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The increasing use of electronic health record (EHR)-based systems has led to the generation of clinical data at an

unprecedented rate, which produces an untapped resource for healthcare experts to improve the quality of care.

Despite the growing demand for adopting EHRs, the large amount of clinical data has made some analytical and

cognitive processes more challenging. The emergence of a type of computational system called visual analytics

has the potential to handle information overload challenges in EHRs by integrating analytics techniques with

interactive visualizations. 
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1. Introduction

In recent years, medical organizations are increasingly deploying electronic health record (EHR)-based systems

that generate, store, and manage their data. Therefore, the amount of data available to clinical researchers and

clinicians continues to grow at an unprecedented rate, creating an untapped resource with the capacity to improve

the healthcare system . The EHR-based systems are used to detect hidden patterns and trends, monitor patient

conditions , reduce medical errors , detect adverse drug events , and ultimately improve quality of care 

. However, despite the evidence showing the benefits of EHR-based systems, they rarely improve healthcare

experts’ ability to make better clinical decisions by having access to more comprehensive information . Access

to large volumes of clinical data has made some analytical and cognitive processes more difficult for healthcare

experts. As the amount of data stored in EHRs continues to grow exponentially, and new EHR-based systems are

implemented for those already overrun with too much data, there is a growing demand for computational systems

that can handle the huge amount of clinical data.

Visual analytics (VA) systems have shown significant promise in addressing information overload challenges in

EHRs by combining analytics techniques with interactive visualizations . For a VA system to work well, there

must be a strong coupling among all its components . Such components include but are not limited to tasks,

interactive visual representations, and analytics techniques. Analytics has the potential to facilitate healthcare

experts’ clinical decision-making process by using techniques from various fields such as statistics, machine

learning, and data mining. Completing analytics, interactive visualizations allow healthcare experts to explore the

underlying data, alter the representations, and guide the analytics techniques to accomplish their tasks .

VA systems fuse the strengths of both analytics techniques and interactive visualizations to support the execution
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of EHR-driven tasks. VA is needed to support the intuitive analysis of EHRs for healthcare experts while masking

the data’s underlying complexity. Clinical researchers can use VA to perform population-based analysis and gain

insights from large volumes of patient data. Moreover, VA can also support physicians in tracking symptom

evolution during disease progression and creating and visualizing detection models for disease surveillance 

. The complex and diverse challenges and applications of VA in the analysis and exploration of EHRs have

led to the development of several EHR-based VA systems, which aim to fulfill the computational and cognitive

needs of healthcare experts.

2. EHR-Based Visual Analytics Systems

DecisionFlow  is a VA system that supports the analysis and exploration of temporal event sequences in high-

dimensional datasets. It allows users to test different hypotheses regarding the factors that might affect the patient

outcome and compare multiple complex patient event pathways by integrating on-demand statistical analysis

techniques with interactive flow-based visualization. DecisionFlow helps users to specify a subsequence of interest

with a milestone-based query interface. Then the matching data is aggregated to generate a DecisionFlow graph

that contains a linear sequence of nodes (i.e., milestones) connected by directed edges. The system then analyzes

the graph to extract multiple statistics (e.g., gender and age distributions and edge summary statistics). The system

includes three main linked views-namely, the temporal flow view, edge overview view, and event statists view. The

temporal flow view visualizes the DecisionFlow graph using a directed graph of nodes representing milestones

where nodes are mapped to grey rectangles and are arranged in temporal order from left to right. The edges that

connect these nodes are represented by two marks—namely, the time edges and the link edges, and they are

color-coded to encode the average outcome. The edge overview panel summarizes the subsequence of interest

that are returned from the query interface by showing multiple aggregate statistics. The event statistic view displays

a color-coded bubble chart that represents different edge summary statistics.

RetainVIS  is a VA system that assists healthcare experts in the exploration of patient medical records in the

context of risk prediction tasks. It provides users with the means to investigate common patterns in a patient’s

history to identify which medical codes or patient visits (i.e., sequence and timing) contribute to the prediction

score. It can also help users to conduct different what-if analyses by testing hypothetical scenarios on patients

(e.g., edit/add/remove medical code, alter visit intervals). Furthermore, RetainVIs allows users to provide feedback

to the model based on their domain knowledge if the model acts in an undesirable manner. RetainVIS generates

prediction scores based on the RetainEX technique, a bidirectional recurrent neural networks (RNN) model that

harnesses the temporal information stored in patient records (e.g., time intervals between patient visits). It

increases the interpretability and interactivity of models by calculating code-level and visit-level contribution scores.

