

mtUPR in Primary and Secondary Mitochondrial Diseases

Subjects: **Neurosciences**

Contributor: Paula Cilleros-Holgado , David Gómez-Fernández , Rocío Piñero-Pérez , Diana Reche-López , Mónica Álvarez-Córdoba , Manuel Munuera-Cabeza , Marta Talaverón-Rey , Suleva Povea-Cabello , Alejandra Suárez-Carrillo , Ana Romero-González , Juan Miguel Suárez-Rivero , Jose Manuel Romero-Domínguez , Jose Antonio Sánchez-Alcázar

Mitochondrial dysfunction is a key pathological event in many diseases. Its role in energy production, calcium homeostasis, apoptosis regulation, and reactive oxygen species (ROS) balance render mitochondria essential for cell survival and fitness. However, there are no effective treatments for most primary and secondary mitochondrial diseases to this day. Therefore, new therapeutic approaches, such as the modulation of the mitochondrial unfolded protein response (mtUPR), are being explored. mtUPRs englobe several compensatory processes related to proteostasis and antioxidant system mechanisms. mtUPR activation, through an overcompensation for mild intracellular stress, promotes cell homeostasis and improves lifespan and disease alterations in biological models of mitochondrial dysfunction in age-related diseases, cardiopathies, metabolic disorders, and primary mitochondrial diseases. Although mtUPR activation is a promising therapeutic option for many pathological conditions, its activation could promote tumor progression in cancer patients, and its overactivation could lead to non-desired side effects, such as the increased heteroplasmy of mitochondrial DNA mutations. Researchers present the most recent data about mtUPR modulation as a therapeutic approach, its role in diseases, and its potential negative consequences in specific pathological situations.

mitochondria

proteostasis

mitochondrial unfolded protein response

mitochondrial biogenesis

1. mtUPR and Aging

The decline in mitochondrial function is known to be a characteristic factor of aging, which is associated with the accumulation of mutations in mtDNA as well as with reductions in mtETC and ATP production [1]. This age-related mitochondrial dysfunction may be responsible for the loss of muscle and neuronal function; however, numerous studies have suggested that moderate mitochondrial stress associated with mtUPR activation could delay aging and lead to increased longevity in several biological models. Because aging cells generally accumulate a large amount of unfolded and damaged proteins, it is plausible that the mtUPR is intimately related to aging and age-related diseases [2].

Specifically, in *C. elegans*, it was observed that silencing the complex IV of the mtETC using RNA interference (RNAi) activates the mtUPR and extends its lifespan by approximately 50% [3]. Moreover, the mutation of *ATFS-1* in *C. elegans* shortened the lifespan [4]. The modulation of NAD⁺ cofactor levels in worms was also shown to

activate the mtUPR and extend the lifespan via the activation of *sir2.1*, the homolog of mammalian *SIRT1*, and *daf-16*, the homolog of *FOXO3A* [5]. In mice, damage to mitochondrial ribosomes genetically or pharmacologically and, consequently, the activation of the mtUPR also promoted longevity [6]. Wang et al. [7] suggested that mtUPR activation by itaconate increased healthy longevity in *C. elegans*, improving resistance to different types of stresses and worm motility. Likewise, cultured fibroblasts from the Snell dwarf model showed increased expression levels of Hsp60 and LonP1 [8]. Another example is a study in flies where the disruption of mitochondrial functions and the activation of the mtUPR promoted longevity [9].

On the other hand, it was proposed that the mtUPR has a protective role against osteoarthritis (OA). OA is an age-related disease whose prevalence is increasing worldwide, and, unfortunately, there is no effective treatment for it. Mitochondria play a key role in the pathogenesis of this disease since they are crucial for chondrocyte bioenergetics [10]. Zhou et al. [11] showed that the activation of the mtUPR with nicotinamide-protected mitochondria in an OA mouse model stressed chondrocytes as they presented correct structures, such as well-preserved cristae and double membranes, and mitochondrial respiration was restored and mitochondrial membrane potential also improved. In addition, they demonstrated that mtUPR activation alleviates OA pain because it reduces cartilage degeneration and improves chondrocyte survival. Moreover, cartilage tissue from OA patients showed mtUPR activation, which was associated with lower levels of inflammation or reduced chondrocyte death.

Therefore, there is sufficient evidence that the activation of the mtUPR could be beneficial in slowing aging and extending lifespans in different model organisms, as well as in the treatment of age-related diseases, such as osteoarthritis, although further studies are necessary.

2. mtUPR and Neurodegenerative Diseases

Given the relationship between aging and the mtUPR, the latter was proposed as a therapeutic option in the treatment of neurodegenerative diseases. Neurodegenerative diseases are characterized by the progressive loss of structures and functions of the nervous system, and a common feature of all of them is the appearance of unfolded proteins and their accumulation in different regions of the brain, depending on the pathology [12]. Furthermore, it was described that mitochondrial dysfunction occurs in neurodegenerative diseases [13]. In fact, it was shown that neurodegenerative disorders are associated with a reduction in the activity of mitochondrial respiratory complexes. In Parkinson's disease and Alzheimer's disease, a reduction in the activity of complex I and complex IV was observed, respectively [14]. Furthermore, in Huntington's disease, the decreased activity of complexes II and III were described [15]. Likewise, the reduction in the activity of α -ketoglutarate dehydrogenase was described in Alzheimer's and Parkinson's diseases [16]. Moreover, the pathogenesis of several neurodegenerative diseases was associated with an impaired balance between the mitochondrial fusion and fission processes which promote mitochondrial fragmentation as well as the downregulation of mitochondrial renewal by mitophagy [17]. Therefore, researchers could consider neurodegenerative diseases as secondary mitochondrial diseases since many lines of evidence suggest that mitochondrial dysfunctions play a key role in their pathomechanisms.

