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Sugarcane is one of the main agricultural crops in the world.  A deep overview of liquid biofuels produced from

sugarcane bagasse is provided.
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1. Introduction

Sugarcane is one of the main agricultural crops in the world. For example, in Australia, more than 35 million tons of

sugarcane are produced annually. Four and a half million tons of raw sugar, one million tons of molasses and 10

million tons of bagasse (a fibrous cane residue) can be produced each year from the sugarcane crops. Modern

sugarcane varieties can produce more than 55 tons/hectare of biomass (dry weight).

Biofuel (ethanol, butanol, and acetone-butanol-ethanol blend (ABE)) is produced from edible and non-edible

sources in a variety of ways. Ethanol-biofuel is already used as an additive at all Australian fuel stations: 5%

ethanol blended with petrol and produced from crop sources.

The term “first-generation biofuels” refers to a category of liquid fuels, the most common of which is ethanol, which

is typically made from sugars and calls for a relatively straightforward production process . Because starch is

much easier to ferment than cellulose, its six-carbon sugars (primarily glucose) are easily converted to ethanol

using Clostridia (yeast). Classification of biofuel according to its generation is presented in Figure 1.
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Figure 1. Classification of biofuels according to their generation.

However, using edible sources is expensive and competes with human food. Lignocellulosic biomass as a

feedstock is used to produce biofuels . This industry has recently been extended due to increased demand for

energy resources; a decline in fossil fuel reserves; high pollution produced by emissions from fossil fuels; and the

need for alternative renewable energy resources to reduce dependence on conventional fuel.

Lignocellulosic materials are mostly concentrated in sugarcane bagasse and straw. These materials mainly contain

cellulose, hemicelluloses, and lignin, with lower amounts of extractives and ash. Sugarcane bagasse and straw are

desirable feedstocks to produce second-generation bioethanol. They have high ratios of carbohydrate content

which make them a source for biofuel production, which can help to reduce dependence on human food .

Figure 2 shows the processes of biofuel produced from a non-edible source (lignocellulosic) . Lignocellulosic

materials are a complex mixture of cellulose, hemicellulose, and lignin with minor amounts of ash, proteins, lipids,

and extractives . According to a bagasse fibre composition report , sugarcane bagasse contains cellulose

typically 32–47%, hemicellulose 19–35%, lignin 18–32% on a dry basis, and 2–6% ash .

[3]
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Figure 2. The production process of biofuel from sugarcane.

2. Sugarcane Biomass Extraction Pipeline

In general, energy sources can be divided into two categories: dispatchable/continuous sources such as oil, gas,

coal, hydropower, and biopower, and non-dispatchable/discontinuous sources such as solar and wind power. The

energy extraction pipelines for continuous and discontinuous sources are nearly analogous since source extraction

requires capacity orders, build, and installation, which implies a construction delay before the new capacity comes

onstream. The main difference is that discontinuous sources require backup power to address the inherent

unpredictability issue. Besides, some continuous sources (e.g., fossil fuels) are limited. Hence their reserves

diminish gradually. A recent study has developed a novel model for continuous and discontinuous sources

described above for all energy sources, including bagasse, to produce certain behaviours over time, from 1990 to

2050 .

The energy extraction pipeline includes four stocks and eight flows, as depicted in Figure 3. The stocks are

reserves (disregarded for bagasse since they are renewable sources), capital employed, capacity under

[12]
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construction, and energy production capacity. The flows are new discoveries inflow, depletion outflow, CAPEX

inflow, depreciation outflow, new capacity order inflow, new capacity start-up inflow and outflow, capacity retirement

outflow, and capacity bankruptcy outflow. Reserves are proven reserves that are economically viable. Capital

employed is the capacity’s current market value, which depreciates over many years. Capacity under construction

is the current capacity under construction that enters service after some delay. Energy production capacity is the

capacity used presently.

Figure 3. The energy sources extraction pipeline.

Capex refers to capital expenditure of capacity. New capacity order is the starting rate of building new capacity,

which is ordered when there is high confidence in future profitability; the more confidence there is, the more

capacity is established. New capacity start-up is the rate at which the new capacity comes onstream, which directly

adds to the total capacity. On the other hand, capacity retirement and bankruptcy reflect the total decline of

capacity . Capacity retirement is connected to the project’s lifetime, while capacity bankruptcy is the rate of

business closing capacity that is in use. This relates to the profitability of the current capacity. The lower the

profitability, the more capacity is closed.

