

B. fedtschenkoi
Raym.-Hamet et

Perr.

Analgesic, cytotoxic, antimicrobial
treatment

Leaves
Aerial
parts

Woody
stems

Brazil

B. mortagei
(Raym.-Hamet et

Perr.) G.E. Wickens

Digestive disorders, neoplastic
diseases, vermifuge, antimicrobial

treatment

Aerial
parts

Flowers
Roots

Mexico, Colombia,
Indonesia

B. pinnatum (Lam.)
Oken

Wounds, burns, coughs, earache,
headache, muscle pain, asthma,
bronchitis, pneumonia, arthritis,
rheumatism, ulcers, diabetes,

urinary bladder stones, dysentery,
diarrhea, vermifuge, antibacterial,

insect bites, fevers, menstrual
disorders, nausea, tumors,

gynecology

Leaves
Roots

Nigeria, Uganda,
Madagascar, India,

China, Vietnam,
Bangladesh,

Australia, Brazil,
Peru, Trinidad and

Tobago

B. serratum (Mann.
and Boit.) Blanco

Pain, inflammation, fever, antiviral Stems Taiwan

B. tubiflorum Harv.
Wounds, epilepsy, vermifuge,

neoplastic diseases
Leaves Brazil, Ethiopia
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The antimicrobial activity attributed to Bryophyllum extracts was shown to present a high effectiveness against a

wide range of both bacterial and fungal activities. In this sense, hydroethanolic extracts from B. fedtschenkoi

showed a strong inhibitory effect against different antimicrobial resistant strains from the ESKAPE complex,

including both Gram-negative and Gram-positive bacteria . Similarly, the bactericidal effect of B. crenatum leaf

juice against Bacillus subtilis and Klebsiella pneumoniae was also reported, as well as high effectiveness of

methanol extracts from B. pinnatum to Gram-positive bacteria . Moreover, different isolated fractions from B.

daigremontianum ethanolic extracts promoted a potent activity against Safase S-04 yeast strain, fungi, such as

Candida albicans and Aspergillus niger, and bacteria, including Staphylococcus aureus and Escherichia coli .

Furthermore, the antiviral activity of Bryophyllum extracts has been also assessed for relevant viral diseases. It is

the case of the antiviral activity of kaempferol derivatives from B. daigremontianum against Herpes Simplex Virus

(HSV) types 1 and 2  and bryophyllin B from B. pinnatum as a potent inhibitor of Human Immunodeficiency Virus

(HIV) .

Additionally, the analgesic and sedative properties of Bryophyllum extracts were evaluated using in vivo murine

models, indicating that leaf extracts from B. crenatum showed a protective effect against formalin and acetic acid-

induced pain and inhibited the manifestation of seizures under convulsant agents application .

The antioxidant properties of Bryophyllum extracts have been widely reported by a plethora of different methods.

The radical scavenging activity against 2,2-diphenyl-picryl-hydrazyl (DPPH), superoxide anion and nitric oxide of B.

daigremontianum, B. tubiflorum, B. × houghtonii, and B. pinnatum leaf and aerial part extracts was reported .

The inhibition of lipid peroxidation by hydromethanolic extracts from aerial parts of B. daigremontianum, B.

tubiflorum, and B. × houghtonii, cultured in vitro was also determined . Moreover, cell-based in vitro antioxidant

assays have been performed for the inhibition of lipid peroxidation of root extracts from B. daigremontianum .

Bryophyllum extracts have been also shown to present insecticidal properties, as a consequence of bufadienolide

production, as reviewed later. In this sense, methanolic leaf extracts from B. daigremontianum, B. pinnatum, and B.

× houghtonii showed an intense effect against silkworm larvae (Bombyx mori) .

Moreover, cardioprotective and antihypertensive properties were attributed to different Bryophyllum sp. . For

instance, the aqueous extracts of B. pinnatum have been shown to exhibit in vivo antihypertensive activity on high

salt-loaded rats models . Furthermore, isolates from B. daigremontianum root extracts developed an in vitro anti-

thrombotic activity .