Recent studies suggested that the mtUPR is activated in the neurons of Alzheimer's disease (AD) patients. In fact, disturbances in the mitochondria, such as decreased mitochondrial respiration, aberrant mitochondrial morphology, or decreased import systems, are known alterations in AD. In the study by Sorrentino et al. [18], they observed that genes related to the mtUPR were upregulated in Alzheimer's disease, which may be related to a protective response during disease progression. Indeed, ATFS-1 depletion in a *C. elegans* Alzheimer's model led to a worsening of the disease signs. Furthermore, treatment with doxycycline for the activation of the mtUPR resulted in an increased clearance of A β aggregates and increased worm motility [18]. On the other hand, Perez et al. [19] obtained neurons from induced pluripotent stem cells knocked out with the *PITRM1* gene, which codes for pitrilysin metallopeptidase 1. A mutation in this protein generated an age-dependent progressive neurological syndrome, as this protein in humans is involved in the degradation of amyloid- β peptides, leading to an Alzheimer's disease phenotype. Neurons mutant for *PITRM1* induced mtUPR genes that could act as a protective mechanism for Alzheimer's disease, as the inhibition of this pathway with ISRIB, an inhibitor of the eif2 α kinase, resulted in an increase in A β accumulation. Furthermore, treatment of these cells with NAD $^+$ to activate SIRT3 mtUPR enhanced mitochondrial recovery and significantly decreased A β and phospho-tau aggregates. Otherwise, treatment with NAD $^+$ or olaparib, an inhibitor of the PARP enzyme, decreased amyloid formation, mitochondrial dysfunction, and aging features in several models [20]. However, Counts et al. [21] suggested that the constitutive activation of the mtUPR could lead to neuronal cell death during the early stages of Alzheimer's disease. Likewise, Martínez et al. [22] demonstrated that the sustained induction of the mtUPR by introducing an ATFS-1 transcript with no mitochondrial localization signal in a *C. elegans* Parkinson's disease (PD) model resulted in the death of dopaminergic neurons in a non-caspase-mediated way. This result could be due to the hormetic role of the mtUPR, which could be beneficial in a specific context, but detrimental during its chronic activation. Indeed, the aberrant or prolonged activation of the mtUPR was described as a mechanism of constant mitochondrial recovery that causes the accumulation of deleterious mitochondrial genomes with point loss-of-function mutations or deletions, which is why the precise regulation of the mtUPR is necessary [23]. Nevertheless, in the study by Di Hu et al. [24], the authors observed that the activation of the mtUPR via the deletion of ornithine transcarbamylase in SH-SY5Y cells protected against mitochondrial damage and toxicity produced by MPP $^+$ treatment. This MPP $^+$ treatment initially also induced the mtUPR, but when it was sustained over time, it resulted in increased ROS production and mitochondrial dysfunction, which was mitigated by the overexpression of a vector with the ornithine transcarbamylase deletion. Another example that demonstrates the beneficial role of mtUPR activation in neurodegenerative diseases was provided by Liu et al. [25] in a model of Parkinson's disease in *Drosophila Melanogaster*. In this PTEN-induced kinase 1 (*PINK1*) mutant model organism, the treatment with ginseng, a Chinese herbal medicine, resulted in an increased lifespan, the rescue of dopaminergic neuron loss, a significant increase of dopamine in the brain, and a delayed onset of the Parkinson's phenotype. In one mouse model of α -synuclein A53T PD, the overexpression of CIPP ameliorated pathological symptoms via mtUPR activation [26].

Another of the best-known neurodegenerative diseases is Huntington's disease (HD), caused by the presence (in the majority of cases corresponding to full penetrance) of more than 39 CAG trinucleotide repeats (coding for glutamine) in exon 1 of the huntingtin gene. As a result, an aberrant protein is generated, which provokes its accumulation and leads to DNA damage and mitochondrial dysfunction [27]. There is evidence that the mtUPR is

related to the pathophysiology of HD. Thus, Fu et al. [28] observed a downregulation of the mtUPR associated with ROS overproduction and cell death in the striatal cells of a Huntington's disease mouse model, as well as in the fibroblasts derived from HD patients [29]. In human primary fibroblasts, the expression of the polyQ40 huntingtin gene caused the activation of the mtUPR, demonstrated by the increased expression of mitochondrial chaperones [4]. Naia et al. [30] proposed that SIRT3 activity was increased in HD models, and the translocation of this enzyme to the mitochondrion was also increased in mouse and human cell models. However, in postmortem HD tissues and late-symptomatic mice, there were no changes in SIRT3 activity in comparison with the controls, suggesting that increased SIRT3 activity could be an early adaptative mechanism of the disease. Moreover, the activation of SIRT3 with ϵ -viniferin improved mitochondrial elongation and anterograde transport in HD striatal neurons. These results were also confirmed in a fly model, demonstrating that SIRT3 and the activation of the mtUPR conferred neuroprotection in Huntington's disease [30].

Mitochondrial dysfunction was reported in amyotrophic lateral sclerosis (ALS). This disease is characterized by motor neuron death, and most cases are sporadic. However, 5–10% of cases are familial, and up to 20% are caused by mutations in the copper-zinc superoxide dismutase (*SOD1*) gene. The mutation in *SOD1* causes a disruption in the mitochondrial axonal transport in the neuron, leading to an alteration in mitochondrial function and dynamics. Mutant *SOD1* is localized in several cell compartments, including the mitochondrion, both in the mitochondrial outer membrane, where it interacts with other proteins, such as VDAC and Bcl2, and in the mitochondrial intermembrane space, where it interrupts the correct folding of crucial mitochondrial proteins [31]. In the study by Riar et al. [32], a G93A-*SOD1* transgenic mouse was used as a model of ALS. In this experimental condition, the activation of the canonical mtUPR occurred as the protein levels of CHOP were greater in the mutant mice than in the control ones. In addition, they demonstrated that mutant *SOD1*, which accumulated in the IMS, provoked the activation of the ER α mtUPR axis since NRF1 and OMI increased their levels in mutant mice in comparison to the controls. This could be due to the protective mechanism that the cells activate to defend themselves against mitochondrial damage. Zhou et al. [33] proposed that the treatment of the mutant mice with nicotinamide riboside improved neurogenesis, promoted the clearance of the *SOD1* mutant protein, and enhanced the mitochondrial function via the activation of the canonical mtUPR. Straub et al. [34] studied patient-derived fibroblasts with mutations in coiled-helix coiled-helix domain-containing protein 10 (CHCHD10), one protein localized in the mitochondrial intermembrane space whose mutation was recently identified as a genetic cause of familial and sporadic ALS. When they cultured these cells in a stress galactose medium, canonical and SIRT3 mtUPRs were activated, probably due to mitochondrial stress. However, the overactivation of the mtUPR by LonP1 downregulation caused the progression of the disease in ALS models [35].

Therefore, all these findings suggest that mtUPR decline is related to the development of neurodegenerative diseases, and its activation could be a potential therapeutic target. However, it was reported that its overactivation might produce several detrimental effects, such as dopaminergic neuronal death in Parkinson's disease animal models [22], the worsening of disease symptoms in an ALS mouse model [35], or neuronal cell death in AD [21], among others.

3. mtUPR and Cardiovascular Diseases

Mitochondria play a key role in all tissues but especially in those that have higher requirements of energy, such as the myocardium. Cardiovascular diseases (CVDs) have been associated with mitochondrial oxidative phosphorylation defects [36]. In CVD, mitochondrial dysfunction leads to changes in mitochondrial structure, among them, the formation of megamitochondria due to the overactivation of fusion proteins or enlargement of individuals in restrictive cardiomyopathy or mitochondrial fragmentation and apoptosis in ischemic heart failure [37]. On the other hand, the uncoupling of the mtETC leads to ROS overproduction which promotes atherogenesis by promoting endothelial dysfunction, vessel inflammation, and the accumulation of low-density lipoproteins [38].

Since functional mitochondria are essential for cardiac health, the impairment of the mtETC and, consequently, ROS overproduction might be considered key features that result in cardiomyocyte death through apoptosis or necrosis. The mechanisms linking CVD and mitochondrial dysfunction are not entirely clear. However, it was suggested that the reduction in energy supply to the myocardium due to pathological alterations of the mitochondria is responsible for the failure of cardiac function [39][40][41]. For this reason, these pathologies could be considered secondary mitochondrial diseases.

The relationship between the mtUPR and cardiac disease is sustained since several genes related to the mtUPR were upregulated in both animals and humans with heart pathologies [42]. Likewise, the pharmacological treatment with mtUPR activators, such as choline, that induced the SIRT3 mtUPR axis promoted cardiomyocyte vitality and improved mitochondrial function in animal models of CVD [43]. In one mice model, the activation of the mtUPR with oligomycin or doxycycline alleviated ischemic injury, and this improvement did not occur in the mouse knockout for ATF5, suggesting that ATF5 is a factor necessary for the improvement of the pathophysiology via mtUPR activation [44]. Smyrnias et al. [42] showed that mtUPR activation with small-molecule agents alleviated mitochondrial dysfunction and contractile capacity in murine hearts and demonstrated that in patients with aortic stenosis, reduced plasma biomarkers of cardiac damage, such as levels of abnormal fibrosis or cardiomyocyte cell death, were presented in association with elevated levels of mtUPR-related genes. Therefore, mtUPR activation could also be a potential therapeutic target for the treatment of cardiovascular diseases. However, as well as in neurodegenerative diseases, it was reported that mtUPR overactivation promoted heart failure and cardiomyocyte apoptosis under hypoxic conditions [45][46][47].

