

Omalizumab for Patients with Severe Allergic Asthma

Subjects: **Allergy**

Contributor: Ioanna Tsionprou

Evidence suggests that omalizumab improves asthma control and reduces the incidence and frequency of exacerbations in patients with severe allergic asthma. Omalizumab is also effective in those patients in reducing corticosteroid use and healthcare utilization, while it also seems to improve lung function. Several biomarkers have been recognized in predicting its efficacy in its target group of patients, while the optimal duration for evaluating its efficacy is between 16 and 32 weeks.

omalizumab

severe allergic asthma

IgE

1. Introduction

Asthma is a heterogeneous disease with different identifiable clusters of demographics, clinical and/or pathophysiological characteristics, often referred to as asthma phenotypes [1]. The most common asthma phenotype is allergic asthma, which counts for up to 80% of childhood asthma and more than 50% of adult asthma cases [2][3]. Nowadays, an improved understanding of the pathophysiology of asthma and the identification of different phenotypes led to the development of personalized, phenotype-guided treatments [4][5][6].

Omalizumab, a recombinant humanized monoclonal antibody which specifically binds to the C epsilon3 domain of immunoglobulin (Ig) E was marketed in the dawn of the 21st century and was the first among many of such treatments [7]. Omalizumab is currently suggested in patients aged six years or older with difficult-to-treat to severe persistent allergic asthma according to the Global Initiative for Asthma (GINA) guidelines, who fulfill one or more of the following criteria: sensitization to inhaled allergen(s) on a skin prick testing or specific IgE.; and body weight within a local dosing range, and more than a specified number of exacerbations within the last year, despite a daily high dose of inhaled corticosteroids, plus a long-acting inhaled beta2-agonist [1][8][9].

2. Omalizumab's Efficacy on Asthma Symptom Improvement

Several tools are available for monitoring asthma control, such as validated questionnaires (asthma control test (ACT) [10], an asthma control questionnaire (ACQ) [11], and an asthma quality of life questionnaire (AQLQ) [12], etc. [10][11][12][13][14][15][16].

Ayres et al. proved that out of a total of 312 patients with poorly controlled, severe, allergic asthma, those who were treated with omalizumab plus the best standard care experienced a significant improvement in asthma

symptom control compared to the control group, where the best standard care was offered ([Table S1](#)) [\[17\]](#). In another randomized controlled trial, which included 400 asthmatic patients, Bousquet et al. demonstrated that asthma control, measured by ACQ score was significantly improved both at 16 and at 32 weeks in patients who received omalizumab compared to controls ([Table S1](#)) [\[18\]](#). Moreover, the results of several early clinical trials [\[19\]](#)[\[20\]](#)[\[21\]](#)[\[22\]](#)[\[23\]](#)[\[24\]](#), as well as of later ones, [\[25\]](#)[\[26\]](#) indicated symptom improvement in asthmatic patients, both children and adults, who received omalizumab, compared to the controls, although those results were not always statistically significant. Nevertheless, a systematic review with meta-analysis which combined these studies concluded that in a total of 3429 participants, asthmatic patients who received omalizumab exhibited a statistically significant improvement not only in asthma control scales but also in quality-of-life scales, such as AQLQ.; compared to the controls [\[27\]](#). The same findings were also demonstrated by another systematic review with meta-analysis, which included three randomized, double-blind, placebo-controlled studies, that enrolled 1412 patients with moderate or severe allergic asthma [\[28\]](#).

Table S1. Efficacy of omalizumab in patients with severe allergic asthma.

Study	Design	Number of patients	Main outcomes
Busse et al. (2001)	phase III, double-blinded, placebo- controlled trial	525	fewer asthma exacerbations per subject with omalizumab vs placebo (0.28 vs 0.54, p=0.006 during stable steroid phase and 0.39 vs 0.66, p=0.003 during steroid reduction phase)
Solèr et al. (2001)	multi-center, randomized, double-blind, placebo- controlled, parallel-group study	546	omalizumab group vs placebo group: 58% and 525 fewer exacerbations per patients during stable-steroid and steroid-reduction phase (p<0,001), comparable overall incidence of adverse events between groups (p=0,504)
Ayres et al. (2004)	randomized, open-label, multicenter, parallel-group study	312	annualized mean number of asthma- deterioration related incidents/mean exacerbation rates with BSC alone vs with omalizumab: 9.76 vs 4.92 (p<0.001)/ 2.86 vs 1.12 (p<0.001)
Holgate et al. (2004)	meta-analysis of three randomized, double-blind, placebo-controlled studies	1412	mean significant exacerbation rate per patient- year: 1.56 with placebo vs 0.69 with omalizumab, p=0,007, omalizumab vs placebo: improvement from baseline in PEFR (p=0,026), overall AQoL