Against all the bioactivities associated with Bryophyllum sp., the cytotoxic activity gained much interest during the

phytochemical characterization of these species . A great variety of in vitro models have been employed for the

determination of cytotoxic and anti-cancer activities on different Bryophyllum species, whose extracts have been

tested against a high number of cancer cell lines . Due to the relevance of this bioactivity, the cytotoxic

properties of Bryophyllum extracts are included during this review.
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Finally, there are additional health-enhancing properties related to Bryophyllum sp., as it is the case of

hepatoprotective, antidiabetic activities. Thus, the leaf juice and aqueous of B. pinnatum showed a marked in vivo

hepatoprotective effect on carbon tetrachloride-induced hepatotoxicity in rats , as well as hypoglycemic and

hypocholesterolemic effects in streptozotocin-induced diabetic rats .

As a result, the combination of all bioactivities attributed to Bryophyllum sp. aroused the interest in the study of

their great therapeutic potential, which is a challenge, as it is an unexplored subgenus with countless potential as a

health promoter.

2. Bryophyllum sp. Secondary Metabolites as Antioxidants
and Anticancer Agents

It is now well-known that the full set of bioactivities attributed to Bryophyllum sp. is developed by a plethora of

phytoconstituents, including phenolic compounds, bufadienolides, organic salts, terpenoids and fatty acids .

Phytoconstituents are considered secondary metabolites, since they are biosynthesized by induction of secondary

metabolism, which is responsible for the defensive and adaptative plant response against environmental threads

and biotic stress . Phenolic compounds and bufadienolides are considered the two main families of

secondary metabolites of Bryophyllum sp., widely distributed throughout the subgenus . Furthermore, they are

responsible for the bioactivity associated with Bryophyllum sp. and, consequently, a deeper insight into these

compounds will be provided.

2.1. Phenolic Compounds

Two major subfamilies of phenolic compounds have been widely reported for Bryophyllum sp.: phenolic acids and

flavonoids , which have been recently found to accumulate inside highly specialized leaf cells, called

idioblasts .

The antioxidant activity of Bryophyllum phenolic compounds, focused on the free-radical scavenging activity, has

been largely determined . Recently, the antioxidant capacity of Bryophyllum extracts for preventing the lipid

oxidation of omega-3 enriched fish oil emulsions was reported, thus conferring a valuable approach for the

application of Bryophyllum-derived by-products in the food and pharmacological industries . In the same way,

the polyphenols from Bryophyllum-derived extracts may be efficiently purified using environmental-friendly

procedures, like the use of activated carbon . These approaches have been developed in order to allow the

industrial exploitation of Bryophyllum polyphenols, due to the increasing interest in the research of these medicinal

plants.

The great diversity of bioactivities described for these compounds places the phenolic compounds of Bryophyllum

sp. as one of the main families of plant secondary metabolites that boost the phytochemical potential of this

subgenus .
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2.1.1. Phenolic Acids

Three species of Bryophyllum present high content in phenolic acids: B. pinnatum, B. daigremontianum, and B.

tubiflorum, mostly located in leaf tissues (Table 2) . Both subfamilies of phenolic acids have identified

compounds in either free or glycosylated forms. Caffeic acid and ferulic acid are the most abundant cinnamic acids,

while within the benzoic acids it is protocatechuic acid. β-resorcylic and γ-rosorcylic acids have also been

referenced, although these are more unusual. .

Table 2. Phenolic acids reported in Bryophyllum sp.

 Compounds are named as their free-form to simplify the identification.  BD: B. daigremontianum; BP: B.

pinnatum; BT: B. tubiflorum.
 

Concerning bioactivities, phenolic acids are considered powerful antioxidants whose activity depends on the

number, position, and combination of hydroxyl groups within their structure . Potential therapeutic properties for

them have also been reported, as they promote antimicrobial, antiviral, cytotoxic, and anti-inflammatory activities

. Phenolic acids from Bryophyllum-derived extracts have already been related to the development of

antibacterial and antifungal activity against a series of pathogenic microorganisms , antioxidant activity, and

cytotoxicity against human lymphoblastic leukemia J45 and H9 T-cell lines .

