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Infection persists as one of the leading global causes of morbidity and mortality, with particular burden at the extremes of

age and in populations who are immunocompromised or suffer chronic co-morbid diseases. By focusing discovery and

innovation efforts to better understand the phenotypic and mechanistic differences in the immune systems of diverse

vulnerable populations, emerging research in precision vaccine discovery and development has explored how to optimize

immunizations across the lifespan. 
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1. Introduction

For several decades beginning in the 1920s, insoluble aluminum salts were the first and only adjuvants used to enhance

vaccine efficacy against infectious diseases . Since that period, several additional adjuvants have been included in

approved vaccines, from the oil-in-water (OIW) emulsion MF59 to the GSK adjuvant systems (AS). These developments

signify a nearly-100-year timeline of interconnected developments in the fields of vaccinology and immunology .

Recently, the notable widespread employment of mRNA, viral vector, and adjuvanted vaccine technologies have had a

profound global impact on reducing the impact of the COVID-19 pandemic. An estimated 10+ million deaths were

prevented globally due to SARS-CoV-2 vaccinations, with a significant contribution attributed to the speed of pathogen-

specific mRNA vaccine development . However, while this innovation signifies a breakthrough in vaccinology and

modern medicine, it also highlights an important challenge in the field. Different age groups presented with distinct

responses to the mRNA vaccines. In particular, the mRNA vaccines demonstrate waning effectiveness, diminished

protection, and heterogeneous efficacy, a phenomenon that is not restricted to but is especially pronounced in older adults

. This is likely a result of several factors, which include the variability in the magnitude and persistence of antigen

expression and subsequent clearance from the encoded mRNA . Ultimately, these heterogeneous responses invite

further research into the biodistribution and pharmacometrics of this novel vaccine platform as gene therapies begin to be

integrated into vaccinology. Nevertheless, a diminished protection for older adults is also seen in both non-mRNA

vaccines against SARS-CoV-2  and seasonal influenza vaccines . A number of factors appear to be driving this

differential response, from age-specific response to adjuvants , immune senescence, to potential diminishing

immunization efficacy over time as a result of immune imprinting . Considering these factors to inform rationally

designed vaccines that effectively protect immunocompromised individuals and/or older adults remains an active area for

improvement in current vaccine development streams.

A related paradigm also exists for immunizing younger populations. As the immune system undergoes dramatic changes

in the early years of life, significant phenotypic differences emerge between pediatric and adult immune responses 

. These differences manifest in a higher pediatric susceptibility and vulnerability to certain infectious diseases .

In fact, infectious diseases are amongst the leading global causes of pediatric mortality , which is at least partially due

to their distinct immune responses. Further, the more distinct immunological phenotypes of young children as well the

impact of transplacental maternal immunity contribute to significant differences in vaccine response in early life .

Thus, an important objective of modern vaccinology is defining safe approaches to shape immune responses in early life

.

Similarly, individuals with weakened immune systems, such as those living with metabolic disorders and diabetes,

immunocompromised populations, and people living with chronic viral infection and/or cancer, experience heightened

susceptibility to infectious diseases  and suboptimal responses to immunizations . While immunocompromised

status represents a large and heterogenous population with diverse phenotypes and severity, there is an unmet need to
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enhance vaccine efficacy for this diverse group . Defining immune pathways to trigger protective immunity in these

populations, including optimal adjuvants, may be key to protection of these groups.

2. Precision Vaccinology Principles in Adjuvant Innovation, Discovery,
and Development

2.1. Emerging Tools for Adjuvant Discovery

High-throughput screening (HTS) of small molecules has been leveraged by pharmaceutical and academic centers to

expand scientific toolbox. HTS has contributed to ~20–30% of late-stage clinical development candidates at several

prominent pharmaceutical companies . However, the same analyses suggest that ~60% of early-stage candidates

discovered via HTS fail to reach later-stage applications. Several approaches have been employed to overcome this

modest yield, including (1) developing more curated and druggable chemical libraries to optimize the source of testable

drug candidates  and, (2) optimizing the screening platform itself—finding more applicable or translational in vitro

systems to screen the chemical libraries. From engineered constructs for target-based screening to broad phenotypic

screens for functional discovery, there has been a significant expansion in available tools to screen compounds. Some

notable developments include the application of organ-on-chip technologies as screening tools and incorporation of

microfluidic screening to enable ultra-high-throughput screening . Extending to vaccine adjuvant discovery,

innovation in phenotypic and targeted screens have identified multiple novel adjuvants .