			(p=0,042), mean nocturnal (p=0,007) and total (p=0,011) asthma symptoms
Humbert et al. (2005)	double-blind, parallel-group, multicenter study	419	omalizumab reduced severe asthma exacerbation rate vs placebo (0.24 vs 0.48, p=0,002) and emergency visit rate (0.24 vs 0.43, p=0,038), omalizumab significantly improved asthma-related quality of life, morning peak expiratory flow and asthma symptom scores
Brusselle et al. (2009)	open-label, multicenter, pharmaco-epidemiologic study	158	>82% improvement in total AQLQ scores of > or = 0.5 points (p<0,001), >91% were exacerbation-free (p<0,001) at 16 weeks vs >84% improvement in total AQLQ scores of > or = 0.5 points (p<0,001), >65% were exacerbation-free (p<0,001) at 52 weeks
Bousquet et al. (2011)	randomized, open-label, multicenter, parallel-group study	400	omalizumab-treated patients: improvement in exacerbation rates (p<0,001), severe exacerbation rates (p<0,05), hospitalizations (p<0,05), total emergency visits (p<0,05), ACQ score (p<0,001)
Barnes et al. (2013)	10-center retrospective observational study	147	34% reduction in total OCS prescription at 12 months, improvement in mean FEV1% at 16 weeks (62,94 vs 70,98, p<0,01), reduction in healthcare utilization at 12 months (p<0,05)
Deschildre et al. (2013)	1-year real life multicenter survey	104	decrease in exacerbations (4.4 to 1.25 per patient after 1 year), decrease in hospitalizations by 88.5%, mean improvement of lung function: 4.9% pred. for FEV1 95% CI, p<0,05 and 9.5% pred. for FEF25-75 (95% CI, p<0,05)
Braunstahl et al. (2013)	international, single-arm, open-label, observational study	943	no clinically significant or severe clinically significant asthma exacerbations higher at 12 months (82.4% and 95.8%) and 24 months (81.9% and 95.6%) vs pre-treatment period (4.9% and 27.4%),

			improvement in activity limitation (41.7%)
			at 24 months vs 46.6% at 12 months, p<0,05) and in rescue medication use (49.8% at 24 months vs 54.1% at 12 months, p<0,05)
Molimard et al. (2014)	observational, descriptive, cross- sectional, retrospective study	61	loss of asthma control in 34 patients (55.7%) with a median interval between discontinuation and loss of control of 13.0 months (mean 20.4 ± 2.6 [95% CI: 8.3-28.1])
Sposato et al. (2016)	multi-center, observational study	105	improvement in ACT values (p<0.001; comparing pre-post) in each group (pre values: 15[IQR:12-18]; 14 [IQR:10-16]; 15 [IQR:12-16]; post-values: 24[IQR:22-25]; 21 [IQR:20-23]; 20 [IQR:18-22]; measured in young, middle-aged and elderly subjects), reduction in exacerbations and ICS treatment after omalizumab in each group (p<0,001)
Iribarren et al. (2017)	observational study	7836	omalizumab-treated patients had a higher rate of CV/CBV serious adverse events (13.4 per 1,000 person years [PYs]) than did non-omalizumab- treated patients (8.1 per 1,000 PYs), ATE rates per 1,000 PYs were 6.66 (101 patients/15,160 PYs) in the omalizumab cohort and 4.64 (46 patients/9,904 PYs) in the non-omalizumab cohort
Ke et al. (2018)	retrospective observational cohort study	1564	asthma-related medication use decreased from the preindex to the postindex periods (oral corticosteroids, p < 0.001; ICSs, p< 0.001; LABAs, p=0.009; ICS-LABA combination, p<0.001; leukotriene modifiers, p< 0.001), the proportion of patients with any asthma exacerbations decreased by 33.6% (p< 0.001)
Al-Ahmad et al. (2018)	4-year observational study	65	ICS/LABA dose significantly reduced from 65 (100%) to 25