2.1.2. Flavonoids

Flavonoids are universally found in Bryophyllum sp. in O-glycosylated form. To a large extent, they have been

reported in three species, namely: B. pinnatum, B. daigremontianum and B. tubiflorum (Table 3). The flavonol

glycosides were shown as the most abundant subfamily of flavonoids, showing a restricted accumulation on leaf

tissues . Both kaempferol and quercetin glycosides were found in Bryophyllum species . Other

[76][82]

[63]

Subfamily Compound Species References

Cinnamic acids

p-Coumaric acid BD, BP, BT

Caffeic acid BD, BP, BT

Chlorogenic acid BD, BT

Ferulic acid BD, BP, BT

Benzoic acids

p-Hydroxybenzoic acid BD, BP, BT

Protocatechuic acid BD, BP, BT

Vanillic acid BT

Gallic acid BD, BP, BT

Syringic acid BD, BP, BT

1 2
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flavonoid subfamilies, such as flavones and catechins, have also been reported, and a number of anthocyanins

have been isolated from the flowers of different species , which are stored in the foliar idioblasts of B.

daigremontianum   and B. tubiflorum .

Table 3. Flavonoids reported in Bryophyllum sp.

[39][96]

[82] [78]

Subfamily Compound Species References

Flavanones Naringenin BT

Flavones

Luteolin BP

Apigenin BP, BT

4’,5-dihydroxy-3’,8-dimethoxyflavone BP

Acacetin BP

Diosmetin BP

Afzelin BP

Galangustin BT

Hispidulin BT

Flavonols

Quercetin BD, BP, BT

Kaempferol BD, BP, BT

Quercitrin BP

Myricetin BD, BP, BT

Rutin BP

Isorhamnetin BD, BP

Kaempferitrin BP

Herbacetin BT

Patuletin BD

Isoquercetin BT

Aromadendrin BT

Galangin BT

Flavanols Catechin BP

1 2
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 Flavonoids are named as their free-form to simplify the identification.  BD: B. daigremontianum; BP: B. pinnatum;

BT: B. tubiflorum.

 

The antioxidant activity of flavonoids is directly proportional to the number and position of hydroxyl groups in their

structure , that assist in the dissipation of electrons generated after UV-overexposure . Additionally, they

also prevent lipid peroxidation   (by decomposing lipid peroxides and scavenging harmful free-radicals) and

develop an effective metal chelation activity  . The free-radical scavenging  and lipid oxidation

preventing activities  of Bryophyllum-derived extracts rich in flavonoids have already been reported. Other

bioactivities, such as antibacterial , antiviral , cytotoxic , anti-inflammatory , cardioprotective ,

sedative and anti-diabetic activities  have been associated to flavonoids. These bioactivities have been

extensively studied for Bryophyllum sp. and have also been related to flavonoid content, mainly using B. pinnatum

as a plant model .

2.2. Bufadienolides

Bufadienolides constitute a subfamily within cardiac glycosides family of secondary metabolites and they are

considered polyhydroxy C-24 steroids, presenting an α-pyrone ring at the C-17β position (Figure 2) .

Bufadienolides presence in Bryophyllum species is genotype and organ dependent , being four species the

most representative sources of these compounds: B. daigremontianum, B. × houghtonii, B. tubiflorum, and B.

pinnatum (Table 4). Universally-distributed bufadienolides, such as bersaldegenin and bryophyllin derivatives 

, can be found together with genotype-specific compounds, such as kalanchosides  and kalanhybrins .

Figure 2. Basic molecular structure of bufadienolides.

Table 4. Bufadienolides identified in Bryophyllum sp. and their associated bioactivities.