This system integrates RetainEX with multiple interactive visualizations. The Overview summarizes patients

regarding their contribution scores, medical codes, and predicted diagnosis risks using a scatter plot, multiple bar

charts, an area chart, and a circle chart. Patient Summary shows a temporal summary of the selected patients. It

contains a table, a code bar chart, and a contribution progress area chart. Patient Summary provides a summary

description of the selected patients and represents aggregated contribution scores of medical codes over time and
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their mean contribution scores. Patient List shows selected patients in a row of rectangles. It allows users to

compare and explore multiple patients and select a patient of interest to view their details in the Patient Details

view. Patient Details view is composed of a line chart of prediction scores, a temporal code chart of contribution

scores of medical codes, and a code bar chart representing the most contributing medical codes for each patient.

Finally, Patient Editor represents each patient visit horizontally in a temporal order and lists medical codes for each

visit downwards. It allows users to test hypothetical scenarios by changing the date of the visit or inserting new

medical codes into a visit. Once the user changes are complete, the system generates the new model and returns

the new predicted risk and contribution scores on top of the original records.

DPvis  is a VA system that supports clinical researchers in interactively discovering and exploring disease

progression patterns and studying interactions between such patterns and patient’s characteristics. It also allows

users to test and refine hypotheses for multiple clinically relevant subgroup cohorts in an ad hoc manner. DPVis

models disease progression pathways by characterizing a patient’s clinical course as a sequence of transitions

between multiple states where each state describes a co-occurring pattern of observed symptoms and variables.

Then, it uses a class of unsupervised models, namely- continuous-time hidden Markov models (CT-HMMs), to

discover these hidden states and state transitions from large-scale longitudinal patient records. These models

identify associations between disease progression patterns and various observed variables and predict a patient’s

future states. DPVis combines the outcome of HMM models with interactive visualizations to assist medical experts

in interpreting these models and clinically make sense of the discovered patterns.

DPVis is composed of seven linked views. The Static Variable Distribution view contains a list of selected

measures in a horizontal bar chart. The Observed Attributes view contains feature matrix, feature distribution,

feature heatmap over time, and feature over time. It summarizes all the characteristics of disease states that are

discovered by HMM. State Transitions view shows multiple representations of state-to-state transition patterns over

a series of visits or over time. It includes four views-namely, Pathway over Observation, Pathway by Time Unit,

Pathway Waterfall, and State Transition Chord Diagram. Frequently Occurring State Transition Pattern view shows

a list of frequently occurring state sequential patterns. Subject Timeline represents an individual patient’s

observations over time. It contains Dual Kernel Densities view and Subject List view. State Sequence Query

Builder allows users to create and refine cohorts based on state transitions. Cohort view enables users to load and

save intermediate results. Once users create more than two cohorts in the Cohorts view, they can trigger the

Comparison Mode between the selected views. This selection then turns all views into the Comparison Mode.

The VA system for pharmacovigilance in electronic medical records developed by Ledieu et al.  integrates a

modified version of the Smith–Waterman (SW) sequence alignment algorithm with an interactive web interface to

detect inappropriate drug administration and inadequate treatment decisions in patient sequences. The SW

algorithm is used to compare a reference sequence (i.e., a sequence specified by the user) and a patient’s

sequence, where each sequence is considered a string of characters. Each character in the sequence represents a

clinical event, such as a laboratory test result or a drug administration. The algorithm calculates a similarity score

for each comparison. A high similarity score corresponds to a higher similarity between the reference and the

patient sequences. This VA system allows users to create the reference sequence(s) in a query interface. It
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provides them with a visual dictionary of event types (e.g., the discretized numerical events are encoded by color-

coded squares or the direction of arrows represents the trend of change) in a grey rectangular area. To form a

pattern, users can drag and drop these icons down to a query line. The system also enables the user to indicate

time-constraint events in the query. The adopted SW algorithm returns the search result, which is displayed as a

list of patients and their corresponding sequences, sorted based on their similarity score to the reference

sequence. Each sequence is aligned to the reference pattern or its closest match. The time interval between the

time-constraint event and the aligned events is shown by a vertical line along with the time duration in days on top

of it.

Gotz et al.  develop a VA system to explore and query clinical event sequences stored in EHRs by combining

on-demand analytics with visual queries and interactive visualizations (Figure 1). The visual query module provides

an intuitive user interface that enables users to retrieve cohorts of patients that satisfy complex clinical episode

specifications. Users can define a clinical episode by specifying milestones, time gaps, preconditions (i.e., a set of

constraints that should be satisfied before the starting milestone), and outcome measures in the query interface.