Oliveira et al. (2018)	non-interventional, prospective study	32	(38.5%) after 4 years of treatment (p < 0.001); ACT scores significantly increased from 15 ± 3 at baseline to 23 ± 3 (p < 0.001) and FEV ₁ level from 55.6 ± 10.6 to 76.63 ± 10.34 at year 4
------------------------	---------------------------------------	----	---

Apart from clinical trials, there are also several observational, every-day clinical practice studies which also evaluated the efficacy of omalizumab in asthma symptom control. Barnes et al. demonstrated that both asthma control, measured by ACT and quality of life, measured by AQLQ.; were significantly improved in asthmatic patients after the initiation of omalizumab both at 16 and at 52 weeks [29]. Similar results were also published by Deschildre et al., who used GINA criteria to assess asthma control in children with asthma after the initiation of omalizumab ([Table S1](#)) [30]. Researchers found that the initiation of omalizumab in patients with severe allergic asthma led to a significant improvement in both daily and nightly symptoms as well as in different asthma symptom scales such as AQLQ.; mini-AQLQ and ACT [31][32][33]. On the other hand, Nopp et al., in a very small-scale study, reported that 8 out of 18 asthmatic patients who were treated with omalizumab for 6 months still exhibited asthma symptom improvement 3 years after the discontinuation of omalizumab [34]. However, another study which included 943 patients with asthma reported a significant reduction in (a) daily symptoms, (b) activity limitation, (c) night symptoms, (d) night awakenings due to asthma and (e) the need for reliever medication, after the initiation of omalizumab both at 12 and at 24 months. In the same study, the findings from both ACT and ACQ scales were also significantly improved [34][35].

3. Effectiveness of Omalizumab in Reducing Corticosteroid Use

Alongside standard treatment with ICS.; patients often need to be treated with oral corticosteroids (OCS) to achieve better asthma control [35][36][37][38][39][40][41][42][43][44]. Novel therapy strategies aim to reduce the use of corticosteroids to eliminate possible adverse effects [45][46][47][48][49][50][51][52][53].

Busse et al. found that ICS administration was reduced by 75% in patients with severe asthma 28 weeks after the initiation of omalizumab, which was significantly greater than the 50% reduction in the control group ([Table S1](#)) [24]. Similar results about ICS reduction were also reported by another clinical trial at 32 weeks after omalizumab initiation (57.2% of the patients who received omalizumab vs. 43.3% of the placebo group, p < 0.05) [21]. Moreover, the effect of omalizumab on ICS reduction was predicted by the Archimedes asthma model for US patients aged 12 and older with moderate-to-severe persistent allergic asthma [54][55][56][57][58]. Apart from ICS dosage reduction,

omalizumab seems to be even more effective in OCS dosage reduction and/or discontinuation [56][59][60][61][62][63]. The beforementioned effects of omalizumab in corticosteroid use have also been confirmed by four systematic reviews with meta-analyses [8][27][64][65].

In addition to clinical trials, the impact of omalizumab on corticosteroids use in severe allergic asthma has also been demonstrated by several observational real-life studies. The initiation of omalizumab resulted in significant reduction in ICS dosage in several studies [30][32][33][66][67], while in another study, its discontinuation led to a significant increase in prescribed ICS dosage [34]. Furthermore, the initiation of omalizumab had the same effect in OCS usage, as it led to significant OCS dosage reduction or discontinuation in several studies [29][35][68][69][70][71][72], while in another study both ICS and OCS reduction was observed in patients with severe allergic asthma who were treated with omalizumab for seven years [73].

4. Efficacy of Omalizumab in Reducing the Rate of Asthma Exacerbations

Severe exacerbations may occur even in patients with mild or well-controlled asthma symptoms as a patient's risk of exacerbations may be independent of the level of symptom control [73][74][75]. More importantly, exacerbations were proved fatal on many occasions [76][77][78][79][80]. Therefore, a successful therapeutic strategy should prevent asthma exacerbations.