Subfamily Compound Species References

Epicatechin BT

Epigallocatechin BP

1 2
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Species Plant
Organ Bufadienolides Bioactivities References

BD Roots

11α,19-dihydroksytelocinobufagin,
bersaldegenin-1-acetate, bersaldegenin-

1,3,5-orthoacetate, 19-
(acetyloxy)-3β,5β,11α,14-tetrahydroxyl-

12-oxo-bufa-20,22-dienolide and 19-
(acetyloxy)-1b,3b,5b,14-tetrahydroxyl-

bufa-20,22-dienolide

Moderate antioxidant activity
using in vitro blood plasma
model under peroxynitrite-
induced oxidative stress.

Effective for prevention of lipid
hydroperoxides generation

and thiobarbituric acid-reactive
substances (TBARS)

BP Leaves Bryophyllin A and C
Insecticidal against silkworm

larvae

BH Leaves

Bryophyllin A and C, bersaldegenin-1-
acetate, bersaldegenin-3-acetate,
bersaldegenin-1,3,5-orthoacetate,

daigremontianin, methyl daigremoniate

Insecticidal against silkworm
larvae, except for

bersaldegenin-1-acetate.
Cytotoxic effect of

bersaldegenin-1,3,5-
orthoacetate and

daigremontianin against
induced Raji cell line (Burkitt’s

lymphoma); inhibition of
Epstein–Barr virus

BH
Whole
plant

Kalanhybrins A, B and C, bersaldegenin-
1-acetate, bersaldegenin-3-acetate

Cytotoxic activity of
bersaldegenin derivatives

against human breast MCF-7
cancer cell line, human lung

carcinoma NCI-H460 and
glioblastoma SF-268 cell line

BD Roots Kalandaigremosides A-H nd

BP
Whole
plant

Bryophyllin A and B, bersaldegenin-3-
acetate

Cytotoxic effect against
keratin-forming tumor KB cell
line, adenocarcinomic human
alveolar basal epithelial A-549
cell line and human ileocecal

carcinoma HCT-8 cell line

BP,
BD,
BT

Leaves
(BD, BP)

and
stems
(BT)

BP, BT: bersaldegenin-1-acetate,
bersaldegenin-3-acetate, bersaldegenin-

1,3,5-orthoacetate, bryophyllin A.
BD: Bersaldegenin-1,3,5-orthoacetate

nd

BD Leaves
Bersaldegenin-1,3,5-orthoacetate,

daigremontianin
Insecticidal against silkworm

larvae

BP Leaves Bersaldegenin-1-acetate, bersaldegenin-
3-acetate, bersaldegenin-1,3,5-

nd

1 2
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 BD: B. daigremontianum; BH: B. × houghtonii; BP: B. pinnatum; and BT: B. tubiflorum.  nd: not determined.

 

As cardiac glycosides, the original bioactivity attributed to bufadienolides is their cardiotonic activity, acting as

inhibitors of the sodium pump at the myocardial tissue . However, its reduced therapeutic window conditions its

efficacy, allowing eventual cardiotoxic events due to overdosage . In fact, the accidental consumption of

Bryophyllum species by different mammals is one of the leading causes of cattle mortality in Africa , with

reporting episodes of stroke, subendocardial hemorrhages, and heart tissue necrosis . The biosynthesis of

bufadienolides is a plant defensive mechanism against insect and herbivore attacks. They have already been

reported as effective insecticidal compounds .

Bufadienolides have also been described as potent anticancer agents, as demonstrated by a number of in vitro

studies with multiple cancer cell lines (Table 4) . Nevertheless, their inherent toxicity difficult their administration

in animal and human models . Current research on these compounds is focused on finding effective and safer

semi-synthetic derivatives .

Table 4 shows the associated bioactivities of identified bufadienolides in Bryophyllum sp., with a special focus on

the cytotoxic activity of these compounds, being effective against relevant cancer cell lines, mainly those derived

from breast, ovarian and lung carcinomas .