Upon submission of the query, the system returns a set of matching patient event sequences. The returned event

sequence for each patient includes the specified milestones and several intermediate events that occur between

milestones. Each episode is subdivided into a series of intermediate episodes at each milestone.

Figure 1. The screenshot of the VA system developed by Gotz et al.  including, the visual query panel, the

milestone timeline, the cohort overview, and the pattern diagram. Source: Reprinted with permission from ref. ,

Copyright (2014), with permission from Elsevier.

Frequent pattern mining (FPM) is then performed first on the overall episode as well as on each of the intermediate

episodes that are retrieved by the visual query module. The FPM engine includes two main components-namely,

the frequent pattern miner and the statistical pattern analyzer. The frequent pattern miner uses the bitmap-based

Sequential PAttern Miner (SPAM)  algorithm for pattern discovery. SPAM employs a search strategy that
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combines a depth-first traversal of the search space with an efficient pruning mechanism. It takes a set of event

sequences and a user-specified support as inputs and returns a set of frequent patterns as an output. Then the

statistical pattern analyzer computes correlations (e.g., Pearson correlation, odds ratio, and information gain)

between the mined patterns and the outcome measure. Finally, an interactive visualization allows users to explore

the results and discover temporal patterns. The interactive visualization component is composed of three linked

views. The cohort overview shows the age and gender distributions for patients that satisfy the query

specifications. The milestone timeline represents the sequence of milestones using a series of ordered, vertical

grey bars. The bars are connected by color-coded edges, where each edge has two parts-namely, the time edge,

and the link edge. The time edge maps the mean duration between the milestones while the link edge connects the

bars to show sequentially. The pattern diagram shows the set of patterns mined from the part of the episode that is

selected in the milestone timeline in a scatter plot where the x and y axes encode the level of support for a specific

pattern for patients with positive and negative outcomes, respectively.

The VA system developed by Simpao et al.  facilitates the dynamic and continuous monitoring of medication

alerts and care providers’ responses through an automated, user-friendly dashboard. It allows pharmacists and

care providers to examine and filter the alert data based on patient location and ordering provider type and to

identify which specific orders triggered the drug-drug interaction alerts. This VA dashboard is an integral part of a

hospital quality improvement initiative to improve medication safety and reduce alert fatigue by deactivating

irrelevant alert rules. The system is developed in collaboration with a clinical decision support committee that is

asked to perform three interventions to deactivate irrelevant drug-drug interaction alert rules. The impact of these

interventions on pharmacists’ alerts and override rates is analyzed using an interrupted time-series framework with

piecewise regression. Baseline IQRs and median rates are compared to IQRs and median rates following three

intervention phases of drug-drug interaction deactivations and are tested for statistical significance using the

Wilcoxon rank-sum test. The user interface of this system includes a central display area with graphical and tabular

data representations. Medication alert and override rates, different alert types, and various care providers, and

patient characteristics are displayed and explored at a specific time point or across a user-defined time interval

using multiple filters and limits.

The MOSAIC dashboard system  aims to support the prediction and diagnosis of type 2 diabetes mellitus

(T2DM) by analyzing clinical and home monitoring data. The system integrates a data querying and mining

technique with an interactive user interface to assist caregivers in devising management strategies and therapeutic

interventions for T2DM complications. The mining techniques are triggered by the query module that is responsible

for retrieving the data from the i2b2 data warehouse, calling the proper data mining technique, and sending the

results back to the user interface. The data mining module implements several temporal analytics models such as

temporal abstractions, the care flow mining algorithm, drug exposure pattern detection, and risk prediction models

for T2DM complications. Temporal abstractions are extracted using the Time Series Abstractor (JTSA) tool that

provides a library of techniques that can be employed for time-series processing and abstraction . The care flow

mining technique uses the temporal sequence of events to determine the most frequent clinical pathways patients

experience during their care process, automatically generating groups of patients with similar care histories .

The proportion of days covered is used to summarize the dug purchase patterns using the data gathered from
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administrative resources. Finally, several risk prediction models are generated to estimate the risk of T2DM

complications .

The graphical user interface of MOSAIC has two primary components designed for (1) clinical decision support and

(2) outcome assessment on populations of interest. The clinical decision support system dashboard is composed

of three sections-namely, metabolic control, frequent temporal patterns, and drug purchase patterns. The metabolic

control evaluation section is based on a “traffic light” metaphor to enable quick assessment of the control level of

certain parameters. The frequent pattern mining section is composed of a scatter plot and a timeline plot. The drug

purchase graph shows all the purchases made by a patient for each drug class using a scatter plot. The outcome

assessment dashboard provides an overview of the treatments’ outcomes on the population of patients with T2DM

to clinical researchers. It includes summary charts that represent patient counts grouped by clinical and

demographic variables. It also shows the most frequent temporal patterns of the patients selected in the summary

chart using timeline graphs.