The expanded menu of adjuvant discovery tools can advance precision vaccinology. In regard to the growth in target-

based screening technologies, targeted screens can be steered towards addressing gaps in vaccine efficacy for distinct

vulnerable populations. For example, infant populations often skew towards Th2-like immune responses and fail to mount

sufficient Th1 responses . This Th2-skewed response leaves pediatric populations at higher susceptibility and

vulnerability to many serious complications arising from intracellular pathogens, such as viral respiratory infections .

Of note, activation of endosomal TLRs, such as TLR7 and/or -8, can shape the infant immune response towards a more

adult-like Th1 response , which can enable effective protection against many respiratory viruses. Thus, with more

advanced targeting screening tools for these endosomal targets, the arsenal of precision adjuvants available to vaccinate

this vulnerable population can substantially advance.

The expansion of phenotypic screening tools can enhance translation to advance precision-adjuvant discovery. With

human in vitro models being developed for HTS, it is now possible to screen for molecules with optimal activity towards

distinct populations . Indeed, human primary immune cells have been directly used to screen for adjuvant discovery

. Using human primary cells from individuals from distinct populations (e.g., by age, sex, and/or co-morbidity), may

enable discovery and development of bespoke adjuvants for vulnerable populations.

2.2. Innovations through Advanced Adjuvant Compositions

One of the largest bottlenecks in advancing novel lead candidates from discovery to clinical consideration is optimizing the

function of the compounds via medicinal chemistry. Altering compound structure can improve on-target efficacy of

compounds in addition to their pharmacodynamic and pharmacokinetic properties . These types of medicinal

chemistry approaches can correspondingly be applied to develop more ideal adjuvant compositions . Evolving

objectives for these optimized compounds include improving potency, efficacy, safety, and biological clearance.

Additionally, an emerging focus of adjuvant medicinal chemistry involves ligating chemical bridges onto novel adjuvants to

optimize integration into antigen formulation . Thus, characterizing the active moiety of a molecule and adding

bridges, such as phosphonate groups for alum absorption, that do not interfere with this moiety can be a powerful tool for

translation/application. This impact is heightened with emerging drug-delivery technologies that enable targeting of and

integration for specific tissues and even cells . Thus, the inherent functionality of novel small-molecule adjuvants

can be optimized and they can be accommodated into sophisticated delivery technologies.

In addition to improving the functionality of compounds, another important focus of medicinal chemistry effort for novel

adjuvants is to remove any off-target effects, sometimes referred to as “wasted immunity”. Many discovered leads are

compounds with pleiotropic activities. This can be the basis of drug-repurposing efforts that have come to define the

growing field of polypharmacology. More often, however, this pleiotropic nature, which is notably linked to larger and

unrefined biologics , accompanies adverse side-effects and safety concerns that contribute to the high attrition

rates seen in the drug-development pipeline . Indeed, several early- and late-stage vaccine adjuvant candidates, such

as water in oil/squalene or poly(I:C), demonstrate potential adverse reactogenicity . Potential reactogenicity can be

addressed by reengineering biologic or chemically altering small molecule candidates to yield more precise functionalities
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. Indeed, a precision medicine approach is key for discovery and development of safe and effective vaccines for

distinct populations that vary in susceptibility to vaccine-associated adverse events .