Omalizumab resulted in the reduction of the asthma exacerbation rate in numerous clinical trials during the last two decades, both in adults and in children [17][18][19][20][21][22][23][24][25][26][55][60][81][82][83][84]. In two clinical trials, the exacerbation rate was significantly reduced in the omalizumab group (between 35–45% reduction) compared to the control group [18][21]. Ayres et al. reported 1.12 exacerbations per patient per year in the omalizumab group, which was significantly lower than the 2.86 exacerbations per patient per year in the control group (Table S1) [17]. Solèr et al., in one of the first clinical trials of omalizumab which included 546 participants, reported that both the number of exacerbations per patient during the stable-steroid phase (0.28 in the group who received omalizumab vs. 0.66 in the placebo group) as well as during the steroid-reduction phase (0.36 in the group who received omalizumab vs. 0.75 in the placebo group) and the number of patients needed to treat in order to avoid an exacerbation were significantly lower in the omalizumab group compared to the control group (35 in the group who received omalizumab vs. 83 in the placebo group during the steroid-reduction phase/43 in the group who received omalizumab vs. 81 in the placebo group during the steroid-reduction phase) (Table S1) [22]. On the other hand, there are also clinical trials in which the asthma exacerbation rate was not significantly reduced in the omalizumab group compared to the control group [57][85][86]. However, several systematic reviews with meta-analyses have concluded that omalizumab significantly reduces the asthma exacerbation rate compared to a placebo [27][28][64][87]. Moreover, another randomized controlled trial has proved that omalizumab is more effective in preventing asthma exacerbations in fall compared to an inhaled corticosteroid boost [88].

Apart from clinical trials, omalizumab has also been shown to be effective in the reduction of the asthma exacerbation rate in numerous observational real-life studies [29][30][31][32][33][34][35][66][68][73][89][90][91][92][93][94][95][96][97].

[98]. Barnes et al. and Deschildre et al. reported a significant reduction in asthma exacerbations after the initiation of omalizumab from 3.67 to 1.70 per patient per year and from 4.40 to 1.25 per patient per year, respectively (Table S1) [29][30]. Two more studies reported a significant reduction in asthma exacerbations per patient per year after the initiation of omalizumab (from 5.00 to 0.63 and from 5.70 to 1.90, respectively) [32][68]. Three more studies reported a significant reduction in the asthma exacerbation rate between 62% and 82% [31][33][66]. Nopp et al. found that 16 out of 18 patients who discontinued omalizumab still had fewer exacerbations during nights, even 3 years after the drug withdrawal [34]. The effect of omalizumab's discontinuation on the increase of exacerbations was confirmed by two recently published studies [99][100].

5. Omalizumab's Efficacy on Healthcare Utilization

Omalizumab has been shown to be effective in reducing the rate of emergency care visits and hospitalizations [77][79][101][102][103][104][105][106][107][108][109][110][111][112][113][114]. A clinical trial reported that patients treated with omalizumab suffered from 4.92 of such events per year compared to the 9.76 of such events per year in the control group [17]. Humbert et al. showed that, at 28 weeks, omalizumab significantly reduced emergency care visits and hospitalizations compared to the control group (0.24 vs. 0.43 and 0.125 vs. 0.25, respectively) [19]. Moreover, Bousquet et al. have proved a significant reduction in emergency care visits by 60% and in hospitalizations by 67% in the omalizumab group compared to the control group [18].

Real-life studies have demonstrated a significant reduction in emergency care visits and hospitalizations after the initiation of omalizumab which varied between 51–90.8% and 28–95%, respectively [30][31][56][66][115][116][117]. Other studies also reported a significant reduction in hospitalizations from 1.07–5.93 per patient per year to 0.10–2.75 per patient per year and in emergency care visits from 1.13–1.52 per patient per year to 0.29–0.46 per patient per year after the initiation of omalizumab [29][61][96]. Furthermore, Braunstahl et al., in the context of “eXpeRience registry”, which included 943 patients with asthma, reported a reduction in the unscheduled asthma-related visits in a healthcare provider from 6.2 per patient per year to 1.0 per patient per year and to 0.5 per patient per year at 12 and 24 months, respectively (Table S1) [35]. Other studies have demonstrated that after four-to-five years from the initiation of omalizumab almost no patient needed an asthma-related hospitalization [32][94][117], while Molimard et al. reported that the reduction in emergency care visits and hospitalizations after the initiation of omalizumab is irrespective of the reduction or the cessation of corticosteroids (Table S1) [68]. In addition to hospital admission, omalizumab also appears to significantly reduce the duration of hospitalization and the cost per hospital stay [118][119][120].