VisualDecisionLinc  is a VA system that helps clinicians to identify subpopulations of patients with similar clinical

characteristics and to understand the risks and effectiveness of different treatment options for these

subpopulations using psychiatric patients’ data with major depressive disorder (MDD). The system aims to improve

and simplify the decision-making process by reducing the number of available therapeutic options to those that

have proven to be most effective with minimal side-effects. To define the MDD comparative population,

VisualDecisionLinc uses a patient data-driven approach where the patient’s medical profile is used as ‘seed’ data

(i.e., patients with a primary diagnosis of MDD and their last prescribed medications) to identify a comparable

group of patients with similar clinical characteristics. At the computational level, the system creates a bin for each

medication and inserts patients into bins of their prescribed medication. At the same time, the system tags patients

based on their treatment outcome response, which is reported in the database in the form of a clinical global

impression (CGI) score. CGI score is a seven-point scale that offers a brief score of the clinician’s assessment of

the severity of the patient’s illness prior to and after starting treatment. A lower CGI score indicates a better

treatment outcome for the patient. After the binning process is done, the system uses additional computational

processes to quantify the collective comparative MDD patient response into a ‘% Patient Improved’ score.

VisualDecisionLinc is composed of five linked views. Data view of patient demographics shows patient

demographic data such as age, gender, and race, to name a few. Data view of summarized medication response

displays ‘% Patient Improved’ score and the absolute number of patients that are used to compute this score.

Color-coded dots placed next to the medication names encode the ‘% Patient Improved’ score greater than 10

(green dots) and less (red dots). Data view of comorbidities shows a list of comorbid conditions among patients on

a selected medication from the summarized medication view. Data view of contextual patient treatment outcome

shows the CGI score of a patient over time. It also displays prescribed medications and their timespan using

horizontal bars below the CGI temporal view. Finally, the data view of median-based historical response to

medication shows the historic outcome response to the selected medication. Blue and red lines reflect the median-

based historical trend in medication outcome from the comparative populations and patient’s response to the

selected medication in the past, respectively.
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Care Pathway Explorer  is an interactive hierarchical information exploration system that can help physicians

analyze patients’ longitudinal medical records. The system provides an overview of the frequent patterns that are

mined from patient event sequences. The physician then studies these patterns and interactively selects patterns

of interest for more details. The system computes the group of patients that match the physician’s specified sub-

traces. Then the event traces for those patients are extracted using a deeper level of the user-specified hierarchy.

The system feeds these traces to the frequent pattern miner engine, which mines frequent patterns and analyzes

how these patterns are associated with outcomes using a modified version of the SPAM algorithm . The patterns

are then visualized alongside meaningful statistics.

The visual interface of Care Pathway Explorer features two complementary views. The overview contains a bubble

chart and represents events of the most frequent patterns mined by the frequent pattern miner engine. Each

bubble encodes a medical event that occurs frequently among patients and is computationally positioned close to

events with which it most frequently occurs to show an overview of clusters of patterns. The flow view shows how

bubbles connect to each other using a visualization similar to the Sankey diagram. Events in the most frequent

patterns are encoded by nodes, and event nodes belonging to the same pattern are connected by edges. Both

bubbles and patterns are color-coded according to their association with the outcome, which is determined by the

Pearson correlation.

RegressionExplorer  is an interactive VA system that enables clinical researchers to quickly generate, compare,

and evaluate many regression models. It also helps to formulate new hypotheses and steer the development of

models by allowing the user to compare candidate models across several subpopulations. Upon loading the

dataset and selecting the appropriate responder that captures the condition of interest, the system allows the

researcher to analyze the one-to-one relationships between each covariate and the responder by performing a

univariate analysis. The results are displayed as colored rectangles next to the variable names in the univariate

analysis view. The significance level of an effect is determined using p-value, where a lower p-value results in a

higher level of significance and a more saturated color. Red represents a positive effect, while blue represents a

negative effect. Next, the system allows the user to perform stepwise multivariate analysis by dragging variables

from the list of variables to the variable selection view. After each selection, the system generates a new model

displayed as a single row of the multivariate model matrix. Columns in the matrix show the levels of significance for

the included covariates following the same convention as for the univariate view. The system also displays

histograms, along with some basic descriptive statistics for all the covariate distributions to provide basic checks

and interpretation during analysis.