4. mtUPR and Primary Mitochondrial Disease

Primary mitochondrial diseases, caused by mutations in both nDNA and mtDNA, are characterized by mitochondrial dysfunction with a consequent deficiency in ATP production and ROS overproduction [48]. Currently, a prevalence of 1:5000 is established for this type of disease. Unfortunately, probably due to the extreme variety of genes and proteins affected, most primary mitochondrial diseases still lack standard and effective treatments [49]. Moreover, the diagnosis of mitochondrial diseases is challenging due to their clinical heterogeneity and the existence of two genomes implicated in their pathogenesis.

Nargund et al. [50] showed that in an ATFS-1 mutant worm, mitochondrial genome transcripts increased in response to mitochondrial stress; however, in the wild-type worm, these transcripts only increased modestly, proposing that ATFS-1 is a negative regulator of mitochondrial genome transcript accumulation. Moreover, this factor was also involved in the correct assembly of mtETC complexes during mitochondrial stress by inducing the expression of mitochondrial molecular chaperones. ATFS-1 and, therefore, the mtUPR are essential for the proper transcription of mtDNA and the correct assembly of the complexes encoded by this genome during stressful situations in the mitochondria. Moreover, Suarez Rivero et al. [51], in line with previously published studies by Perry et al. [52], demonstrated that mtUPR activation via treatment with tetracyclines and broad-spectrum antibiotics, improved the pathophysiology of mitochondrial diseases. Specifically, in the study by Suarez Rivero et al., it was observed that treatment with tetracyclines in cell models of the G elongation factor mitochondrial 1 (*GFM1*) mutation increased mtUPR-associated proteins and improved cellular physiopathology. Furthermore, in the former study [52], the authors showed that the treatment with the tetracycline family of antibiotics, as well as the anti-parasitic agent pentamidine and the antibiotic retapamulin, all activators of the mtUPR, improved cell survival in MELAS cybrids and improved Leigh syndrome symptomatology in a complex I-deficient mouse model.

Another study by Suarez Rivero et al. [53] suggested that mtUPR activation with pterostilbene in combination with mitochondrial cofactors improved the mitochondrial pathophysiology of fibroblasts and induced neurons derived from patients with mitochondrial diseases. Pterostilbene was also reported as a survival and protective compound in several animal models [54] due to its antioxidant, anti-inflammatory, and neuroprotective functions. Moreover, Poveda-Huettes et al. [55] proposed that different stages of mtUPR activation stimulate protein import and cardiolipin remodeling, which could act as beneficial mechanisms in mitochondrial diseases.

5. mtUPR and Metabolic Diseases

Mitochondria also play key roles in the pathogenesis of many metabolic diseases due to their central role in essential metabolic pathways. In metabolic disorders, mitochondrial dysfunction induces ROS overproduction associated with a reduction in antioxidant capacity, decreased ATP production, and changes in mitochondrial dynamics [56]. One of the most important metabolic disorders is metabolic syndrome, a compilation of metabolic abnormalities, such as hyperglycemia, insulin resistance, abdominal obesity, hypertension, and atherogenic dyslipidemia [57]. These conditions occur together and increase the risk of cardiovascular diseases and type 2 diabetes (T2D). Several studies proposed a link between mitochondrial dysfunction and metabolic syndrome, although the pathological mechanisms are still unclear [58]. What is known, however, is that metabolic syndrome patients present depressed superoxide dismutase activity, increased lipid peroxidation and carbonylated proteins, as well as increased oxidative damage [59].

T2D, one of the comorbidities of metabolic syndrome, is characterized by insulin resistance in the peripheral tissues as well as elevated blood glucose, which in turn inhibits the function of chaperones and proteases, leading to the accumulation of unfolded and misfolded proteins. These conditions, together with oxidative stress in mitochondria, lead to mtUPR activation to correct these defects [60][61]. In addition, the mtUPR was reported to increase glucose metabolism through the induction of glycolytic enzymes [62]. In this regard, Wardelmann et al. [63]

suggested that the mtUPR was decreased in mice after a high-fat diet. However, intranasal treatment with insulin activated the mtUPR in the hypothalamus and reduced weight gain. Moreover, Hauffe et al. [64] demonstrated that reducing the Hsp60 gene protected against obesity and insulin resistance in high-fat dieted male mice. Consistent with the latter results, the LonP1 levels were found to be elevated in the visceral adipose tissue cells of obese individuals, and deficiency of this protease potentiated hepatic gluconeogenesis and caused insulin miss signaling [65]. Additionally, mitochondrial chaperones Hsp60 and Hsp70 also affect T2D since it was proposed that Hsp60 prevents the hyperglycemia characteristic of T2D and its deficiency leads to insulin resistance [66]. Likewise, other components of the mtUPR, such as the sirtuins family, have positive effects on insulin sensitivity [9]. Therefore, the mtUPR could be a potential therapeutic target for metabolic diseases, especially type 2 diabetes.

6. mtUPR and Cancer

Mitochondrial dysfunction is a hallmark of cancer and is associated with the increased invasiveness, metastatic potential, and drug resistance of cancer cells [67][68][69].

First, the mtDNA mutation rate is considerably higher than nDNA, mainly due to the proximity of mtDNA to ROS-generating sites in the mitochondrial electron transport chain. Thus, the accumulation of mtDNA mutations was identified in several cancer types and was associated with metastatic progression and chemoresistance [69][70][71][72] as well as with activating proliferative pathways, such as the AMPK [73] or MAPK [74] signaling pathways.

Furthermore, reductions in oxidative phosphorylation efficiency force cells to depend on glycolysis for ATP production even in the presence of oxygen, which is described as the Warburg effect [75]. However, when mitochondrial dysfunction becomes more severe, excessive ROS production may be lethal to tumor cells [76][77]. Moreover, it was described that mutations in the ND1, ND3, ND4, and ND6 genes of mtDNA promote tumorigenesis and metastasis as well as resistance to apoptosis, contributing to tumor progression [78].

In addition, several mutations in nuclear-encoded mitochondrial proteins are associated with cancer, i.e., mutations in isocitrate dehydrogenase promote leukemogenesis and glioma, and mutations in fumarate hydratase and succinate dehydrogenase facilitate tumor growth and progression via the induction of hypoxia-inducible factor 1α (HIF-1α) [79][80].