3. Exploration of Immunization Sites to Unleash Maximal Effects in Target
Populations

While significant research has been focused on expanding the tools available to formulate a vaccine, equally important is

defining the immunogenicity needed to achieve protection . To this end, all licensed vaccines have targeted routes of

administration that maintain a localized and controlled antigen presentation, thereby avoiding the potential dangers of a

systemic vaccine and the added potential benefit that some vaccines provide via depot effects . Depending on

route of administration, vaccines can unleash unique benefits reflecting distinct immunity mounted by different target

tissues.

3.1. Intradermal, Subcutaneuous, Intramuscular—A Layered Lesson in Precision Vaccinology

The layers of tissue from skin to muscle provide several targets for immunization. Considering the different immune cell

compositions found at each tissue layer, there are characteristic differences in immunity induced between intradermal

(ID), subcutaneous (SC), and intramuscular (IM) vaccination .

ID injections enable preferential access to dermal dendritic cells (DCs) and Langerhans cells (LCs). Targeting these

dermal sentinels facilitates highly-effective antigen presentation to skin resident and lymph-node-resident memory T cells

via migration to lymphoid organs . Furthermore, with >20 times the myeloid DCs and double the T cells spanning the

human dermis compared to circulating blood , ID injections are an attractive approach to optimize vaccine

immunogenicity. In fact, at an equivalent antigen dose, ID vaccination often induces greater immunogenicity than IM or SC

vaccination . Further, LCs are maintained as a steady-state cellular population, rendering them a highly promising

target for precision vaccines for both older and younger populations . However, the drawback of this route of

administration is the inherent difficulty of physically injecting at the proper depth, further compounded by the heterogeneity

of the dermal thickness across age groups, body types, and demographics . As innovations move the field

from the canonical needle-and-syringe approach to standardizable novel systems, such as dermal patches or laser-

guided injection systems that can precisely deliver vaccine components, ID immunizations become an even more

appealing option in precision vaccinology .

SC vaccinations, while historically considered a safe and efficacious route of administration, have been questioned of late.

Concerns about safety and poor mobilization and ultimate presentation of antigen have highlighted some shortcomings of

this route . Further, new lines of research indicate that other routes may be more efficacious. Using the recent

monkeypox public health emergency as a case-study, the Vaccinia Ankara vaccine was deployed for vulnerable

populations. Historically, this vaccine was given with a two-dose regimen via SC immunization. However, it was retooled

as a single dose ID immunization at 1/5th of the antigen dose and still maintained comparable protection .

IM injections remain the most common way to deliver vaccines. With a lower density of pain fibers compared to ID or SC

layers and ample blood flow, IM is an ideal candidate for many types of formulations . While the IM route may not

proffer the same density of immune cells that ID layers do, the resiliency of muscle may enable a higher threshold of

tolerance for a range of vaccine formulations.

3.2. Nose to Gut—Mucosal Immunity

While the IM, SC, and ID routes of vaccine delivery are effective for inducing systemic immunity to prevent severe illness,

they may be suboptimal in preventing infection at the site of invasion. These considerations highlight a significant area for

improvement in current vaccine development efforts, which has become growingly visible due to the ongoing COVID-19

pandemic: mucosal immunity . Mucosal layers cover much of respiratory, gastroenterological, and genital tracts

and serve as a barrier against respiratory, enteric, and genital infections, respectively. Establishing mucosal vaccination

approaches that can potentiate protection at this layer and can prevent infection from occurring in the first place is a key

area for research and translation. From a public-health framework, developing a mucosal vaccine can be a future tool to

better curb transmission of highly virulent strains and even eradicate the presence of malignant viruses. Pertinently, this is

an even higher priority precision-vaccine objective, when routinely protecting vulnerable populations via this approach is

still mostly technocritical.

There have been many modern advancements in mucosal vaccines, in both oral- and nasal-delivery systems. There have

been several mucosal vaccine candidates with exciting preclinical results  and even some promising indications in
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clinical trials . However, most of the candidates have mixed to moderate levels of protection, with observed

variability across different age groups . As a result, there are less than 10 licensed enteric vaccines and less

than five licensed nasal vaccines, which includes two recently approved intranasal candidates against SARS-CoV-2 

.