References

1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available online: www.ginasthma.org (accessed on 10 October 2021).

2. Johansson, S.G.; Hourihane, J.O.; Bousquet, J.; Brujinzeel-Koomen, C.; Dreborg, S.; Haahtela, T.; Kowalski, M.L.; Mygind, N.; Ring, J.; van Cauwenberge, P.; et al. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force. *Allergy* 2001, **56**, 813–824.
3. Akar-Ghibril, N.; Casale, T.; Custovic, A.; Phipatanakul, W. Allergic endotypes and phenotypes of asthma. *J. Allergy Clin. Immunol. Pract.* 2020, **8**, 429–440.
4. Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. *Nat. Med.* 2012, **18**, 716–725.
5. Bel, E.H. Clinical phenotypes of asthma. *Curr. Opin. Pulm. Med.* 2004, **10**, 44–50.
6. Moore, W.C.; Meyers, D.A.; Wenzel, S.E.; Teague, W.G.; Li, H.; Li, X.; D'Agostino, R., Jr.; Castro, M.; Curran-Everett, D.; Fitzpatrick, A.M.; et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. *Am. J. Respir. Crit. Care Med.* 2010, **181**, 315–323.
7. Easthope, S.; Jarvis, B. Omalizumab. *Drugs* 2001, **61**, 253–260.
8. Normansell, R.; Walker, S.; Milan, S.J.; Walters, E.H.; Nair, P. Omalizumab for asthma in adults and children. *Cochrane Database Syst. Rev.* 2014, CD003559.
9. Rodrigo, G.J.; Neffen, H. Systematic review on the use of omalizumab for the treatment of asthmatic children and adolescents. *Pediatr. Allergy Immunol.* 2015, **26**, 551–556.
10. Nathan, R.A.; Sorkness, C.A.; Kosinski, M.; Schatz, M.; Li, J.T.; Marcus, P.; Murray, J.J.; Pendergraft, T.B. Development of the asthma control test: A survey for assessing asthma control. *J. Allergy Clin. Immunol.* 2004, **113**, 59–65.
11. Juniper, E.F.; O'Byrne, P.M.; Guyatt, G.H.; Ferrie, P.J.; King, D.R. Development and validation of a questionnaire to measure asthma control. *Eur. Respir. J.* 1999, **14**, 902–907.
12. Juniper, E.F.; Guyatt, G.H.; Epstein, R.S.; Ferrie, P.J.; Jaeschke, R.; Hiller, T.K. Evaluation of impairment of health related quality of life in asthma: Development of a questionnaire for use in clinical trials. *Thorax* 1992, **47**, 76–83.
13. Schatz, M.; Sorkness, C.A.; Li, J.T.; Marcus, P.; Murray, J.J.; Nathan, R.A.; Kosinski, M.; Pendergraft, T.B.; Jhingran, P. Asthma Control Test: Reliability, validity, and responsiveness in patients not previously followed by asthma specialists. *J. Allergy Clin. Immunol.* 2006, **117**, 549–556.
14. Juniper, E.F.; Bousquet, J.; Abetz, L.; Bateman, E.D. Identifying 'well-controlled' and 'not well-controlled' asthma using the Asthma Control Questionnaire. *Respir. Med.* 2006, **100**, 616–621.
15. Juniper, E.F.; Svensson, K.; Mork, A.C.; Stahl, E. Measurement properties and interpretation of three shortened versions of the asthma control questionnaire. *Respir. Med.* 2005, **99**, 553–558.