Due to proteotoxic stress produced in cancer cells by ROS and mutations which hamper the correct folding of proteins, the mtUPR is activated. It was demonstrated that ATF5 was upregulated in a wide range of cancers [81], such as lung cancer [82], pancreatic cancer [83], and carcinomas [84], including ovarian cancer [85], rectal cancer [86], leukemia [87], neural tumors [88][89], esophageal cancer [90], or astrocytoma [91]. Furthermore, ATF5 activation produced resistance to radiotherapy [81] and increased the invasiveness of cancer cells [92]. In addition, Hsp60 was also upregulated in several types of cancers [93], including mammary [94] and ovarian [95] carcinoma, prostate cancer [96], glioblastoma [97] and neuroblastoma [98], and colorectal [99], gastric [100] and pancreatic cancer [101] and this phenomenon is associated with reduced patient survival. Moreover, the knockdown of Hsp60 had beneficial effects, as demonstrated in glioblastoma, where a reduction in this heat shock protein reduced protein translation

and cell proliferation [97]. In concordance with these results, Hsp70, also called mortalin, had increased expression levels in different types of cancers [102]. Thus, Hsp70 was upregulated in cancers of the liver [103], ovary [104], and thyroid [105], and its overexpression was associated with lymph node metastasis, advanced tumor stage, and decreased survival [106][107]. Like Hsp60, the knockdown of Hsp70 reduced the migration, proliferation, and invasion of cancer [108]. Finally, LonP1 and ClPP proteases were also upregulated in several types of cancers [109][110][111][112][113][114]. Hence, the activation of the mtUPR is a common feature that occurs in most types of cancer (Table 2), and its inhibition could reduce cancer invasion. Moreover, it was demonstrated that the mtUPR SIRT3 axis is necessary for the invasion and metastasis of cancer cells [115]. For that reason, mtUPR inhibition could be considered a potential therapeutic target for cancer, inducing apoptosis and a reduction in tumor progression and metastasis, as well as increasing patients' survival.

Table 1. Summary of mtUPR factor activation in different types of cancer.

mtUPR Factor Activated	Type of Cancer	Reference
	Lung	[82]
	Pancreatic	[83]
	Carcinoma	[84]
	Ovary	[85]
ATF5	Rectal	[86]
	Leukemia	[87]
	Neural tumors	[88][89]
	Esophageal	[90]
	Astrocytoma	[91]
	Mammary	[94]
	Ovary	[95]
	Prostate	[96]
	Glioblastoma	[97]
Hsp60	Neuroblastoma	[98]
	Colorectal	[99]
	Gastric	[100]
	Pancreatic	[101]

mtUPR Factor Activated	Type of Cancer	Reference
Hsp70	Liver	[106]
	Ovary	[104]
	Thyroid	[105]
LonP1	Colon	[112]
	Mammary	[110]
ClpP	Leukemia	[114]

1. Kasapoğlu, I.; Seli, E. Mitochondrial Dysfunction and Ovarian Aging. *Endocrinology* 2020, 161, bqaa001.

7. Conclusions

2. Bueno, M.; Papazoglu, A.; Valenzi, E.; Rojas, M.; Lafyatis, R.; Mora, A.L. Mitochondria, Aging, and Cellular Senescence: Implications for Scleroderma. *Curr. Rheumatol. Rep.* 2020, 22, 37. Mitochondrial biogenesis and the mtUPR are essential for mitochondrial survival and fitness, the main mechanisms of mitochondrial quality control. Moreover, different mtUPR pathways were proposed, among them, the canonical Mediated Longevity. *Cell* 2011, 144, 79–91.

3. Durieux, J.; Wolff, S.; Dillin, A. The Cell-Non-Autonomous Nature of Electron Transport Chain

4. Berendzen, K.M.; Durieux, J.; Shao, L.W.; Han, Y.; Kim, H.; Wolf, S.; Liu, Y.; Dillin, A. Neuroendocrine Coordination of Mitochondria Stress Signaling and Proteostasis. *Cell* 2016, 166, 1558–1568.e10.

5. Mouchiroud, L.; Houtkooper, R.H.; Moullan, N.; Katsyuba, E.; Ryu, D.; Cantó, C.; Mottis, A.; Jo, Y.S.; Viswanathan, M.; Schoonjans, K.; et al. The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. *Cell* 2013, 154, 430.

The maintenance of mitochondrial quality is essential since mitochondrial dysfunction may be considered the core of a wide range of pathologies, including primary mitochondrial diseases, metabolic disorders, age-related diseases, cardiopathies, and cancer. In addition, it was reported that mtUPR activation could be a potential therapeutic option for these disorders. Thus, mtUPR activation induces an improvement in physiopathological alterations and a delay in the development of the pathology in many disease models. Nonetheless, its overactivation could be detrimental and worsen both the pathology and symptoms of a wide range of diseases; Activating UPRmt in *Caenorhabditis Elegans*. *Eur. J. Pharmacol.* 2022, 923, 174951. therefore, precise regulation is necessary.

6. Houtkooper, R.H.; Mouchiroud, L.; Ryu, D.; Moullan, N.; Katsyuba, E.; Khott, G.; Williams, R.W.; Auwerx, J. Mitonuclear Protein Imbalance as a Conserved Longevity Mechanism. *Nature* 2019, 497, 451–457.

7. Wang, Q.; Li, H.; Zhang, G.; Chen, X.; Wang, X. Itaconate Prolongs the Healthy Lifespan by Activating UPRmt in *Caenorhabditis Elegans*. *Eur. J. Pharmacol.* 2022, 923, 174951.

8. Ozkurede, U.; Miller, R.A. Improved Mitochondrial Stress Response in Long-Lived Snell Dwarf Mice. *Aging Cell* 2019, 18, e13030.

However, the situation in neoplastic diseases is the opposite. The activation of the mtUPR leads to the progression and invasion of malignant cells. For this reason, the therapeutic strategy in cancer is based on the targeted downregulation of mtUPR signal molecules instead of its activation. This approach aims to retard tumor growth and induce cell apoptosis.

9. Owusu-Ansah, F.; Song, W.; Perrimon, N. Muscle Mitohormesis Promotes Longevity via Systemic Repression of Insulin Signaling. *Cell* 2013, 155, 699–712.

10. Javadov, S.; Kozlov, A.V.; Camara, A.K.S. Mitochondria in Health and Diseases. *Cells* 2020, 9, 1177.

11. Zhou, Z.; Lu, J.; Yang, M.; Cai, J.; Fu, Q.; Ma, J.; Zhu, L. The Mitochondrial Unfolded Protein Response (UPRmt) Protects against Osteoarthritis. *Exp. Mol. Med.* 2022, 54, 1979–1990.