Many variables are included in the extraction pipeline model, such as gross demand, surplus or shortfall, wholesale

price, adjustment factor, and total supply cost. Gross demand is subject to the desired production. Surplus is the

percentage through which capacity surpasses the market’s demand. When demand surpasses supply, prices are

likely to surge. Furthermore, the wholesale price is subject to the supply cost and the energy demand/production

rate. The adjustment factor represents the overhead expenses factor, and its value can be anywhere from 1.2 to

[12]
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1.4, depending on the energy source used. This factor is important in matching demand and supply . Total

supply cost combines the variable and fixed costs of production.

The study established a balance of supply-demand for all energy sources, including wood, wood waste, and

bagasse (sugarcane pulp) for biomass, and found that the wholesale price for electricity generated from bagasse

will be $71/MWh by 2030 compared to the current Australian wholesale electricity prices which is about $150/MWh

for much of 2022 .

3. Properties and Chemistry of Sugarcane Bagasse

Bagasse is the fibre left over after the sugars have been extracted from sugarcane. Sugarcane bagasse

(Saccharum officinarum) is another lignin raw material source as an agro-industrial residue. Sugarcane bagasse’s

complex chemical composition limits its use as fodder for cattle and ruminants in comparison to other crops such

as wheat straw, rice straw, sorghum straw, etc., making sugarcane bagasse a more appealing substrate for

industry commercialization .

Bagasse from sugarcane has a chemical composition that is comparable to that of the cell walls of other plants.

Every category of plants, including grasses, softwoods, and hardwoods, generates lignin that is primarily

composed of a single variety of the phenylpropane repeat unit . The lignin found in sugarcane bagasse has a

higher proportion of H-type lignin, also known as hydroxyphenyl, and as a result, a lower methoxy content than the

lignin found in softwood and hardwood . An earlier study was able to successfully isolate seven lignin fractions

by using alkali and alkaline peroxide. This study discovered that all the lignin fractions were of the SGH type,

containing only a trace amount of esterified p-coumaric acid and predominantly etherified ferulic acid .

Sugarcane lignin (SL) and lignocellulosic biomass (LB) can only be utilised for a limited number of industrial

applications due to the high lignin content.

In order to transform LB into products with added value, it is unavoidable to convert the cellulosic fraction into

sugars that are ready to be fermented. Because lignin content is high in the plant cell wall, converting cell wall

carbohydrate fractions is difficult. Therefore, retreatment has been employed. Retreatment can assist in producing

higher chemical loadings compounds with increased temperatures and reaction times. The high cost of cellulolytic

enzymes and the high number of celluloses that are required both contribute to an increase in the overall cost of

processing. The elimination of lignin results in an increase in the accessibility of cellulose and greater amenability

of cellulose to the carbohydrate framework of the plant cell wall. Sugarcane bagasse (SB) was found to have a

significantly lower ash content (2–6%), which is a significant advantage when compared to other agricultural

residues such as rice straw (17.5% ash) and wheat straw (11.0% ash). When one ton of sugarcane is processed,

approximately 250–280 kilo grammes of bagasse are produced, which results in annual production of

approximately 54 million tons of bagasse . Only a small portion of bagasse is used in the production of pulps,

board materials, and composites, whereas a significant amount of it is burned as a low-grade fuel for energy

recovery.

[13]
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4. Pretreatment of Sugarcane Bagasse for Industrial
Applications

A suitable pretreatment is required to improve the efficiency of the hydrolysis process by assisting in the removal of

lignin or hemicellulose, exposing the cellulosic component. Furthermore, for pretreatment, an efficient cellulolytic

enzyme cocktail; the correct enzyme loading amount; specific conditions of hydrolysing; and the right

lignocellulosic material nature are essential requirements for achieving maximum hydrolysis produced from

lignocellulosic material. It has frequently been reported that using pretreated substrate results in a substantial

increase in the amount of lignin removal and hemicellulose depolymerisation into simpler sugars. Some traditional

pretreatment methods can be used with pretreatment lignocellulosic sugarcane materials, such as alkaline

hydrolysis, biological pretreatment, and acidic pretreatment. Alkaline hydrolysis happens when alkaline substances

such as NaOH, Na SO , NH OH, and others are added. Biological pretreatment can aid in the growth of white rot

fungus or delignifying microorganisms on lignocellulosic wastes. Acidic pretreatments were carried out by

introducing acidic substances (such as HCl, H SO , H PO , oxalic acid, formic acid, etc.) . Pretreatment is

required to make the cellulosic material more susceptible to subsequent cellulose-mediated hydrolytic processes.