16. Juniper, E.F.; Guyatt, G.H.; Willan, A.; Griffith, L.E. Determining a minimal important change in a disease-specific quality of life questionnaire. *J. Clin. Epidemiol.* 1994, 47, 81–87.
17. Ayres, J.G.; Higgins, B.; Chilvers, E.R.; Ayre, G.; Blogg, M.; Fox, H. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with poorly controlled (moderate-to-severe) allergic asthma. *Allergy* 2004, 59, 701–708.
18. Bousquet, J.; Siergiejko, Z.; Swiebocka, E.; Humbert, M.; Rabe, K.F.; Smith, N.; Leo, J.; Peckitt, C.; Maykut, R.; Peachey, G. Persistency of response to omalizumab therapy in severe allergic (IgE-mediated) asthma. *Allergy* 2011, 66, 671–678.
19. Humbert, M.; Beasley, R.; Ayres, J.; Slavin, R.; Hébert, J.; Bousquet, J.; Beeh, K.M.; Ramos, S.; Canonica, G.W.; Hedgecock, S.; et al. Benefits of omalizumab as add-on therapy in patients with severe persistent asthma who are inadequately controlled despite best available therapy (GINA 2002 step 4 treatment): INNOVATE. *Allergy* 2005, 60, 309–316.
20. Vignola, A.M.; Humbert, M.; Bousquet, J.; Boulet, L.P.; Hedgecock, S.; Blogg, M.; Fox, H.; Surrey, K. Efficacy and tolerability of anti-immunoglobulin E therapy with omalizumab in patients with concomitant allergic asthma and persistent allergic rhinitis: SOLAR. *Allergy* 2004, 59, 709–717.
21. Holgate, S.T.; Chuchalin, A.G.; Hébert, J.; Lötvall, J.; Persson, G.B.; Chung, K.F.; Bousquet, J.; Kerstjens, H.A.; Fox, H.; Thirlwell, J.; et al. Efficacy and safety of a recombinant anti-immunoglobulin E antibody (omalizumab) in severe allergic asthma. *Clin. Exp. Allergy* 2004, 34, 632–638.
22. Solèr, M.; Matz, J.; Townley, R.; Buhl, R.; O'Brien, J.; Fox, H.; Thirlwell, J.; Gupta, N.; Della Cioppa, G. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. *Eur. Respir. J.* 2001, 18, 254–261.
23. Milgrom, H.; Berger, W.; Nayak, A.; Gupta, N.; Pollard, S.; McAlary, M.; Taylor, A.F.; Rohane, P. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). *Pediatrics* 2001, 108, E36.
24. Busse, W.; Corren, J.; Lanier, B.Q.; McAlary, M.; Fowler-Taylor, A.; Cioppa, G.D.; van As, A.; Gupta, N. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. *J. Allergy Clin. Immunol.* 2001, 108, 184–190.
25. Ohta, K.; Miyamoto, T.; Amagasaki, T.; Yamamoto, M.; 1304 Study Group. Efficacy and safety of omalizumab in an Asian population with moderate-to-severe persistent asthma. *Respirology* 2009, 14, 1156–1165.
26. Lanier, B.; Bridges, T.; Kulus, M.; Taylor, A.F.; Berhane, I.; Vidaurre, C.F. Omalizumab for the treatment of exacerbations in children with inadequately controlled allergic (IgE-mediated) asthma. *J. Allergy Clin. Immunol.* 2009, 124, 1210–1216.

27. Rodrigo, G.J.; Neffen, H.; Castro-Rodriguez, J.A. Efficacy and safety of subcutaneous omalizumab vs. placebo as add-on therapy to corticosteroids for children and adults with asthma: A systematic review. *Chest* 2011, 139, 28–35.

28. Holgate, S.; Bousquet, J.; Wenzel, S.; Fox, H.; Liu, J.; Castellsague, J. Efficacy of omalizumab, an anti-immunoglobulin E antibody, in patients with allergic asthma at high risk of serious asthma-related morbidity and mortality. *Curr. Med. Res. Opin.* 2001, 17, 233–240.

29. Barnes, N.; Menzies-Gow, A.; Mansur, A.H.; Spencer, D.; Percival, F.; Radwan, A.; Niven, R. Effectiveness of omalizumab in severe allergic asthma: A retrospective UK real-world study. *J. Asthma* 2013, 50, 529–536.

30. Deschildre, A.; Marguet, C.; Salleron, J.; Pin, I.; Rittié, J.L.; Derelle, J.; Taam, R.A.; Fayon, M.; Brouard, J.; Dubus, J.C.; et al. Add-on omalizumab in children with severe allergic asthma: A 1-year real life survey. *Eur. Respir. J.* 2013, 42, 1224–1233.