Another integral part of the RegressionExplorer is subgroup analysis that allows the user to gain more insight into

the subpopulations throughout the univariate and multivariate analysis. To support subgroup analysis, the system

enables the user to drag and drop a variable from the univariate analysis view to the population view, which leads

to the partition of the population. If the user drops another variable into the population view, all the previously

created subpopulations are partitioned recursively. The subpopulation tree is represented as an icicle plot. The

system follows the same basic approach for both univariate and multivariate analysis when handling
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subpopulations. The primary difference is that the cells that used to show significant effects are now subdivided

into sub-cells (i.e., icicle plots).

The VA system developed by Mica et al.  helps guide patient assessment and therapeutic decisions for

physicians using severely injured patients’ clinical data in a trauma center (Figure 2). The system allows the user to

filter cohorts of patients based on multiple parameters, including age, body temperature, injury severity score (ISS),

multiple lab results, and abbreviated injury scale (AIS) score. With every change of the filtering criteria, a query is

sent to the server to extract a group of patients that satisfy the query specifications using several algorithms such

as statistical frequency grouping, time interval simplification, and consecutive event merging. The system enables

the user to explore the results using a variation of the Sankey diagram. Each node in the graph encodes a medical

state (e.g., treatment or outcome), and each link encodes transitions between consecutive states in the cohort of

interest. The height of nodes and links represents the relative number of patients that share the state and

transition, respectively. The color encodes the ratio of patients that develop the outcome of interest. Statistically, to

justify the distribution of patients based on clinical scores, the system integrates binary logistic retrogression along

with receiver operating characteristic (ROC).

Figure 2. The screenshot of the VA system developed by Mica et al.  shows the pathway of the early death

outcome of a hypothetical patient with an age of 35 years, an ISS of 35, and a temperature at admission of 35 °C

using a Sankey diagram. Source: Reprinted with permission from ref. , Copyright (2020).

Visual Temporal Analysis Laboratory (ViTA-Lab)  integrates temporal data mining techniques with query-driven

interactive visualizations to support a knowledge-based exploration of time-oriented clinical data and the discovery

of interesting patterns within it. ViTA-Lab is composed of three main interfaces. The main visualization interface

provides an overview of the longitudinal concepts and the distribution of derived temporal abstractions (TA) for

individual and multiple patients at different temporal granularities. It provides the user with a knowledge-based

browser and a graphical widget for selecting an individual patient or a group of patients. It uses a scatter diagram
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over time and a modified version of the bar chart visualization technique to show the distribution of TAs and help

the user discover trends in these distributions.

The temporal association chart (TAC) allows visual exploration and discovery of probabilistic temporal associations

among the distributions of various abstract concepts at different times. TAC’s input is a group of patients and a set

of concepts that are chosen within the same or a different time window panel. The system calculates the

distributions of values for each concept within the chosen time. Each concept is represented by a rectangular bar.

The corresponding data values between two consecutive concepts for each patient are linked. Multiple links,

including the same pair of values for a group of patients, are aggregated into a temporal association rule. This rule

indicates the probability of having the second concept’s value, given the first concept’s value, and the total

frequency of that combination. Thus, a group of patients who have this specific combination of values from two

concepts, simultaneously or at different times based on the user-specified time period, is represented by a

temporal rule.

The pattern explorer supports the exploration of temporal patterns that are discovered by data-driven

computational techniques. It works based on a version of the KarmaLego algorithm, which is used for the discovery

of frequent temporal patterns . Components of the output’s temporal pattern (a pair of concept and value) are

represented by horizontal lines that are ordered according to each component’s start time, maintaining, in a

proportional fashion, the mean duration of each component and of the time gaps among components. The color of

the same type of component in all patterns stays the same. The pattern explorer allows the user to recognize the

meaning of a temporal pattern, that is, which components make up the pattern, and what temporal associations

such as overlaps, before, or after hold between them.

RadVis  is a VA system that supports psychiatrists in analyzing and exploring multidimensional medical datasets

for patients who have dementia (Figure 3). It allows the user to get a better understanding of the characteristics of

patient clusters and analyze the variable values of data comprising each cluster at the same time. The system

enables the user to select variables of interest from “Variable Selection Menu” and select “Cluster Segmentation

Menu” to segment clusters of patients based on their traits. The user can choose the number of clusters for

segmentation after selecting either a forgy cluster or a random cluster algorithm. Following either of the clustering

algorithms, the cluster’s central value is calculated based on the number of clusters. After the Euclidean distance

between the central value and each node is calculated, multiple nodes are included to obtain clusters of similar

value. This process is repeated until the central value stays constant.
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Figure 3. The screenshot of RadVis  combing 3D RadVis and parallel coordinates. Source: image used under

CC-BY 4.0 License.