12. Taylor, J.P.; Hardy, J.; Fischbeck, K.H. Toxic Proteins in Neurodegenerative Disease. *Science* 2002, 296, 1991–1995.
13. Burchell, V.S.; Gandhi, S.; Deas, E.; Wood, N.W.; Abramov, A.Y.; Plun-Favreau, H. Targeting Mitochondrial Dysfunction in Neurodegenerative Disease: Part i. *Expert Opin. Ther. Targets* 2010, 14, 369–385.
14. Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial Dysfunctions in Neurodegenerative Diseases: Relevance to Alzheimer's Disease. *BioMed Res. Int.* 2014, 2014, 175062.
15. Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial Dysfunction in Neurodegenerative Diseases and the Potential Countermeasure. *CNS Neurosci. Ther.* 2019, 25, 816–824.
16. Yin, F.; Boveris, A.; Cadena, E. Mitochondrial Energy Metabolism and Redox Signaling in Brain Aging and Neurodegeneration. *Antioxid. Redox Signal.* 2014, 20, 353–371.
17. Paternani, S.; Morciano, G.; Carinci, M.; Leo, S.; Pinton, P.; Rimessi, A. The “Mitochondrial Stress Responses”: The “Dr. Jekyll and Mr. Hyde” of Neuronal Disorders. *Neural Regen. Res.* 2022, 17, 2563–2575.
18. Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; D'Amico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; et al. Enhancing Mitochondrial Proteostasis Reduces Amyloid- β Proteotoxicity. *Nature* 2017, 552, 187–193.
19. Pérez, M.J.; Ivanyuk, D.; Panagiotakopoulou, V.; di Napoli, G.; Kalb, S.; Brunetti, D.; Al-Shaana, R.; Kaeser, S.A.; Fraschka, S.A.K.; Jucker, M.; et al. Loss of Function of the Mitochondrial Peptidase PITRM1 Induces Proteotoxic Stress and Alzheimer's Disease-like Pathology in Human Cerebral Organoids. *Mol. Psychiatry* 2021, 26, 5733–5750.
20. Romani, M.; Sorrentino, V.; Oh, C.M.; Li, H.; de Lima, T.I.; Zhang, H.; Shong, M.; Auwerx, J. NAD⁺ Boosting Reduces Age-Associated Amyloidosis and Restores Mitochondrial Homeostasis in Muscle. *Cell Rep.* 2021, 34, 108660.
21. Counts, S.E.; Kelly, S.C.; Weinberg, R.B.; Beck, J.S. : Mitochondrial unfolded protein response (mtupr) dysfunction during the progression of alzheimer's disease. *Alzheimer's Dement.* 2017, 13, P674–P675.
22. Martinez, B.A.; Petersen, D.A.; Gaeta, A.L.; Stanley, S.P.; Caldwell, G.A.; Caldwell, K.A. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in *C. Elegans* Models of Parkinson's Disease. *J. Neurosci.* 2017, 37, 11085–11100.
23. Lin, Y.F.; Schulz, A.M.; Pellegrino, M.W.; Lu, Y.; Shaham, S.; Haynes, C.M. Maintenance and Propagation of a Deleterious Mitochondrial Genome by the Mitochondrial Unfolded Protein Response. *Nature* 2016, 533, 416–419.

24. Hu, D.; Liu, Z.; Qi, X. UPRmt Activation Protects against MPP+-Induced Toxicity in a Cell Culture Model of Parkinson's Disease. *Biochem. Biophys. Res. Commun.* 2021, 569, 17–22.

25. Liu, M.; Yu, S.; Wang, J.; Qiao, J.; Liu, Y.; Wang, S.; Zhao, Y. Ginseng Protein Protects against Mitochondrial Dysfunction and Neurodegeneration by Inducing Mitochondrial Unfolded Protein Response in Drosophila Melanogaster PINK1 Model of Parkinson's Disease. *J. Ethnopharmacol.* 2020, 247, 112213.

26. Zhang, Y.; Wu, Q.; Ren, Y.; Zhang, Y.; Feng, L. A53T α -Synuclein Induces Neurogenesis Impairment and Cognitive Dysfunction in Line M83 Transgenic Mice and Reduces the Proliferation of Embryonic Neural Stem Cells. *Brain Res. Bull.* 2022, 182, 118–129.

27. Cattaneo, E.; Zuccato, C.; Tartari, M. Normal Huntingtin Function: An Alternative Approach to Huntington's Disease. *Nat. Rev. Neurosci.* 2005, 6, 919–930.

28. Fu, Z.; Liu, F.; Liu, C.; Jin, B.; Jiang, Y.; Tang, C.M.; Qi, X.; Guo, X. Mutant Huntingtin Inhibits the Mitochondrial Unfolded Protein Response by Impairing ABCB10 mRNA Stability HHS Public Access. *Biochim. Biophys. Acta Mol. Basis Dis.* 2019, 1865, 1428–1435.

29. Zhu, L.; Zhou, Q.; He, L.; Chen, L. Mitochondrial Unfolded Protein Response: An Emerging Pathway in Human Diseases. *Free. Radic. Biol. Med.* 2020, 163, 125–134.

30. Naia, L.; Carmo, C.; Campesan, S.; Fão, L.; Cotton, V.E.; Valero, J.; Lopes, C.; Rosenstock, T.R.; Giorgini, F.; Rego, A.C. Mitochondrial SIRT3 Confers Neuroprotection in Huntington's Disease by Regulation of Oxidative Challenges and Mitochondrial Dynamics. *Free. Radic. Biol. Med.* 2021, 163, 163–179.

31. Shi, P.; Gal, J.; Kwinter, D.M.; Liu, X.; Zhu, H. Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis. *Biochim. Biophys. Acta Mol. Basis Dis.* 2010, 1802, 45–51.

32. Riar, A.K.; Burstein, S.R.; Palomo, G.M.; Arreguin, A.; Manfredi, G.; Germain, D. Sex Specific Activation of the ER α Axis of the Mitochondrial UPR (UPRmt) in the G93A-SOD1 Mouse Model of Familial ALS. *Hum. Mol. Genet.* 2017, 26, 1318–1327.

33. Zhou, Q.; Zhu, L.; Qiu, W.; Liu, Y.; Yang, F.; Chen, W.; Xu, R. Nicotinamide Riboside Enhances Mitochondrial Proteostasis and Adult Neurogenesis through Activation of Mitochondrial Unfolded Protein Response Signaling in the Brain of ALS SOD1g93a Mice. *Int. J. Biol. Sci.* 2020, 16, 284–297.

34. Straub, I.R.; Weraarpachai, W.; Shoubridge, E.A. Multi-OMICS Study of a CHCHD10 Variant Causing ALS Demonstrates Metabolic Rewiring and Activation of Endoplasmic Reticulum and Mitochondrial Unfolded Protein Responses. *Hum. Mol. Genet.* 2021, 30, 687–705.

35. Pharaoh, G.; Sataranatarajan, K.; Street, K.; Hill, S.; Gregston, J.; Ahn, B.; Kinter, C.; Kinter, M.; van Remmen, H. Metabolic and Stress Response Changes Precede Disease Onset in the Spinal Cord of Mutant SOD1 ALS Mice. *Front. Neurosci.* 2019, 13, 487.

36. García-Díaz, L.; Coserria, F.; Antiñolo, G. Hypertrophic Cardiomyopathy Due to Mitochondrial Disease: Prenatal Diagnosis, Management, and Outcome. *Case Rep. Obstet. Gynecol.* 2013, 2013, 472356.

37. Hoppel, C.L.; Tandler, B.; Fujioka, H.; Riva, A. Dynamic Organization of Mitochondria in Human Heart and in Myocardial Disease. *Int. J. Biochem. Cell Biol.* 2009, 41, 1949–1956.

38. Victor, V.; Apostolova, N.; Herance, R.; Hernandez-Mijares, A.; Rocha, M. Oxidative Stress and Mitochondrial Dysfunction in Atherosclerosis: Mitochondria-Targeted Antioxidants as Potential Therapy. *Curr. Med. Chem.* 2009, 16, 4654–4667.

39. Ballinger, S.W. Mitochondrial Dysfunction in Cardiovascular Disease. *Free. Radic. Biol. Med.* 2005, 38, 1278–1295.

40. Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Apostolopoulos, E.J.; Melita, H.; Katsiki, N. Mitochondrial Dysfunction in Cardiovascular Disease: Current Status of Translational Research/Clinical and Therapeutic Implications. *Med. Res. Rev.* 2021, 41, 275–313.

41. Chistiakov, D.A.; Shkurat, T.P.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. The Role of Mitochondrial Dysfunction in Cardiovascular Disease: A Brief Review. *Ann. Med.* 2018, 50, 121–127.

42. Smyrnias, I.; Gray, S.P.; Okonko, D.O.; Sawyer, G.; Zoccarato, A.; Catibog, N.; López, B.; González, A.; Ravassa, S.; Díez, J.; et al. Cardioprotective Effect of the Mitochondrial Unfolded Protein Response During Chronic Pressure Overload. *J. Am. Coll. Cardiol.* 2019, 73, 1795–1806.