31. Korn, S.; Thielen, A.; Seyfried, S.; Taube, C.; Kornmann, O.; Buhl, R. Omalizumab in patients with severe persistent allergic asthma in a real-life setting in Germany. *Respir. Med.* 2009, 103, 1725–1731.

32. Menzella, F.; Galeone, C.; Formisano, D.; Castagnetti, C.; Ruggiero, P.; Simonazzi, A.; Zucchi, L. Real-life efficacy of omalizumab after 9 years of follow-up. *Allergy Asthma Immunol. Res.* 2017, 9, 368–372.

33. Tzortzaki, E.G.; Georgiou, A.; Kampas, D.; Lemessios, M.; Markatos, M.; Adamidi, T.; Samara, K.; Skoula, G.; Damianaki, A.; Schiza, S.; et al. Long-term omalizumab treatment in severe allergic asthma: The south-eastern mediterranean “real-life” experience. *Pulm. Pharmacol. Ther.* 2012, 25, 77–82.

34. Nopp, A.; Johansson, S.G.; Adédoyin, J.; Ankerst, J.; Palmqvist, M.; Oman, H. After 6 years with Xolair; a 3-year withdrawal follow-up. *Allergy* 2010, 65, 56–60.

35. Braunstahl, G.J.; Chen, C.W.; Maykut, R.; Georgiou, P.; Peachey, G.; Bruce, J. The eXpeRience registry: The ‘real-world’ effectiveness of omalizumab in allergic asthma. *Respir. Med.* 2013, 107, 1141–1151.

36. O’Byrne, P.M.; Pedersen, S.; Lamm, C.J.; Tan, W.C.; Busse, W.W.; START Investigators Group. Severe exacerbations and decline in lung function in asthma. *Am. J. Respir. Crit. Care Med.* 2009, 179, 19–24.

37. Busse, W.W.; Pedersen, S.; Pauwels, R.A.; Tan, W.C.; Chen, Y.Z.; Lamm, C.J.; O’Byrne, P.M.; START Investigators Group. The inhaled steroid treatment as regular therapy in early asthma (START) study 5-year follow-up: Effectiveness of early intervention with budesonide in mild persistent asthma. *J. Allergy Clin. Immunol.* 2008, 121, 1167–1174.

38. Selroos, O.; Pietinalho, A.; Löfroos, A.B.; Riska, H. Effect of early vs. late intervention with inhaled corticosteroids in asthma. *Chest* 1995, 108, 1228–1234.

39. Selroos, O. Effect of disease duration on dose-response of inhaled budesonide in asthma. *Respir. Med.* 2008, 102, 1065–1072.

40. Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleeker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. *Eur. Respir. J.* 2014, 43, 343–373.

41. Reddel, H.K.; Barnes, D.J.; Exacerbation Advisory Panel. Pharmacological strategies for self-management of asthma exacerbations. *Eur. Respir. J.* 2006, 28, 182–199.

42. Hasegawa, T.; Ishihara, K.; Takakura, S.; Fujii, H.; Nishimura, T.; Okazaki, M.; Katakami, N.; Umeda, B. Duration of systemic corticosteroids in the treatment of asthma exacerbation; a randomized study. *Intern. Med.* 2000, 39, 794–797.

43. Jones, A.M.; Munavvar, M.; Vail, A.; Aldridge, R.E.; Hopkinson, L.; Rayner, C.; O'Driscoll, B.R. Prospective, placebo-controlled trial of 5 vs. 10 days of oral prednisolone in acute adult asthma. *Respir. Med.* 2002, 96, 950–954.

44. Chang, A.B.; Clark, R.; Sloots, T.P.; Stone, D.G.; Petsky, H.L.; Thearle, D.; Champion, A.A.; Wheeler, C.; Acworth, J.P. A 5- versus 3-day course of oral corticosteroids for children with asthma exacerbations who are not hospitalised: A randomised controlled trial. *Med. J. Aust.* 2008, 189, 306–310.