Figure 4 depicts the many types of pretreatments utilised in lignocellulosic fermentation.

2 3 4

2 4 3 4
[20]
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Figure 4. Pretreatment types used for lignocellulosic fermentation.

The pre-treated SB has also been used as an inert support material for fungal biomass in the solid-state

fermentation process and as an immobilisation carrier. Both applications take place in the solid state. The

mechanistic application of pre-treated SB that has been impregnated with suitable liquid media creates

homogenous aerobic conditions throughout the bioreactor, which in turn will produce high product yield titers with

relatively high purity after the cultivation cycle completion. The hemicellulose fraction is broken down into several

different sugar monomers when lignocellulosic substrates are subjected to acidic hydrolysis (xylose, arabinose,

mannose, galactose, and glucose). In order to increase the yield of products that are desirable, it is necessary to

remove these inhibitory substances from the hydrolysates before fermentation takes place. Lignin can be removed
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using pretreatments based on alkali as well as biodelignification techniques, which leave behind cellulose and

hemicellulose. A mixture of cellulolytic enzymes can then be used to hydrolyze the material after it has been pre-

treated . This results in the formation of simpler sugars. Exoglycanase, endoglucanase, glucosidase, and other

accessory enzymes required for the successful breakdown of polysaccharides found in the cell walls of

lignocellulosic materials should be present in sufficient quantities in the cellulolytic cocktail .

The genus Clostridia contains a wide variety of bacteria that produce acetone, butanol, and ethanol, such as

Clostridium butyricum , Clostridium acetobutylicum , Clostridium beijerinckii , and Clostridium

sporogenes . This process was previously referred to as ABE fermentation. The selection of raw materials that

have a high fermentable sugar content and are readily available at a low cost is essential in order to ensure that

the production of ethanol and butanol through a biological process is economically viable.

An increasing amount of attention is being paid to agricultural residues like barley straws, corn stoves, and

sugarcane bagasse’s as sources of fermentable sugars. These agricultural residues need to be treated using

pretreatment and hydrolysis processes to convert carbohydrate polymers long chains found in lignocellulosic

materials into monosaccharide sugars. These processes must be carried out for the desired result to be achieved.

The method of hydrolysis has a significant impact on the fermentation sugars and their contents, both of which are

factors that determine the amount of butanol that can be produced from a given agricultural residue.

5. Types of Anaerobic Bacteria Clostridia (Yeast)

By using a dilute acid solution, the fermentation sugars were extracted from the sugarcane bagasse and

hydrolyzed. To evaluate the use of sugarcane bagasse hydrolysate as a substrate, the butanol fermentation was

carried out with a bacterial strain chosen from a variety of Clostridium species, including Clostridium butyricum

(TISTR 1032), Clostridium sporogenes (TISTR 1452), Clostridium beijerinckii (TISTR 1461), and Clostridium

acetobutylicum (TISTR 1462). The yield of sugar hydrolysate that was obtained in study  was found to be the

highest when compared to that was obtained in the works of several other researchers.

Numerous aspects, such as the type and concentration of the solvent, the temperature, the amount of time

required for the reaction, and the enzyme biocatalyst, all play a role in the hydrolysis of various biomass materials.