The bioactivity of phenolic and bufadienolides compounds reveals an unexploited phytochemical potential

associated with Bryophyllum sp. However, research on these secondary metabolites is still very limited, since their

concentration and activity depend on adaptive responses of plants, which is why low-yield extraction protocols

have been reported . Consequently, in order to explore the phytochemical properties of these medicinal

plants, the establishment of efficient biotechnological approaches is required to achieve the valorization of

Bryophyllum subgenus.

Species Plant
Organ Bufadienolides Bioactivities References

orthoacetate, bryophyllin A

BD,
BP

Leaves

BD: Bersaldegenin-1-acetate,
bersaldegenin-2-acetate, bersaldegenin-

1,3,5-orthoacetate, bryophyllin A,
daigremontianin.

BP: Bersaldegenin-1-acetate,
bersaldegenin-2-acetate, bersaldegenin-

3-acetate, bersaldegenin-4-acetate,
bersaldegenin-5-acetate, bersaldegenin-

1,3,5-orthoacetate, bryophyllin A

Cytotoxic activity against
human ovarian cancer SKOV-

3 cell line, cervical
adenocarcinoma HeLa S3 cell
line and malignant melanoma

A375 cell line.
Antimicrobial activity against

Corynebacterium diphtheriae,
Staphylococcus aureus,

Staphylococcus epidermidis,
and Enterococcus hirae

BT
Whole
plant

Kalantubosides A and B, bryophyllin A,
bersaldegenin-1-acetate, bersaldegenin-

1,3,5-orthoacetate

Cytotoxic effect against
adenocarcinomic human

alveolar basal epithelial A-549
cell line, promyelocytic

leukemia HL-60 cell line, oral
adenosquamous carcinoma

Cal-27 cell line, and melanoma
A2058 cell line

1 2
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1 2
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3. Plant Tissue Culture for Sustainable Valorization of
Bioactive Compounds of Bryophyllum sp.

Currently, medicinal plants represent the source of more than 25% of drugs officially approved by the Food and

Drug Administration (FDA) and the European Medicinal Agency (EMA) for the development of novel synthetic

drugs . Their derived by-products account for the 75–90% of the total used in the primary healthcare systems of

economically developed nations . However, only 6% of the plants have been studied from the pharmacological

point of view and for 85% of them their phytochemical potential has not been evaluated , which represents a

vast territory of families of plants with medicinal properties unexplored, such as Bryophyllum sp. Novel strategies,

based on plant biotechnology methodologies, are required to meet the growing global demand for products derived

from medicinal plants for industrial purposes in different sectors, such as the food, cosmetic, and pharmaceutical

industries .

Since then, plant biotechnology has constantly evolved, and it currently provides a reliable methodology for the

bioproduction of secondary metabolites with pharmacological value, by using plant in vitro systems .

Consequently, plant tissue culture (PTC) became a basic biotechnological methodology with countless applications

in different areas of knowledge . However, PTC must face its own limitations, as it involves a set of highly

specialized, usually expensive, techniques that are extremely sensitive to multiple factors . In this section, we

will provide a deeper insight about the key aspects of PTC, with particular focus on the methodology applied to

Bryophyllum sp. (Figure 3).

[127]

[128]

[129]

[130]

[131]

[132]

[133]



Bryophyllum sp. | Encyclopedia.pub

https://encyclopedia.pub/entry/5955 12/31

Figure 3. Workflow diagram of Bryophyllum sp. valorization via plant tissue culture (PTC).

3.1. PTC Establishment

The first step of a PTC protocol is the effective removal of pathogenic contaminants from the selected plant

material (Figure 3) . Therefore, the sterilization of the explant surface is required through a procedure that

ensures convenient disinfection while maintaining its integrity, along with aseptic handling in laminar flow cabinets

.