RadVis displays the distribution of data instances using 3-dimensional radial coordinate visualization (3D RadVis)

that prevents node overlap. Furthermore, it facilitates the distribution of several nodes into optimum positions

regardless of the number of dimensions. A patient with dementia is represented by a single node in this

visualization. Nodes are color-coded according to the cluster they belong to. RadVis also supports a multi-filtering

function through parallel coordinates plot to assign different conditions for a more comprehensive analysis. The

parallel coordinates plot is used to display both categorical and numerical variables. It allows the user to check a

value that satisfies a specific condition in the 3D RadVis. It also displays the variable values of a node that is

selected in the 3D RadVis.

The predictive VA system developed by Sun et al.  aims to predict the risk and timing of deterioration in

hypertension control using EHRs. The system is composed of three main modules. The feature engineering

module converts clinical data into a feature matrix and a target label vector that can be used to build the predictive

model. The target label is derived based on the physician’s assessment of blood pressure control status as in-

control (i.e., positive) versus out-of-control (i.e., negative). The positive and negative transition points (from an

episode of positive (negative) assessment points into negative (positive) points) are considered as target labels for

the prediction model. Next, to turn event sequences into feature variables, the system specifies an observation

window for each feature concept (e.g., diagnosis concept). It then aggregates all the events of the same feature

concept within the observation window into a single value. The system then applies a two-level feature selection

process. In the first level, within the same concept, features are chosen based on the information gain. Then a

greedy forward selection algorithm is used to choose which concepts to keep. In the next step, the system starts

iteratively combining features from different concepts until the combination fails to improve the performance of the

prediction. Finally, various techniques, such as naive Bayes, logistic regression, and random forests, are used to

generate transition point models. The system allows the user to explore the prediction results and other events

through interactive visualization. An individual patient’s timeline is represented by a line, and each hypertension

control assessment event is represented by a circle. Red and blue circles represent in-control and out-of-control

blood pressure episodes, respectively.
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The VA system developed by Guo et al.  helps clinicians to explore medical records from both multivariate and

temporal perspectives and identify and analyze similar records (Figure 4). The system integrates an unsupervised

learning-based technique with interactive linked views to support physicians in several tasks such as finding similar

records based on a focal patient record, comparing patients’ medical feature values at a specific time point, or

identifying (dis)similar time stamps among similar records. The system provides two overviews of all patients: One

is for patients’ similarities according to the combination of tests taken during the collected time period, and the

other view shows patient’s similarities according to the test values. To create the first overview, the system applies

the Jaccard index  to compute the similarity. Then it extracts clusters of similar patients by combing a

dimensionality reduction (DR) technique (i.e., t-SNE) and a density-based clustering method (i.e., HDBSCAN). For

the second overview, the system first calculates the similarity of each pair of the test records and then similar to the

other overview; it applies t-SNE to visualize the similarity relationships. To visualize the clustering information, each

point (i.e., each patient’s record) is colored based on the assigned cluster-ID. The system allows the user to select

a patient of interest from these overviews. It then automatically searches for the top-3 similar patients based on the

pre-computed similarities. The system uses autoencoder-based event embedding  and sequence to sequence

learning (seq2seq)  technique to handle various event types and convert records with different lengths to vectors

of the same length. Then, it computes the similarity of each pair of patients using a certain distance metric, such as

the Euclidean distance. The system provides multiple line charts to show changes of dissimilarities of test records

over time between the patient of interest and top-3 similar patients and to visualize a statistical overview of the

focal and top-3 similar patients.

Figure 4. The screenshot of the VA system developed by Guo et al. . (a,b) display each neonate’s similarities of

tests taken and the records of test values, respectively. (c) shows changes of dissimilarities of test records over

time between the neonate chosen from (a,b) and top-3 similar neonates. (d) displays a statistical overview of the

chosen neonate and top-3 similar neonates. (e) provides all the test results at the selected time in (c) or (f). (f)

displays the temporal changes of values of the chosen test in (d) or (e). (g) lists all medical test names. Source:

