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Drug-resistant bacteria pose a serious threat to human health worldwide. Current antibiotics are losing efficacy and new
antimicrobial agents are urgently needed. Living organisms are an invaluable source of antimicrobial compounds. The
antimicrobial activity of the most representative natural products of animal, bacterial, fungal and plant origin are reviewed
in this article. Their activity against drug-resistant bacteria, their mechanisms of action, the possible development of
resistance against them, their role in current medicine and their future perspectives are discussed. Natural compounds of
heterogeneous origins have been shown to possess antimicrobial capabilities, including against antibiotic-resistant
bacteria. The most commonly found mechanisms of antimicrobial action are related to protein biosynthesis and alteration
of cell walls and membranes. Various natural compounds, especially phytochemicals, have shown synergistic capacity
with antibiotics. There is little literature on the development of specific resistance mechanisms against natural
antimicrobial compounds. New technologies such as -omics, network pharmacology and informatics have the potential to
identify and characterize new natural antimicrobial compounds in the future. This knowledge may be useful for the
development of future therapeutic strategies.
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| 1. Introduction

Antibiotic resistance is an example of the enormous capacity for natural evolution and adaptation of bacteria to different
environments2. Although this process seems inevitable, humans have accelerated it through various anthropogenic
activitiesll4, The causes behind the increase in the number of antimicrobial-resistant bacteria in recent years include the
misuse of antibiotics in humans and animals, inadequate34/5] control of infections in hospitals and clinics or poor hygiene
and sanitationB!#IE], |n addition to the causes mentioned, the problem worsens as there is a drought in the discovery of
new antibiotics. The increase in resistance rates in bacteria leads to a decrease in the effectiveness of existing antibiotics,
making research in this field unattractive to companies that decide to invest in other types of fields with greater chances of
success and benefits8IlZ. This concerning trend can be observed in Figure 1.
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Figure 1. Approximate dates of discovery of new classes of antibiotics and identification of bacterial resistance.
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In view of this scenario, research on alternative or complementary therapies to traditional antibiotics has emerged
strongly. Antimicrobial products of natural origin have been positioned as compounds of great scientific interest due to
their enormous chemical variety and intrinsic properties that have promoted their study as a possible therapeutic tool in
recent years.

| 2. Main Classes of Natural Antimicrobial Products

NPs are extremely diverse in terms of their chemical structures, properties and mechanisms of action. These agents can
be classified according to their original source: animal, bacterial, fungal or vegetal.



2.1. Animal origin

Animals have colonized virtually the entire planet Earth. For thousands of years, they have lived closely with different
kinds of bacteria and have faced not a few pathogenic microorganisms. Evolution has shaped animal defense systems to
deal with these microscopic threats. In recent years, attention has been focused on identifying which molecules confer
resistance and allow certain animals to live in hostile environments with high pollution and pathogenic load, as is the case
with certain insects such as cockroaches.

Currently, animals, and especially insects, are one of the main sources of antimicrobial proteins or peptides (AMPSs). Since
the discovery of AMPs in 1974, more than 150 new AMPs have been isolated or identified, the majority being cationic
peptides between 20 and 50 residues in length. These molecules mainly have antimicrobial capacity mediated by
disruption of the bacterial plasma membrane, most probably by forming pores or ion channels8l. Some AMPs also have
shown antifungal, antiparasitic or antiviral properties¥. These AMPs can be divided into four subfamilies with different
structures and sequences: the a-helical peptides, such as cecropin, which has a broad spectrum of antimicrobial activity
against bacteria of both Gram-positive and Gram-negative bacteria; cysteine-rich peptides, such as insect defensins,
which are mainly active against Gram-positive bacteria; proline-rich peptides, such as lebocins, which are active against
both Gram-positive and Gram-negative bacteria and some fungi; and finally glycine-rich peptides or proteins, such as
attacin, which are effective against Gram-negative bacteria and especially against Escherichia coli. These AMPs present a
promising basis for the development of medical therapies, however, additional work must be developed to make them
more powerful and stable2. Moreover, the intrinsic antimicrobial capacity of AMPs can be enhanced by a fusion of
peptides to create more potent hybrid ones, such as in the case of attacin from Spodoptera exigua and a coleoptericin-like
protein from Protaetia brevitarsis seulensis, which, when fused, exhibited a greater antimicrobial capacity than its two
original peptidesi,