In particular, our research group has developed a simple and reliable method for the disinfection of epiphyllous

buds of the adult plants of B. daigremontianum, B. × houghtonii and B. tubiflorum species grown in greenhouse,

which involves the use of common, safe and environmental-friendly disinfectant agents . The

protocol includes an initial tap water wash of the buds overnight, followed by a two-step stage, where the buds are

rinsed in 70% ethanol (v/v) for 1 min, washed with sterile distilled water and then rinsed in 0.4% (v/v) sodium

hypochlorite with a few drops of Tween -20 for 10 min. Finally, buds are gently washed with sterile distilled water

and dried to remove persistent residues of disinfection agents. After the establishment under aseptic conditions,
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®



Bryophyllum sp. | Encyclopedia.pub

https://encyclopedia.pub/entry/5955 13/31

disinfected buds are placed and cultured in growth chambers under controlled conditions of photoperiod and

temperature, thus enabling an adequate culture development. This procedure represents an improvement on the

previously established disinfection protocols for Bryophyllum sp., in which slower procedures were performed 

with more concentrated disinfectants ; with greater losses of viability  and explants integrity , or with

more polluting agents, such as mercury chloride .

3.1.1. Plant Culture Media Composition

Plant culture media composition plays a crucial role in the success of PTC protocols, as the nutrition of cultured

plant materials depends directly on its ingredients . As a general rule, plant culture medium formulations

contain a series of inorganic nutrients, divided into macro- and micronutrients according to their requirements for

plant physiology, along with organic nutrients, such as vitamins . Among the countless culture media

formulations defined in PTC protocols, the formulation described by Murashige and Skoog in 1962 , mostly

known as MS medium, is considered the universal medium to be applied as standard for different plant

biotechnological applications . The universality of the MS medium is based on its high levels of nitrogen

sources, with a relatively high ratio of ammonium to nitrate . However, it has recently been pointed out that the

composition of the MS medium is supra-optimal for some species and therefore harmful due to an excessive

concentration of ammonium ions .

Bryophyllum sp. are especially affected by excess of ammonium ion. This cation negatively affects the growth of

these species, due to a deterioration of CAM photosynthetic efficiency . Although PTC of Bryophyllum sp.

has been established using MS medium , better growth and multiplication rates were achieved when the

composition of the MS medium was modified, as it has been shown by reducing the concentration of

macronutrients by half for B. daigremontianum, B. × houghtonii and B. tubiflorum .

3.2. Organogenesis and Plant Regeneration

Thus far, the information on the plant regeneration protocols for Bryophyllum sp. is limited. Most publications focus

on the establishment of indirect regeneration protocols . Recently, we have provided information

on the effect of exogenous application of plant growth regulators (PGRs) on the in vitro organogenesis of B.

daigremontianum, B. × houghtonii and B. tubiflorum , pointing at the concentration of the cytokinin 6-

benzylaminopurine (BAP) as the most critical factor guiding this process. Specifically, it was demonstrated that at

operational concentrations of BAP (0.375–0.75 mg L ) both B. daigremontianum and B. × houghtonii present a

higher frequency of direct shoot regeneration than B. tubiflorum. In turn, B. tubiflorum was revealed as the most

efficient species for the induction of callus formation during indirect organogenesis . These results highlight the

complexity of the design of plant in vitro regeneration protocols and shed light into the organogenesis-related

processes of Bryophyllum sp., facing to the large-scale exploitation of these medicinal plants.

3.3. Micropropagation
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After the establishment of axenic cultures, PTC protocols normally are followed by multiplication, rooting and

acclimatization stages, throughout the procedure called micropropagation (Figure 3), with the objective of achieving

a large number of fully-developed true-to-type individuals . The singular asexual reproduction that takes place

at leaf margins of Bryophyllum, results in the clonal propagation of fully-developed epiphyllous buds, presenting

individual aerial and root systems . For this reason, Bryophyllum constitutes an outstanding subgenus for the

micropropagation of different species. Nevertheless, the micropropagation of Bryophyllum is not exempt from

difficulties due to its particular metabolism and poor nutritional requirements . In this sense, it was recently

reported that ammonium, sulfur, molybdenum, copper, and sodium play a crucial role on growth and plantlet

formation on in vitro-cultured Bryophyllum in a species-dependent manner . Therefore, multiple nutritional

modifications may be required to achieve genotype-specific optimization, since mineral imbalances and

interactions could directly influence the success of PTC protocols, by affecting micropropagation performance ,

and causing undesirable physiological disorders .