Reprinted with permission from ref. , Copyright (2020), with permission from Elsevier.
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SubVIS  is a VA system to support medical experts in interpreting high-dimensional clinical data and exploring

subspace clusters from different perspectives (Figure 5). It enables the user to analyze each subspace

independent of its association to a certain clustering technique. It allows the use of every subspace clustering

technique available at OpenSubspace Framework . SubVis allows a three-level exploration of data and clusters

through its interface. The first level provides the user with a general overview of all the detected subspace clusters,

their properties, and the distribution of dimensions within each subspace cluster using interactive bar charts. A

matrix-based heatmap is also available to give more details on the association between the pair-wise distance. The

second exploration level allows the user to choose a subset of relevant clusters in the multidimensional scaling

(MDS)  plot to get an aggregated overview of the cluster members in an aggregation table. The distance

between various clusters in the MDS plot shows their pair-wise similarity. SubVis contains various similarity

measures, such as Overlapping, Jaccard Index, and Dice Coefficient. The system enables the user to inspect the

distribution of the cluster members in every dimension for each cluster. In the last exploration level, a table-lens-like

view  supports the exploration of the actual data records and provides interactive coloring and sorting of the

record and its dimension.

Figure 5. A screenshot of SubVIS  including (A) MDS projection plot, (B) MDS small multiples, (C) barcharts

showing the distribution properties of the subspaces, (D) heatmap, (E) aggregation table, and (F) table lens.

Source: image used under CC-BY License.

The VA system developed by Huang et al.  supports the interactive exploration of patient trajectories to assist

physicians and clinical researchers in identifying chronic diseases and determining how a group of patients with

chronic diseases might go on to develop other comorbidities over time (Figure 6). The system first aligns patient

trajectories based on the time they are diagnosed with a specific chronic disease. Then once the user specifies the

time windows, the patient trajectories are divided based on their timestamps, and patients within the same time

window are aggregated into one. The system then clusters the patient records at each time window based on a

similarity measure and creates a set of cohorts. The system supports frequency-based cohort clustering and

hierarchical cohort clustering techniques. A cohort of patient trajectory network is built based on the clustering
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result where each node represents a cohort at a time window, and each edge shows the relationship between two

cohorts at consecutive time windows where their members overlap. The system allows the user to filter edges

using the variance-based association filtering technique by adjusting the entropy threshold. When the threshold is

zero, only associations between fully overlapped cohorts are shown; in the case when the threshold is high, all

associations are visualized. A Sankey-like timeline then visualizes the output results. The nodes are color-coded

based on the unique comorbidities, and the color of the edges is determined by the two nodes it connects (i.e., a

gradient for smooth transitions). Each cohort has a label that shows its dominant features. In addition, the

cardinality of both nodes and edges are represented by their height.

Figure 6. The screenshot of the VA system developed by Huang et al.  shows the result of frequency-based

cohort clustering using a Sankey diagram. Source: image used under CC-BY 4.0 License.

CarePre  is a clinical decision assistance system that supports the exploration and interpretation of deep

learning prediction models that are developed to predict future diagnosis events for a focal patient based on their

medical background. It assists physicians in making more informed decisions by letting them analyze contributing

factors in prediction results and explore the outcomes of possible treatments through interactive visualizations.

CarePre allows the physician to input potential diagnoses (based on the patient’s symptoms and tests) for a focal

patient into the system. The system then automatically estimates the risk of future diseases for the patient based

on their medical history using a state-of-the-art deep learning technique and allows the physician to explore the

results and the details of the historical medical records in the prediction view. The prediction view shows the
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patient’s event sequence leading up to the time point of prediction, which is represented by rectangular nodes

arranged horizontally in order of their occurrence. The predicted likelihood of each diagnosis is also displayed as a

series of rectangular nodes where the color saturation for each node shows the prevalence of the predicted

diagnosis across the records for a population of similar patients.

In the next step, the physician can specify a query to retrieve a group of similar patients to help interpret the

prediction results. CarePre measures similarity between sequences by computing the similarity between each pair

of events using the Euclidean distance of the corresponding event vectors. It then displays event sequence data for

the focal patient as well as a group of similar patients. It also aggregates the event sequences for similar patients

into a flow-based visualization to allow a one-to-many comparison between the focal patient and a group of similar

patients and to show the overall evolution of treatments and diseases over time. Lastly, the physician can explore

alternative treatment plans and identify the key factors that contribute to the prediction result through various

interactions such as editing the focal patient’s events (e.g., adding events, changing the order) in the prediction

view and comparing the edited event sequence in the outcome analysis view.