One of the major challenges in developing mucosal vaccines, which may explain the limited number of approved

candidates, is ensuring a sufficiently immunogenic and durable response. Considering that the mucosal layer constitutes

unique subsets of immune sentinels and a distinct mechanism of protection , growing research is focused on

establishing important targets to stimulate in this context. Novel adjuvanted approaches have been described that may be

unique or optimal to mucosal immunizations and understand the correlates of protection and mucosal triggers, the efficacy

of these vaccines will substantially improve . Similarly, vaccine immunogenicity, especially that of mucosal vaccines, is

effected by microbiome in complex ways . Characterizing how the microbiome impacts vaccine

immunogenicity, may inform precision vaccination approaches. Overall, developing effective mucosal adjuvants may

enable overcoming generally poor immunogenicity and heterogeneity of mucosal vaccines across different age groups.

However, adjuvanted approaches for mucosal vaccines, especially via a nasal route, need to be accompanied with a

particular emphasis on safety. Intranasal influenza vaccine with Escherichia coli heat-labile toxin as a mucosal adjuvant

has been associated with higher risk of developing Bell’s palsy . While the association may be specific to this

adjuvant, not with the specific route of administration, with the evidence that Bell’s palsy is also associated with parental

SARS-CoV-2 mRNA vaccine administration , it is of heightened concern in intranasal contexts, considering its

proximity to cranial nerves and the larger central nervous system.

3.3. Crossing the Aisle—Heterologous Vaccines

While steering the immune response towards either mucosal or systemic immunity draws upon distinct mechanisms, the

two can be combined via heterologous vaccination such as via intramuscular (IM) prime for systemic protection and

intranasal (IN) pull for mucosal protection. For example, an IM prime with an mRNA-LNP vaccine followed by an IN pull

with unadjuvanted spike protein generated robust mucosal and systemic immunogenicity . In contrast, IM + IM or IN +

IN schemes lacked effective coverage in at least one of the forms of immunity. As a proof of concept, this shows the

immense potential in converging these two streams for polyfunctional immunization schemes. Similarly, while IM + IN

schemes have been the key focus in heterologous schemes , future research should explore combining other

routes of administration (e.g., intradermal, subcutaneous, and enteric). Considering how some of these other routes may

provide more robust and/or durable protection in certain antigen/adjuvant combinations, other combinations may prove

more effective.

From a precision medicine perspective, these heterologous schemes can be ideal for immunizing vulnerable populations

by inducing both mucosal and systemic protection. One possible limitation of mucosal vaccines is the partly

compartmentalization of the mucosal immune response from the larger systemic response , as the distribution of the

responses depends on the actual route of induction. This separation of immune apparatuses leads to gaps in potential

protection, which can be further unleased via heterologous schemes. Future studies should investigate novel

heterologous combinations, including the role of adjuvantation to optimize immunogenicity and protection.

4. Putting It Together—Formulating Vaccine Compositions

4.1. Back to Basics: Alum, Polymers, and Lipids

A key aspect of vaccine development is matching an appropriate antigen and adjuvant combination with a formulation for

optimal delivery and efficacy. Interestingly, the most common historical vaccine platforms (alum, polymerized formulations,

and oil-in-water combinations) can be inherently immunogenic, while also enhancing the delivery efficiency of the

vaccines . This translates to a significant enhancement in vaccine efficacy and durability via established

models that can be coupled with other novel adjuvants to boost responses, generating combination adjuvant platforms

such as GSK’s adjuvantation systems .

The framework of matching antigen, adjuvant and formulation can be directly combined with precision medicine

approaches to create novel combinations that enhance responses from targeted populations. As disruptive technologies

and innovations such as artificial intelligence and multifactorial immune-monitoring systems elucidate insights into

systemic immune responses , this information can help guide precision and rational vaccine design . In

fact, many established adjuvant-delivery systems have already been combined with novel candidates to overcome hypo-

responsiveness from both early- and later-life populations . These efforts are developing in parallel to existing
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efforts to modulate the chemo–physical properties of these canonical platforms for improved immunogenicity .