3.4. Establishment of Plant Suspension-Cultured Cells (PSCCs)

In the last decades, an increasing interest of plant biotechnology has been addressed to the evaluation and

valorization of medicinal plants, with the aim of exploring their phytochemical potential and making it accessible to

industrial applications . In order to maximize the advantages of PTC for the production of secondary

metabolites, plant suspension-cultured cells (PSCCs) emerged as a valuable biotechnological platform .

A single recent report is available for the establishment of PSCCs from B. × houghtonii . In this work, the use of

PSCCs from B. × houghtonii for the production of bioactive compounds was reported, with a special focus on the

operational aspects required for the establishment of plant cell cultures, such as the determination of growth

kinetics . The typical four-phase growth behavior was reported only after 8 days of culture, starting with an

initial lag phase where cells acclimatize to new culture conditions and no growth is observed. The lag phase is

followed by the exponential phase, where cell divisions occur massively, reported by a severe increase in cell

biomass. Afterward, a stationary phase is reached: cell growth stabilizes and the accumulation of secondary

metabolites is observed, before reaching death phase, in which cell death takes place due to a lack of nutrients

.

PSCCs are considered a valuable biological platform for the application of several approaches to enhance plant

secondary metabolism, which have been widely exploited in the field of plant biotechnology for the production of

bioactive compounds: elicitation, precursor feeding, two-phase culture system, and metabolic engineering .

Among them, elicitation is the most extended approach applied to PSCCs, although it can be applied to many other

culture types . Due to the importance of elicitation on the evaluation of medicinal plants and their phytochemical

potential, the next section will be focused on this phenomenon, with a particular focus on the elicitation of

Bryophyllum sp.

3.5. Enhancement of Phenolic Compounds Production from Bryophyllum sp. via Elicitation
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In the last years, great efforts regarding the improvement of plant secondary metabolism have been made in the

field of plant biotechnology, being the elicitation of PSCCs one of the most successful approaches applied for the

large-scale production of plant bioactive compounds . A review of the literature shows that the number of

publications selected by Google Scholar  from the search “elicitation of plant cell culture” is close to 15,000 entries

in the last five years.

The term elicitation, as recently defined by Narayani and Srivastava (2017) , refers to “the manipulation of

biochemical and metabolic pathways, via stress induction, that can be implemented for enhancing secondary

metabolite production and characterize the role of stress factors on plants using plant cell and/or tissue cultures as

model systems”. On this basis, different types of culture may constitute precious biological platforms for the

stimulation of plant secondary metabolism under controlled conditions, by the administration of elicitors (Figure 3).

In all cases, obtaining the maximum viability and integrity of the elicited cultures is required in order to achieve an

efficient and sustainable production system .

Little information about the elicited production of bioactive compounds by Bryophyllum sp. can be found in the

literature. Recently, the elicitation of phenolic compounds from in vitro-cultured Bryophyllum sp. subjected to

nutritional stress has been reported by García-Pérez and co-workers (2020) . It was found that a decrease in the

ammonium concentration in the culture medium causes a 50% overproduction and accumulation of phenolic

compounds in the aerial parts of B. × houghtonii. The effect was less in magnitude in B. daigremontianum and B.

tubiflorum . In addition, the antioxidant efficiency of the derived Bryophyllum extracts was assessed in terms of

their free-radical scavenging activity and lipid peroxidation inhibition , suggesting that in vitro-cultured B. ×

houghtonii can be considered a medicinal species with an improved phytochemical potential , in comparison to

closely-related species, such as B. daigremontianum and B. tubiflorum. In this sense, due to its phytochemical

potential, PSCCs from B. × houghtonii were subjected to elicitation by cyclodextrins (CDs) . CDs are cyclic

oligosaccharides able of forming inclusion complexes with hydrophobic molecules. The results suggested that CDs

elicited the production of phenolic compounds in Bryophyllum PSCCs, as well as their associated free-radical

scavenging activity. Specifically, it was shown that CDs favored the accumulation of total phenols and flavonoids in

the culture medium (7.9 and 17.3-fold increases, respectively) after 7 days of culture, thus, preserving the integrity

of the cellular fraction for subsequent elicitation cycles .