Peekquence  is a VA system that aims to make the frequent sequence mining results more interpretable by

allowing the user to explore the patterns by ranking them based on their variability or correlation to the outcome. It

can also integrate patterns with a patient timeline to help the user understand where the patterns occur in the

actual data. Peekquence uses the SPAM  frequent sequence mining algorithm to detect the most frequent

sequences. The system uses four linked views to visualize the result of SPAM on the patient’s medical records. All

the views use an event glyph to visualize the event sequences. The event glyph represents each unique event type

appearing in the mined patterns by a circle and is color-coded based on a categorical ontology. These event glyphs

are labeled with an abbreviation of the name of the event type. The sequence network view displays the frequency

of co-occurring events within patterns that are mined using SPAM. The event types are represented by the nodes,

and the two co-occurring nodes within patterns are connected by an edge. The pattern list view displays all the

mined patterns, aligned vertically. Each row represents a pattern that is visualized as a sequence of circular event

glyphs. Furthermore, the association of the patterns with the outcome is represented by the stacked bar chart next

to the sequence. The event co-occurrence histogram view shows the frequency of co-occurring events with a

selected pattern from the pattern list view. Each event type is represented by a bar partitioned into three blocks to

show events occurring before, within, and after the chosen pattern. Lastly, the timeline view displays the patient’s

event sequences aligned according to the selected pattern.

PHENOTREE  is a hierarchical and interactive phenotyping VA system that allows physicians to participate in

the phenotyping process of large-scale patient records. It enables the user to explore patient cohorts, and to

create, interpret, and evaluate phenotypes by generating and navigating a phenotype hierarchy. The system uses

the sparse principal component analysis (SPCA) to identify key clinical features that describe the population given

a cohort or sub-cohorts of patients. These key clinical features are used to build deeper phenotypes at finer

granularities by expanding the phenotype hierarchy. Patients that are associated with each key feature are grouped

into individual sub-cohorts. The system then iteratively applies the SPCS to each sub-cohort of patients created in

the previous step. PHENOTREE assists physicians in identifying groups of phenotypes and their corresponding
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patient sub-cohorts at different granularities through this process. The system utilizes the radial Reingold-Tilford

tree to visualize the results. Each node in the tree represents a structured phenotype and a sub-cohort

characterized by this phenotype.

VALENCIA  is a VA system that aims to address the challenges of high-dimensional EHRs by integrating several

dimensionality reduction (DR) and cluster analysis (CA) techniques with real-time analytics and interactive

visualizations (Figure 7). VALENCIA’s analytics engine has two components—namely, DR and CA engines. The

DR engine incorporates several DR techniques to transform EHRs from the high-dimensional space to one with

lower dimensions. The CA engine then uses several clustering techniques to classify the data points in this low-

dimensional space into meaningful groups with similar characteristics. VALENCIA allows the user to choose the

most appropriate combination of DR and CA techniques and explore the results through two main views—namely,

DR and CA views. The DR view has four subviews, including raw-data, projected-features, association, and

variance subviews. These subviews allow the user to choose their features of interest, select the DR technique,

adjust the configuration parameters, investigate how features are associated with transformed dimensions, and

choose dimensions to be included in the CA engine. The CA view has three subviews—namely, hierarchical

subview, frequency subview, and projected-observation subview. These subviews allow the user to examine the

hierarchical structure of the CA results, choose the CA technique and configuration parameters, and observe the

distribution of features in each subset of the data.

[53]
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Figure 7. The screenshot of VALENCIA  showing (a) the DR view and (b) the CA view. Source: image by

authors.

VISA_M3R3  is a VA system that allows clinical researchers to identify medications or medication combinations

that are associated with a higher risk of acute kidney injury (AKI) (Figure 8). The system incorporates regression,

frequent itemset mining, and interactive visualization to help the user explore the relationship between medications

and AKI. The analytics module of Visa_M3R3 is composed of two components. The first component is the single-

medication analyzer that focuses on finding associations between individual medications and AKI using multivariate

regression. The multiple-medications analyzer aims to identify associations between medication combinations and

AKI using frequent itemset mining and regression. All models are validated through Bonferroni correction and

represented in multiple interactive views. The regression models generated from single-medication and multiple-

medications analyzers are represented in two scatter plots in the single-medication and multiple-medication views.

The output of the frequent itemset mining is shown using a chord diagram in the frequent-itemset view. The user

can filter and control the information presented in other views using sliders in the covariates view. Finally, the

medication-hierarchy view displays additional information regarding data elements using a data table.
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Figure 8. The screenshot of VISA_M3R3  showing (A) the single-medication view, (B) the multiple-medication

view, (C) the covariates view, (D) the data table, and (E) the frequent-itemset view. Source: Image by authors.
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