43. Xu, M.; Xue, R.Q.; Lu, Y.; Yong, S.Y.; Wu, Q.; Cui, Y.L.; Zuo, X.T.; Yu, X.J.; Zhao, M.; Zang, W.J. Choline Ameliorates Cardiac Hypertrophy by Regulating Metabolic Remodelling and UPRmt through SIRT3-AMPK Pathway. *Cardiovasc. Res.* 2019, 115, 530–545.

44. Wang, Y.T.; Lim, Y.; McCall, M.N.; Huang, K.T.; Haynes, C.M.; Nehrke, K.; Brookes, P.S. Cardioprotection by the Mitochondrial Unfolded Protein Response Requires ATF5. *Am. J. Physiol. Heart Circ. Physiol.* 2019, 317, H472–H478.

45. Kuo, C.Y.; Chiu, Y.C.; Lee, A.Y.L.; Hwang, T.L. Mitochondrial Lon Protease Controls ROS-Dependent Apoptosis in Cardiomyocyte under Hypoxia. *Mitochondrion* 2015, 23, 7–16.

46. Venkatesh, S.; Li, M.; Saito, T.; Tong, M.; Rashed, E.; Mareedu, S.; Zhai, P.; Bárcena, C.; López-Otín, C.; Yehia, G.; et al. Mitochondrial LonP1 Protects Cardiomyocytes from Ischemia/Reperfusion Injury in Vivo. *J. Mol. Cell. Cardiol.* 2019, 128, 38–50.

47. Svaguša, T.; Martinić, M.; Martinić, M.; Kovačević, L.; Šepac, A.; Miličić, D.; Bulum, J.; Starčević, B.; Sirotković-Skerlev, M.; Seiwerth, F.; et al. Mitochondrial Unfolded Protein Response, Mitophagy and Other Mitochondrial Quality Control Mechanisms in Heart Disease and Aged Heart. *Croat. Med. J.* 2020, 61, 126–138.

48. Craven, L.; Alston, C.L.; Taylor, R.W.; Turnbull, D.M. Recent Advances in Mitochondrial Disease. *Annu. Rev. Genom. Hum. Genet.* 2017, 18, 257–275.

49. Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial Diseases. *Nat. Rev. Dis. Prim.* 2016, 2, 16080.

50. Nargund, A.M.; Fiorese, C.J.; Pellegrino, M.W.; Deng, P.; Haynes, C.M. Mitochondrial and Nuclear Accumulation of the Transcription Factor ATFS-1 Promotes OXPHOS Recovery during the UPRmt. *Mol. Cell* 2015, 58, 123–133.

51. Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Talaverón-Rey, M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Reche-López, D.; Cilleros-Holgado, P.; et al. UPRmt Activation Improves Pathological Alterations in Cellular Models of Mitochondrial Diseases. *Orphanet J. Rare Dis.* 2022, 17, 204.

52. Perry, E.A.; Bennett, C.F.; Luo, C.; Balsa, E.; Jedrychowski, M.; O’Malley, K.E.; Latorre-Muro, P.; Ladley, R.P.; Reda, K.; Wright, P.M.; et al. Tetracyclines Promote Survival and Fitness in Mitochondrial Disease Models. *Nat. Metab.* 2021, 3, 33–42.

53. Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Romero-González, A.; Gómez-Fernandez, D.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Talaverón-Rey, M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; et al. Pterostilbene in Combination With Mitochondrial Cofactors Improve Mitochondrial Function in Cellular Models of Mitochondrial Diseases. *Front. Pharmacol.* 2022, 13, 862085.

54. Li, Y.R.; Li, S.; Lin, C.C. Effect of Resveratrol and Pterostilbene on Aging and Longevity. *BioFactors* 2017, 44, 69–82.

55. Poveda-Huertes, D.; Taskin, A.A.; Dhaouadi, I.; Myketin, L.; Marada, A.; Habernig, L.; Büttner, S.; Vögtle, F.N. Increased Mitochondrial Protein Import and Cardiolipin Remodelling upon Early MtUPR. *PLoS Genet.* 2021, 17, e1009664.

56. Hu, F.; Liu, F. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases? *Cell. Signal.* 2011, 23, 1528–1533.

57. Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial Dysfunction and Oxidative Stress in Metabolic Disorders—A Step towards Mitochondria Based Therapeutic Strategies. *Biochim. Biophys. Acta Mol. Basis Dis.* 2017, 1863, 1066–1077.

58. Roberts, C.K.; Sindhu, K.K. Oxidative Stress and Metabolic Syndrome. *Life Sci.* 2009, 84, 705–712.

59. Armutcu, F.; Ataymen, M.; Atmaca, H.; Gurel, A. Oxidative Stress Markers, C-Reactive Protein and Heat Shock Protein 70 Levels in Subjects with Metabolic Syndrome. *Clin. Chem. Lab. Med.* 2008, 46, 785–790.

60. Siasos, G.; Paschou, S.A.; Tousoulis, D. Mitochondria and Diabetes. *Ann. Transl. Med.* 2020, 8, 262.

61. Suárez-Rivero, J.M.; de la Mata, M.; Pavón, A.D.; Villanueva-Paz, M.; Povea-Cabello, S.; Cotán, D.; Álvarez-Córdoba, M.; Villalón-García, I.; Ybot-González, P.; Salas, J.J.; et al. Intracellular Cholesterol Accumulation and Coenzyme Q10 Deficiency in Familial Hypercholesterolemia. *Biochim. Biophys. Acta Mol. Basis Dis.* 2018, 1864, 3697–3713.

62. Fernandes, V.; Choudhary, M.; Kumar, A.; Singh, S.B. Proteotoxicity and Mitochondrial Dynamics in Aging Diabetic Brain. *Pharmacol. Res.* 2020, 159, 104948.

63. Wardelmann, K.; Blümel, S.; Rath, M.; Alfine, E.; Chudoba, C.; Schell, M.; Cai, W.; Hauffe, R.; Warnke, K.; Flore, T.; et al. Insulin Action in the Brain Regulates Mitochondrial Stress Responses and Reduces Diet-Induced Weight Gain. *Mol. Metab.* 2019, 21, 68–81.

64. Hauffe, R.; Rath, M.; Schell, M.; Ritter, K.; Kappert, K.; Deubel, S.; Ott, C.; Jähnert, M.; Jonas, W.; Schürmann, A.; et al. HSP60 Reduction Protects against Diet-Induced Obesity by Modulating Energy Metabolism in Adipose Tissue. *Mol. Metab.* 2021, 53, 101276.

65. Lee, H.J.; Chung, K.; Lee, H.; Lee, K.; Lim, J.H.; Song, J. Downregulation of Mitochondrial Lon Protease Impairs Mitochondrial Function and Causes Hepatic Insulin Resistance in Human Liver SK-HEP-1 Cells. *Diabetologia* 2011, 54, 1437–1446.

66. Kleinridders, A.; Lauritzen, H.P.M.M.; Ussar, S.; Christensen, J.H.; Mori, M.A.; Bross, P.; Kahn, C.R. Leptin Regulation of Hsp60 Impacts Hypothalamic Insulin Signaling. *J. Clin. Investig.* 2013, 123, 4667–4680.