The study of antimicrobial molecules existent in cockroaches (Periplaneta americana) has revealed that extracts derived
from its brain have a great antimicrobial capacity against MRSA and neuropathogenic E. coli K1. Although not all the
components of the extract could be accurately identified, a great variety of molecules with known biological activity were
found, such as isoquinolines, flavanones, sulfonamides and imidazone among others. A hypothesis about the production
of this antimicrobial cocktail in the cockroach brain suggests that there could be a constitutive expression of these
antimicrobials to protect the animal’'s neural system, since it is the central axis of its survival and a key piece to protect
when it is lived in an environment of high pollution and exposure to pathogens and even superbugs22. Another example
of insect producing antimicrobial molecules against resistant bacteria is Lucilia cuprina blowfly maggots. The extract
obtained from excretions and secretions from maggots showed mild bacterial growth inhibition. However, using
subinhibitory concentrations of this extract in combination with the antibiotic ciprofloxacin enhanced its activity, further
delaying the appearance of bacteria resistant to it. The properties of this extract, including the presence of defensins and
phenylacetaldehyde, make maggot debridement therapy a promising tool in the treatment of MRSA-infected wounds
acquired in hospitall3],

2.2. Bacterial origin

Bacteria are the most prolific source of NPs with antimicrobial activity found so far, especially those of the actinomycetes
class. Their great diversity, competitiveness and colonization capacity have led them to the development of secondary
metabolites capable of giving them great advantages over other bacterial species. As described in previous sections, the
detection and isolation of these bacterial antimicrobial NPs propelled medical science vertiginously in the middle of the
last century. Some of the most relevant are described below.

Some of the most important antimicrobial molecules produced by bacteria of the actinomyces class are: vancomycin,
baulamycin, fasamycin A and orthoformimycin. Vancomycin is a naturally occurring tricyclic glycopeptide extracted from
Streptococcus orientalis that has reaped great success as an antibiotic against Gram-positive bacteria, especially against
threats that are resistant to other treatments such as MRSA and penicillin-resistant pneumococci among others!:4l,
Vancomycin forms hydrogen bonds with the terminal dipeptide of the nascent peptidoglycan chain during biosynthesis of
the bacterial cell wall. This union prevents the action of penicillin-binding proteins (PBPs), interrupting further wall
formation and finally activating autolysin-triggered cell rupture and cell death®. Another important bacterial NP is
produced by actinomyces is baulamycin, which is an isolated molecule of the marine bacterium Streptomyces
tempisquensis that can inhibit the biosynthesis of iron-chelating siderophores in S. aureus (targeting staphylopherrin B)
and Bacillus anthracis (targeting petrobactin), helping to treat MRSA and anthrax infections, respectively. In addition, it
was also able to inhibit the growth of Gram-negative bacteria such as S. flexneri and E. coli, turning baulamycin and its
derivatives into potential broad-spectrum antibiotics28l. Fasamycin A is a polyketide isolated from Streptomyces albus that
shows specific antimicrobial activity against Gram-positive bacteria such as vancomycin-resistant Enterococci (VRE) and



MRSA with MIC values of 0.8 and 3.1 pg/mL, respectively. This molecule targets FabF in the initial condensation step of
the elongation cycle from the lipidic biosynthetic bacterial metabolismi*. Orthoformimycin is a molecule produced by S.
griseus which can inhibit bacterial translation by more than 80% in the case of E. coli. Although the mechanism of action is
not clear now, one hypothesis is the decoupling of mMRNA and aminoacyl-tRNA in the bacterial ribosomel2&l,

2.3. Fungal origin

Fungi are eukaryotic-type living things, such as mushrooms, yeasts, and molds. Currently, the existence of some 120,000
species of fungi has been accepted, however, it is estimated that the number of different species of fungi present on earth
could be between 2.2 and 3.8 million¥, This relatively unexplored kingdom is a source of antimicrobial NPs and has
great potential to be studied in the future as new species are discovered and identified.

Aspergillomarasmine A is a polyaminoacid naturally produced by Aspergillus versicolor capable of inhibiting antibiotic
resistance enzymes in Gram-negative pathogenic bacteria, such as Enterobacteriaceae, Acinetobacter spp.,
Pseudomonas spp. and Klebsiella pneumoniae. This compound has been used successfully to reverse resistance in mice
infected with meropenem-resistant K. pneumoniae thanks to the NDM-I protein, making the bacterium sensitive to the
antibiotic and ending the infection2d,

Mirandamycin is a quinol of fungal origin capable of inhibiting the growth of both Gram-negative and Gram-positive
bacteria, being more effective against the latter group, including antibiotic-resistant strains such as MRSA or
carbapenemase-producing K. pneumoniae. Ilts mechanism of action consists in the inhibition of the bacterial metabolism
of sugars, interfering with their fermentation and transport/24,

There is evidence of the antibacterial capacity of various fungal species against Gram-positive bacteria. Extracts of
Ganoderma lucidum, Ganoderma applanatum, Meripilus giganteus, Laetiporus sulphureus, Flammulina velutipes,
Coriolus versicolor, Pleurotus ostreatus and Panus tigrinus demonstrated antimicrobial activity in Kirby—Bauer assays
against Gram-positive bacteria, such as S. auerus and B. luteus/2.