Altogether, the application of novel approaches should be developed in order to reveal the full phytochemical

potential of Bryophyllum sp., based on the application of unexploited PTC strategies, taking benefit of the countless

advantages provided by PSCCs, committed to the enhancement of plant secondary metabolite production.

4. Machine Learning for Optimizing the Biotechnological
Valorization of Bryophyllum sp.

Along with this review, we provided evidence about the multifactorial behavior of PTC methodologies and the

production of secondary metabolites (Figure 3). Therefore, the elucidation and characterization of such phenomena

may require the development of complex experimental designs, to reveal relevant interactions between factors,
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which are not feasible due to cost and time. Furthermore, the analysis and interpretation of these complex

experimental designs is difficult and, in many cases, limited or incomplete .

Machine Learning (ML) techniques stand out as a cutting-edge alternative to detect the critical factors behind a

certain procedure, as well as a method to establish the influence of possible interactions between them . The

application of ML algorithms allows the modeling of complex processes, a powerful tool for making decisions and

studying unknown phenomena . Among the different ML tools, the combination of artificial neural networks with

fuzzy logic, commonly known as neuro-fuzzy logic (NFL), constitutes a robust computational tool for the

optimization and prediction of complex processes . Furthermore, NFL offers another advantage regarding the

efficacy of predictive models, thus providing direct knowledge from a detailed interpretation of the results, by the

establishment of simple “IF-THEN” rules, that facilitate making conclusions .

Concerning Bryophyllum sp., the application of NFL was already applied to the identification of critical factors

involved in plant in vitro nutrition   and organogenesis , as well as the production of phenolic compounds .

In this sense, ML was able to identify the key mineral nutrients and their interactions, in order to optimize the

growth and reproduction of Bryophyllum sp. cultured in vitro. Among the 18 different mineral nutrients used on MS

formulation, ML detected that only five nutrients were critical on Bryophyllum in vitro culture, in a genotype-

dependent manner . Specifically, ammonium, sulfate, sodium, molybdenum, and copper were selected by NFL

as the critical factors guiding several growth-related parameters, and the interaction between sulfate and

molybdenum was widely reported as responsible for most parameters: root length, plantlet formation, and aerial

parts fresh weight .

ML was also employed for the modeling and predicting of Bryophyllum organogenesis in vitro . BAP

concentration was assessed as the critical factor guiding this phenomenon on B. daigremontianum, B. × houghtonii

and B. tubiflorum; thus, predicting a minimal BAP concentration required for the development of different

organogenetic responses (0.35 mg L ). On the contrary, the application of auxins, such as indoleacetic acid (IAA),

was outlined as an inhibitory factor on the indirect shoot regeneration on B. tubiflorum, whereas no IAA influence

was reported on B. daigremontianum and B. × houghtonii .

Additionally, the production of phenolic compounds by in vitro-cultured Bryophyllum sp. was optimized using ML

. It was observed that phenolic compounds accumulation achieved the maximum concentrations in the aerial

parts of cultured plants under low ammonium concentrations (<15 mM). Moreover, the extraction of total phenolic

compounds was enhanced by the use of 55–85% aqueous methanol, whereas flavonoids were mostly extracted

with higher methanol concentrations in water (>85%). In addition, the antioxidant potential of Bryophyllum extracts,

in terms of radical-scavenging activity, was shown to be improved using 55–85% MeOH as solvent on B. ×

houghtonii cultured under low ammonium concentrations . Furthermore, these experimental conditions for

maximizing the antioxidant activity of B. × houghtonii were also validated in terms of preventing lipid oxidation

and plant in vitro growth ; thus, assessing the effectiveness of ML on the valorization of Bryophyllum.
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