67. Porporato, P.E.; Payen, V.L.; Pérez-Escuredo, J.; de Saedeleer, C.J.; Danhier, P.; Copetti, T.; Dhup, S.; Tardy, M.; Vazeille, T.; Bouzin, C.; et al. A Mitochondrial Switch Promotes Tumor Metastasis. *Cell Rep.* 2014, 8, 754–766.

68. Moro, L.; Arbini, A.A.; Yao, J.L.; di Sant'Agnese, P.A.; Marra, E.; Greco, M. Mitochondrial DNA Depletion in Prostate Epithelial Cells Promotes Anoikis Resistance and Invasion through Activation of PI3K/Akt2. *Cell Death Differ.* 2009, 16, 571–583.

69. Guerra, F.; Arbini, A.A.; Moro, L. Mitochondria and Cancer Chemoresistance. *Biochim. Biophys. Acta Bioenerg.* 2017, 1858, 686–699.

70. Girolimetti, G.; Guerra, F.; Iommarini, L.; Kurelac, I.; Vergara, D.; Maffia, M.; Vidone, M.; Amato, L.B.; Leone, G.; Dusi, S.; et al. Platinum-Induced Mitochondrial DNA Mutations Confer Lower Sensitivity to Paclitaxel by Impairing Tubulin Cytoskeletal Organization. *Hum. Mol. Genet.* 2017, 26, 2961–2974.

71. Guaragnella, N.; Giannattasio, S.; Moro, L. Mitochondrial Dysfunction in Cancer Chemoresistance. *Biochem. Pharmacol.* 2014, 92, 62–72.

72. Giannattasio, S.; Guaragnella, N.; Arbini, A.A.; Moro, L. Stress-Related Mitochondrial Components and Mitochondrial Genome as Targets of Anticancer Therapy. *Chem. Biol. Drug Des.* 2013, 81, 102–112.

73. Zhou, C.; Lyu, L.H.; Miao, H.K.; Bahr, T.; Zhang, Q.Y.; Liang, T.; Zhou, H.B.; Chen, G.R.; Bai, Y. Redox Regulation by SOD2 Modulates Colorectal Cancer Tumorigenesis through AMPK-Mediated Energy Metabolism. *Mol. Carcinog.* 2020, 59, 545–556.

74. Weinberg, F.; Hamanaka, R.; Wheaton, W.W.; Weinberg, S.; Joseph, J.; Lopez, M.; Kalyanaraman, B.; Mutlu, G.M.; Budinger, G.R.S.; Chandel, N.S. Mitochondrial Metabolism and ROS Generation Are Essential for Kras-Mediated Tumorigenicity. *Proc. Natl. Acad. Sci. USA* 2010, 107, 8788–8793.

75. Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in the Body. *J. Gen. Physiol.* 1927, 8, 519–530.

76. Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Reactive Oxygen Species and Cancer Paradox: To Promote or to Suppress? *Free Radic. Biol. Med.* 2017, 104, 144–164.

77. Schumacker, P.T. Reactive Oxygen Species in Cancer: A Dance with the Devil. *Cancer Cell* 2015, 27, 156–157.

78. Cruz-Bermúdez, A.; Vallejo, C.G.; Vicente-Blanco, R.J.; Gallardo, M.E.; Fernández-Moreno, M.Á.; Quintanilla, M.; Garesse, R. Correction: Enhanced Tumorigenicity by Mitochondrial DNA Mild Mutations. *Oncotarget* 2020, 11, 1006.

79. Muñoz-Pinedo, C.; el Mjiyad, N.; Ricci, J.E. Cancer Metabolism: Current Perspectives and Future Directions. *Cell Death Dis.* 2012, 3, e248.

80. Chandel, N.S. Metabolism of Proliferating Cells. *Cold Spring Harb. Perspect. Biol.* 2021, 13, a040618.

81. Ishihara, S.; Haga, H. ATF5: Development of Oncogenic Resistance to Radiotherapy. *Aging* 2015, 7, 453–454.

82. Lai, C.; Zhang, J.; Tan, Z.; Shen, L.F.; Zhou, R.R.; Zhang, Y.Y. Maf1 Suppression of ATF5-Dependent Mitochondrial Unfolded Protein Response Contributes to Rapamycin-Induced Radio-Sensitivity in Lung Cancer Cell Line A549. *Aging* 2021, 13, 7300–7313.

83. Hu, M.; Wang, B.; Qian, D.; Li, L.; Zhang, L.; Song, X.; Liu, D.X. Interference with ATF5 Function Enhances the Sensitivity of Human Pancreatic Cancer Cells to Paclitaxel-Induced Apoptosis. *Anticancer Res.* 2012, 32, 4385–4394.

84. Monaco, S.E.; Angelastro, J.M.; Szabolcs, M.; Greene, L.A. The Transcription Factor ATF5 Is Widely Expressed in Carcinomas, and Interference with Its Function Selectively Kills Neoplastic, but Not Nontransformed, Breast Cell Lines. *Int. J. Cancer* 2007, 120, 1883–1890.

85. Chen, A.; Qian, D.; Wang, B.; Hu, M.; Lu, J.; Qi, Y.; Liu, D.X. ATF5 Is Overexpressed in Epithelial Ovarian Carcinomas and Interference with Its Function Increases Apoptosis through the Downregulation of Bcl-2 in SKOV-3 Cells. *Int. J. Gynecol. Pathol.* 2012, 31, 532–537.

86. Kong, X.; Meng, W.; Zhou, Z.; Li, Y.; Zhou, B.; Wang, R.; Zhan, L. Overexpression of Activating Transcription Factor 5 in Human Rectal Cancer. *Exp. Ther. Med.* 2011, 2, 827–831.

87. Škrtić, M.; Sriskanthadevan, S.; Jhas, B.; Gebbia, M.; Wang, X.; Wang, Z.; Hurren, R.; Jitkova, Y.; Gronda, M.; Maclean, N.; et al. Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Human Acute Myeloid Leukemia. *Cancer Cell* 2011, 20, 674–688.

88. Greene, L.A.; Lee, H.Y.; Angelastro, J.M. The Transcription Factor ATF5: Role in Neurodevelopment and Neural Tumors. *J. Neurochem.* 2009, 108, 11–22.

89. Hua, Z.Y.; Hansen, J.N.; He, M.; Dai, S.K.; Choi, Y.; Fulton, M.D.; Lloyd, S.M.; Szemes, M.; Sen, J.; Ding, H.F.; et al. PRMT1 Promotes Neuroblastoma Cell Survival through ATF5. *Oncogenesis* 2020, 9, 50.

90. He, F.; Xiao, H.; Cai, Y.; Zhang, N. ATF5 and HIF1 α Cooperatively Activate HIF1 Signaling Pathway in Esophageal Cancer. *Cell Commun. Signal.* 2021, 19, 53.

91. Feldheim, J.; Kessler, A.F.; Schmitt, D.; Wilczek, L.; Linsenmann, T.; Dahlmann, M.; Monoranu, C.M.; Ernestus, R.I.; Hagemann, C.; Löhr, M. Expression of Activating Transcription Factor 5 (ATF5) Is Increased in Astrocytomas of Different WHO Grades and Correlates with Survival of Glioblastoma Patients. *Onco Targets Ther.* 2018, 11, 8673.

92. Nukuda, A.; Endoh, H.; Yasuda, M.; Mizutani, T.; Kawabata, K.; Haga, H. Role of ATF5 in the Invasive Potential of Diverse Human Cancer Cell Lines. *Biochem. Biophys. Res. Commun.* 2016, 474, 509–514.