The amount of glucose that could be extracted through enzymatic hydrolysis was significantly higher than the

amount that could be extracted through dilute acid hydrolysis. Additionally, a high temperature of 160 °C had a

significant impact on the concentration of glucose. The diluted acid solution and low temperature of 121 °C were

used  as the hydrolysis method to save money and energy during the production process. The amount of xylose

that was obtained was comparable to the amount that was obtained in other studies using dilute acid hydrolysis

and a temperature of 121 °C; however, the amount of glucose that was obtained in this study was significantly

higher. This high glucose content was accomplished by using H SO  at a concentration of five percent by volume

. The chemical bonds that hold sugarcane bagasse’s sugars together can be broken down into sugars by

increasing the acid concentration in the acid hydrolysis process. This could result in a powerful or comprehensive

reaction.
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6. Bioethanol Production from Sugarcane

Bioethanol is obtained mostly from agricultural leftovers, and it may be created by the fermentation of sucrose or

simple sugars acquired through biomass treatment. It is possible to partition the processes of producing bioethanol

into three distinct generations, and each generation is determined by the characteristics of the feedstock that was

used initially. In every one of these processes, the lignocellulosic or cellulosic material is first transformed into

simple sugars, and only after that is bioethanol produced. The substrate in the first generation is primarily

composed of sucrose-containing feedstock grains and starchy materials (such as sugarcane, maise, sugar beet,

sweet sorghum, corn, cassava, sweet potato, yam, wheat, barley, and oats), and bioethanol is produced through

starch or sugar fermentation . In the second generation, the substrate is primarily composed of lignocellulosic

biomass (such as sugarcane bagasse, stover, stems, straw, leaves, and grass), and bioethanol is produced

through enzymatic hydrolysis . In the third generation, the substrates are algae biomasses, and bioethanol is

produced through the fermentation of green and blue algae .

Sugarcane is the second most utilised raw material in bioethanol manufacturing. Sugarcane contains 12–17% total

sugars by weight and 68–72% moisture (90% sucrose and 10% glucose or fructose). The average extraction

efficiency for producing cane juice by crushing is approximately 95%, with cane fibre constituting the remaining

solid residue (sugarcane bagasse) . Cane juice is heated to 110 °C in plants that solely manufacture ethanol,

decanted, occasionally concentrated by evaporation, and then fermented to reduce microbial contamination. Like

maise, sugarcane has a well-established infrastructure for cultivation, harvesting, and processing. Sugarcane is

also considered the most effective raw material resource for bioethanol production: the amount of fossil energy

consumed during sugarcane processing is substantially lower than that of corn . Sugarcane is an annual crop

whose period of growth ranges from 9 to 24 months. This growing time could be changed depending on several

factors such as variety, environmental conditions, and management . After five to seven ratoon cycles,

sugarcane fields are “reformed” or replanted by removing stalks (mechanically or chemically), tilling the soil, and

replanting freshly cut sugarcane sprouts. Traditionally, thorough tillage is required for sugarcane soil preparation. In

certain areas of Brazil and Australia, full tillage has given way to minimum tillage techniques, in which the soil is

only lightly tilled in the planting row. Planting legumes during the reformation phase occasionally increases soil

fertility and/or soil physical qualities .

On the other hand, Sugarcane Bagasse (SCB) is primarily composed of lignin (20–30%), cellulose (40–45%), and

hemicelluloses (30–35%) . Because of its lower ash content (1.9%) , SCB offers advantages over high ash

containing bagasse, such as rice straw, 14.5%  and wheat straw, 9.2% . Currently, converting lignocellulosic

biomass (such as sugarcane bagasse) into bioethanol entails three critical and interdependent steps: (i)

pretreatment of lignocellulosic biomass to depolarise the lignocellulosic matrix, allowing carbohydrate polymers

(e.g., cellulose, hemicellulose, and other carbohydrates) to be accessible for enzymatic hydrolysis; (ii)

saccharification of pretreated material to liberate fermentable sugars through hydrolases such as cellulases and

hemicellulases; and (iii) fermentation of monosaccharide to produce ethanol by using ethanogenic

yeast/microorganism . Figure 5 shows the pathway producing bioethanol from lignocellulosic biomass.
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Figure 5. Bioethanol production from lignocellulosic biomass .

7. Conclusion

The currently available technology for producing biofuel from biomass using sugarcane biomass cannot offer a

competitive price in relation to the amount of yield produced. Therefore, developments in treatment and genetic

engineering and the use of suitable and cheaper yeast to convert sugarcane bagasse into biofuel are of

commercial significance for the use of ethanol and ABE. This would result in the commercialisation of ABE as a

viable additive for conventional diesel, resulting in lower emissions from diesel engines and less waste.
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