Further, the functionality of certain adjuvants is only unleashed when directly combined with appropriate immune

enhancers, antigens, and/or other adjuvants. Thus, rational combinations of novel with existing systems can help integrate

novel adjuvant discoveries, thereby accelerating vaccine development for vulnerable populations.

4.2. Strength in Numbers: Multimeric Antigenic Systems for Precision Vaccines

One of the key innovations in recent vaccine research includes advances in structure-based antigen design which can

enhance immunogenicity of otherwise weak immunogens, such as fusion glycoprotein of respiratory syncytial virus 

. Structure-based antigen optimization has been widely applied for vaccines against SARS-CoV-2, most commonly

by stabilizing spike protein in trimeric prefusion conformation to improve immunogenicity . More recently, high-

density, multimeric antigens displayed onto protein or synthetic nanoparticles have demonstrated the advantage of

enhancing antigen trafficking to draining lymph nodes and promoting clustering and activation of the B cell receptor, thus

strengthening the magnitude and breadth of immunogenicity . This is of particular importance as waning

immunity is a significant concern, especially for younger children and older adults . Thus, developing novel

multimeric antigenic vaccines can be a powerful strategy to enhance and elongate protection for many vulnerable

populations.

While structure-based antigen optimization is a promising approach to enhance vaccine efficacy especially in vulnerable

populations, vaccines comprised of optimized antigen alone are generally insufficiently immunogenic. Clinical and

preclinical studies which employed a self-assembling, two-component SARS-CoV-2 receptor-binding protein nanoparticle

antigen demonstrated limited immunogenicity in the non-adjuvanted group while adjuvants such as AS03 (GSK) conferred

robust protection . Although it is possible to generalize desirable properties for an adjuvant, a proper match

between an adjuvant and a specific antigen must be empirically evaluated. Evaluation of candidate antigen–adjuvant

combination in pre-clinical models, such as huma in vitro and animal models, that take into account population (e.g., age,

sex, and co-morbidity)-dependent vaccine immunogenicity may enable down-selecting and prioritizing adjuvanted RBD

antigen-based vaccines .

4.3. Adjuvantation via mRNA Delivery Systems—Welcoming LNPs into the Club

While mRNA vaccines do not contain an adjuvant per se, they appear to be self-adjuvated. Indeed their lipid nanoparticle

(LNP) delivery system not only aids in stability and delivery of the vaccine, but also stimulates innate immune responses

that boost the immunogenicity of the encoded mRNA . However, in addition to the LNP adjuvant, additional

adjuvants can be utilized in mRNA-LNP vaccines to boost vaccine efficacy. From canonical adjuvants, such as cGAMP, to

manganese nanoparticles, the stimulator of interferon genes (STING) pathway has been a key target to boost the innate

immune response of an mRNA-LNP vaccine . Further, more advanced LNP platforms containing encoding key

immunological agents such as IL-12 have been used to enhance onco-immunology treatments . These

developments can be applied to enhance vaccines against infectious disease in the near future. Further, both biologic and

small-molecule adjuvants can be tethered to mRNA-LNP platforms without loss of function of antigen or adjuvant

recognition . Thus, traditional adjuvant strategies can be powerfully combined with novel mRNA-LNP technologies to

magnify quantity and quality of immune responses and extend durability of protection for vulnerable populations. Thus, as

the novel mRNA-LNP technology becomes more broad ly applied to immunize against different pathogens, further

adjuvantation is a practical possi bility to enhance these vaccines for populations that were less responsive to the original

vaccine composition. For key components of LNPs, such as ionic lipids and pegylated polymers, rational design,

including, as may be needed, optimization of these vaccine components, not just for their antigen delivery capacity but

also for their inherently self-adjuvanting nature, can inform future vaccine design .
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