93. Kumar, S.; O’Malley, J.; Chaudhary, A.K.; Inigo, J.R.; Yadav, N.; Kumar, R.; Chandra, D. Hsp60 and IL-8 Axis Promotes Apoptosis Resistance in Cancer. *Br. J. Cancer* 2019, 121, 934–943.

94. Chalmers, S.A.; Eidelman, A.S.; Ewer, J.C.; Ricca, J.M.; Serrano, A.; Tucker, K.C.; Vail, C.M.; Kurt, R.A. A Role for HMGB1, HSP60 and Myd88 in Growth of Murine Mammary Carcinoma in Vitro. *Cell. Immunol.* 2013, 282, 136–145.

95. Guo, J.; Li, X.; Zhang, W.; Chen, Y.; Zhu, S.; Chen, L.; Xu, R.; Lv, Y.; Wu, D.; Guo, M.; et al. HSP60-Regulated Mitochondrial Proteostasis and Protein Translation Promote Tumor Growth of Ovarian Cancer. *Sci. Rep.* 2019, 9, 6792.

96. Goard, C.A.; Schimmer, A.D. Mitochondrial Matrix Proteases as Novel Therapeutic Targets in Malignancy. *Oncogene* 2014, 33, 2690–2699.

97. Tang, H.; Li, J.; Liu, X.; Wang, G.; Luo, M.; Deng, H. Down-Regulation of HSP60 Suppresses the Proliferation of Glioblastoma Cells via the ROS/AMPK/MTOR Pathway. *Sci. Rep.* 2016, 6, 28388.

98. Kim, W.; Ryu, J.; Kim, J.E. CCAR2/DBC1 and Hsp60 Positively Regulate Expression of Survivin in Neuroblastoma Cells. *Int. J. Mol. Sci.* **2019**, *20*, 131.

99. Vocka, M.; Langer, D.; Fryba, V.; Petrtyl, J.; Hanus, T.; Kalousova, M.; Zima, T.; Petruzelka, L. Novel Serum Markers HSP60, CHI3L1, and IGFBP-2 in Metastatic Colorectal Cancer. *Oncol. Lett.* **2019**, *18*, 6284–6292.

100. Li, X.S.; Xu, Q.; Fu, X.Y.; Luo, W.S. Heat Shock Protein 60 Overexpression Is Associated with the Progression and Prognosis in Gastric Cancer. *PLoS ONE* **2014**, *9*, e107507.

101. Zhou, C.; Sun, H.; Zheng, C.; Gao, J.; Fu, Q.; Hu, N.; Shao, X.; Zhou, Y.; Xiong, J.; Nie, K.; et al. Oncogenic HSP60 Regulates Mitochondrial Oxidative Phosphorylation to Support Erk1/2 Activation during Pancreatic Cancer Cell Growth Article. *Cell Death Dis.* **2018**, *9*, 161.

102. Wadhwa, R.; Takano, S.; Kaur, K.; Deocaris, C.C.; Pereira-Smith, O.M.; Reddel, R.R.; Kaul, S.C. Upregulation of Mortalin/Mthsp70/Grp75 Contributes to Human Carcinogenesis. *Int. J. Cancer* **2006**, *118*, 2973–2980.

103. Liu, L.X.; Lu, J.C.; Zeng, H.Y.; Cai, J.B.; Zhang, P.F.; Guo, X.J.; Huang, X.Y.; Dong, R.Z.; Zhang, C.; Kang, Q.; et al. Mortalin Stabilizes CD151-Dependent Tetraspanin-Enriched Microdomains and Implicates in the Progression of Hepatocellular Carcinoma. *J. Cancer* **2019**, *10*, 6199–6206.

104. Hu, Y.; Yang, L.; Yang, Y.; Han, Y.; Wang, Y.; Liu, W.; Zuo, J. Oncogenic Role of Mortalin Contributes to Ovarian Tumorigenesis by Activating the MAPK–ERK Pathway. *J. Cell. Mol. Med.* **2016**, *20*, 2111–2121.

105. Starenki, D.; Sosonkina, N.; Hong, S.K.; Lloyd, R.V.; Park, J.I. Mortalin (GRP75/HSPA9) Promotes Survival and Proliferation of Thyroid Carcinoma Cells. *Int. J. Mol. Sci.* **2019**, *20*, 2069.

106. Sun, J.; Che, S.L.; Piao, J.J.; Xu, M.; Chen, L.Y.; Lin, Z.H. Mortalin Overexpression Predicts Poor Prognosis in Early Stage of Non–Small Cell Lung Cancer. *Tumor Biol.* **2017**, *39*, 1010428317695918.

107. Yi, X.; Luk, J.M.; Lee, N.P.; Peng, J.; Leng, X.; Guan, X.Y.; Lau, G.K.; Beretta, L.; Fan, S.T. Association of Mortalin (HSPA9) with Liver Cancer Metastasis and Prediction for Early Tumor Recurrence. *Mol. Cell. Proteom.* **2008**, *7*, 315–325.

108. Yoon, A.R.; Wadhwa, R.; Kaul, S.C.; Yun, C.O. Why Is Mortalin a Potential Therapeutic Target for Cancer? *Front. Cell Dev. Biol.* **2022**, *10*, 1219.

109. Kao, T.Y.; Chiu, Y.C.; Fang, W.C.; Cheng, C.W.; Kuo, C.Y.; Juan, H.F.; Wu, S.H.; Lee, A.Y.L. Mitochondrial Lon Regulates Apoptosis through the Association with Hsp60-MtHsp70 Complex. *Cell Death Dis.* **2015**, *6*, e1642.

110. Luo, J.; Zeng, B.; Tao, C.; Lu, M.; Ren, G. ClpP Regulates Breast Cancer Cell Proliferation, Invasion and Apoptosis by Modulating the Src/PI3K/Akt Signaling Pathway. *PeerJ* **2020**, *8*, e8754.

111. Seo, J.H.; Rivadeneira, D.B.; Caino, M.C.; Chae, Y.C.; Speicher, D.W.; Tang, H.Y.; Vaira, V.; Bosari, S.; Palleschi, A.; Rampini, P.; et al. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. *PLoS Biol.* 2016, 14, e1002507.

112. Gibellini, L.; Losi, L.; de Biasi, S.; Nasi, M.; Tartaro, D.L.; Pecorini, S.; Patergnani, S.; Pinton, P.; de Gaetano, A.; Carnevale, G.; et al. LonP1 Differently Modulates Mitochondrial Function and Bioenergetics of Primary versus Metastatic Colon Cancer Cells. *Front. Oncol.* 2018, 8, 254.

113. Ghosh, J.C.; Seo, J.H.; Agarwal, E.; Wang, Y.; Kossenkov, A.V.; Tang, H.Y.; Speicher, D.W.; Altieri, D.C. Akt Phosphorylation of Mitochondrial Lonp1 Protease Enables Oxidative Metabolism and Advanced Tumor Traits. *Oncogene* 2019, 38, 6926–6939.

114. Cole, A.; Wang, Z.; Coyaud, E.; Voisin, V.; Gronda, M.; Jitkova, Y.; Mattson, R.; Hurren, R.; Babovic, S.; Maclean, N.; et al. Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. *Cancer Cell* 2015, 27, 864–876.

115. Kenny, T.C.; Craig, A.J.; Villanueva, A.; Germain, D. Mitohormesis Primes Tumor Invasion and Metastasis. *Cell Rep.* 2019, 27, 2292–2303.e6.

Retrieved from <https://encyclopedia.pub/entry/history/show/91953>