2.4. Plant origin

Plants are a great source of biomolecules with various interesting properties for humans thanks to their enormous
diversity and proven safety for human health[23]. Being sessile organisms, evolution has shaped its metabolism to produce
certain molecules to cope with external aggressions and infections, since they cannot flee or defend themselves!24l, The
Dictionary of Natural Products lists approximately 200,000 secondary plant metabolites, of which 170,000 have unique
chemical structures22l. Some of the families of molecules with antimicrobial capacity produced by plants are alkaloids,
terpenoids, and polyphenols/28],

Plants that have been used in traditional medicine in various countries of the world for thousands of years. They are
currently being studied at the molecular and functional level, rediscovering their properties and explaining their
mechanisms of action.

Alkaloids have been shown to possess antimicrobial capacity against various bacterial species. Although studies of the
antimicrobial capacity of pure alkaloids are limited, there are several studies on the antimicrobial activity of plant extracts
that contain alkaloids as their main components. Different extracts rich in alkaloids obtained from Papaver rhoeas have
shown activity against S. aureus, Staphylococcus epidermidis and K. pneumoniae, the main active component being
roemerinel2d. Raw alkaloid-rich extracts of Annona squamosa seeds and Annona muricata root have also shown
moderate antimicrobial capacity against E. coli and S. aureus!2gl,

Terpenoids, along with other families of compounds, are part of plant essential oils, many of which possess antimicrobial
activity. Various in vitro studies affirm that terpenoids do not possess significant antimicrobial activity per sel2d. However,
they can contribute to the antimicrobial activity of complete essential oils thanks to their hydrophobic nature and a low
molecular weight that allow them to disrupt the cell wall and facilitate the action of the rest of the active components2,

Polyphenols are molecules present in plants with a function of defense against stress and have one or more phenolic
groups in their chemical structure as a common feature. There is abundant literature on the antimicrobial capacity of
polyphenols and extracts of plants rich in them that have bactericidal and bacteriostatic capacity against many pathogens,
both Gram-positive and Gram-negative. The potential use of polyphenols as antimicrobials is widely studied to be applied
in different areas such as agriculturel®l], food preservation®2 and medicinel23.,



There are several subfamilies within the group of polyphenols according to their differentiated chemical structures:
flavonoids, hydrolyzable tannins, lignans, phenolic acids and stilbenes. In turn, the flavonoid group can be subdivided into
other subfamilies: anthocyanidins, flavanones, flavones, flavonols and isoflavones34, Examples of flavonoids with
antimicrobial activity are quercetin2, kaempferol2&, morin24, myricetin/28 epigallocatechin gallateB¥ or galangin%
among many othersB4l4l Other known polyphenols with good antimicrobial activity are punicalagin, which exerts both
antibacterial and antibiofilm effect against S. aureus2€l42 and resveratrol, which has antimicrobial activity against a wide
range of bacterial23!,

In addition to synergy with antibiotics, there are also studies that point to the synergy between the polyphenols
themselves, such as that between EGCg and quercetin against MRSA, attributed to a co-permeabilization process that
would facilitate the activity of the compounds inside of the celll3]. Synergic activity has also been found between the
polyphenols quercetin-3-glucoside, punicalagin, ellagic acid and myricetin in different proportions and combinations
against S. aureus CECT 5928,

Apart from the antimicrobial use of concrete molecules of plant origin, the use of complex extracts made from different
parts of plants is common and effective. Plant extracts have a great diversity in their composition, since even from the
same plant multiple completely different extracts can be obtained varying the extraction conditions. Time, temperature,
solvents, pressure and other parameters such as the use of ultrasound or microwave have a huge impact on the final
extract composition#4. There is numerous evidence of the antimicrobial activity of plant extracts445] and the synergistic
effect that exists between different phytochemicals2& when acting against different bacteria. An example of a plant extract
with potent activity against AMR bacteria are extracts from Lantana camara leaves against clinical isolates of MRSA,
Streptococcus pyogenes, VRE, Acinetobacter baumannii, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris and P.
aeruginosaldl. The ethanolic extracts of Anthocephalus cadamba, Pterocarpus santalinus and Butea monosperma Lam.
they have also demonstrated antimicrobial activity against MDR clinical isolates of 10 different microbial species: S.
aureus, Acinetobacter sp., C. freundii, Chromobacterium violeceum, E. coli, Klebsiella sp., Proteus sp., P. aeruginosa,
Salmonella typhi and Vibrio cholerael2428] |n the case of B. monosperma Lam., antimicrobial activity was also found in
the extract made with hot water from leaf.

2.5. Summary

As a summary, Table 1 contains all the NPs mentioned above together with their producing organism, type, target
bacteria, mechanism of action, main use and references. Figure 2 shows the main molecular targets of the most relevant
antimicrobial NPs.

Table 1. Alphabetically ordered natural products (NPs) with their properties and capabilities. Asterisk (*) means no
antimicrobial activity alone.
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