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Understanding molecular mechanisms underlying the complexity of allosteric regulation in proteins has attracted

considerable attention in drug discovery due to the benefits and versatility of allosteric modulators in providing desirable

selectivity against protein targets while minimizing toxicity and other side effects. The proliferation of novel computational

approaches for predicting ligand–protein interactions and binding using dynamic and network-centric perspectives has led

to new insights into allosteric mechanisms and facilitated computer-based discovery of allosteric drugs. Although no

absolute method of experimental and in silico allosteric drug/site discovery exists, current methods are still being

improved. As such, the critical analysis and integration of established approaches into robust, reproducible, and

customizable computational pipelines with experimental feedback could make allosteric drug discovery more efficient and

reliable. In this article, we review computational approaches for allosteric drug discovery and discuss how these tools can

be utilized to develop consensus workflows for in silico identification of allosteric sites and modulators with some

applications to pathogen resistance and precision medicine. The emerging realization that allosteric modulators can

exploit distinct regulatory mechanisms and can provide access to targeted modulation of protein activities could open

opportunities for probing biological processes and in silico design of drug combinations with improved therapeutic indices

and a broad range of activities.
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1. Introduction

Allosteric regulation is often a mechanism of choice for proteins and biomolecular assemblies to operate in complex

signalling cascades and to modulate their activity levels, adapting to binding partners in the cellular environment during

signal transduction, catalysis, and gene regulation [ ]. The advances in X-ray crystallography, Nuclear Magnetic

Resonance (NMR), and biophysical techniques have enabled numerous detailed investigations of large protein systems

and conformational dynamic processes at atomic resolution [ ]. These developments

have facilitated the integration of computational and experimental studies of allosteric regulation, eventually leading to

new conceptual outlooks and attempts to develop a unified theory of this allosteric phenomenon. The thermodynamics-

based conformational selection model of allosteric regulation has been particularly fruitful in explaining a wide range of

experiments by assuming that a statistical ensemble of preexisting conformational states and communication pathways is

inherent to any protein system and can be modulated through allosteric ligand perturbations [ ]. While

great leaps have been made in the field of molecular modelling, NMR spectroscopy, and X-ray crystallography, it should

be noted that no single method can provide allostery information for all cases due to the complexity and incomplete

understanding of allosteric phenomena.

2. Integrated Computational Approaches and Tools for Allosteric Drug
Discovery

Understanding molecular mechanisms of allosteric regulation in proteins has attracted considerable attention in both

academia and industry owing to the importance of discovering allosteric modulators of therapeutically important targets

[ ]. These efforts are motivated by fundamental differences in structural and evolutionary diversity between active and

allosteric sites even among structurally similar proteins of the same family. While active sites for structurally related

proteins and protein families are often highly conserved and present a formidable challenge for design of selective

modulators, allosteric binding is typically more dynamic and structurally and evolutionarily diverse, thereby often

alleviating conceptual difficulties in the design of target-specific therapies and addressing lingering problems of toxicity

and side effects [ ]. Another important incentive for the development of allosteric drugs is that, while traditional

orthosteric drugs usually inhibit protein activity, allosteric modulators may not only inhibit but also increase protein activity

(allosteric activators) [ ]. In the last decade, drug discovery has been shifting its focus toward targeting allosteric sites in
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order to improve compound selectivity [ ]. Allosteric drugs also feature distinct physicochemical

properties, adding further freedom for discovery of novel active compounds, and can often be combined with orthosteric

drugs into synergistic drug cocktails to modulate and improve enzyme activities, specificity, and pharmacological profiles.

While orthostery-based therapies have enhanced the quality of life for patients, they have brought forth many daunting

challenges for which allostery may provide new solutions. Drug discovery against more diverse protein targets can result

in less toxic and more specific therapies. The incorporation of dynamic and network analysis tools has proven their

effectiveness in drug discovery studies of several target proteins [ ] and offer a promising direction for the

analysis of large datasets [ ]. With the maturation of open-source projects, the availability of cheaper computation, and

large datasets, in silico simulations are a very attractive venture for early-stage drug discovery as they offer cost-effective

drug development. The integration of such approaches into robust, reproducible, and customizable workflows should

make in silico allosteric drug discovery more efficient and reliable. In this review article, we discuss how the integration of

state-of-the-art structural, dynamic, and network-based approaches for simulation of ligand–protein binding can provide a

comprehensive methodological framework for advancing computer-aided discovery of allosteric sites and allosteric

modulators of protein functions and mechanisms.
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