45. Broersen, L.H.; Pereira, A.M.; Jørgensen, J.O.; Dekkers, O.M. Adrenal insufficiency in corticosteroids use: Systematic review and meta-analysis. *J. Clin. Endocrinol. Metab.* 2015, 100, 2171–2180.

46. Walsh, L.J.; Wong, C.A.; Oborne, J.; Cooper, S.; Lewis, S.A.; Pringle, M.; Hubbard, R.; Tattersfield, A.E. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. *Thorax* 2001, 56, 279–284.

47. Lefebvre, P.; Duh, M.S.; Lafeuille, M.H.; Gozalo, L.; Desai, U.; Robitaille, M.N.; Albers, F.; Yancey, S.; Ortega, H.; Forshag, M.; et al. Acute and chronic systemic corticosteroid-related complications in patients with severe asthma. *J. Allergy Clin. Immunol.* 2015, 136, 1488–1495.

48. Price, D.B.; Trudo, F.; Voorham, J.; Xu, X.; Kerkhof, M.; Ling Zhi Jie, J.; Tran, T.N. Adverse outcomes from initiation of systemic corticosteroids for asthma: Long-term observational study. *J. Asthma. Allergy* 2018, 11, 193–204.

49. Grossman, J.M.; Gordon, R.; Ranganath, V.K.; Deal, C.; Caplan, L.; Chen, W.; Curtis, J.R.; Furst, D.E.; McMahon, M.; Patkar, N.M.; et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. *Arthritis Care Res.* 2010, 62, 1515–1526.

50. Richards, R.N. Side effects of short-term oral corticosteroids. *J. Cutan. Med. Surg.* 2008, 12, 77–81.

51. O'Byrne, P.M.; Fitz Gerald, J.M.; Bateman, E.D.; Barnes, P.J.; Zhong, N.; Keen, C.; Jorup, C.; Lamarca, R.; Ivanov, S.; Reddel, H.K. Inhaled combined budesonide-formoterol as needed in mild asthma. *N. Engl. J. Med.* 2018, 378, 1865–1876.

52. Bateman, E.D.; Reddel, H.K.; O'Byrne, P.M.; Barnes, P.J.; Zhong, N.; Keen, C.; Jorup, C.; Lamarca, R.; Siwek-Posluszna, A.; Fitz Gerald, J.M. As-needed budesonide-formoterol versus maintenance budesonide in mild asthma. *N. Engl. J. Med.* 2018, 378, 1877–1887.

53. Hagan, J.B.; Samant, S.A.; Volcheck, G.W.; Li, J.T.; Hagan, C.R.; Erwin, P.J.; Rank, M.A. The risk of asthma exacerbation after reducing inhaled corticosteroids: A systematic review and meta-analysis of randomized controlled trials. *Allergy* 2014, 69, 510–516.

54. Lanier, B.Q.; Corren, J.; Lumry, W.; Liu, J.; Fowler-Taylor, A.; Gupta, N. Omalizumab is effective in the long-term control of severe allergic asthma. *Ann. Allergy Asthma Immunol.* 2003, 91, 154–159.

55. Hochhaus, G.; Brookman, L.; Fox, H.; Johnson, C.; Matthews, J.; Ren, S.; Deniz, Y. Pharmacodynamics of omalizumab: Implications for optimised dosing strategies and clinical efficacy in the treatment of allergic asthma. *Curr. Med. Res. Opin.* 2003, 19, 491–498.

56. Lafeuille, M.H.; Gravel, J.; Zhang, J.; Gorsh, B.; Figliomeni, M.; Lefebvre, P. Association between consistent omalizumab treatment and asthma control. *J. Allergy Clin. Immunol. Pract.* 2013, 1, 51–57.

57. Apsangikar, P.; Ghadge, P.; Naik, M.; Nair, S. Randomized comparative clinical study of first global omalizumab biosimilar with innovator product in moderate to severe persistent asthma. *J. Assoc. Physicians India.* 2020, 68, 61–65.

58. Grossman, H.L.; Schlender, A.; Alperin, P.; Stanley, E.L.; Zhang, J. Modeling the effects of omalizumab over 5 years among patients with moderate-to-severe persistent allergic asthma. *Curr. Med. Res. Opin.* 2010, 26, 2779–2793.

59. Pelaia, G.; Gallelli, L.; Romeo, P.; Renda, T.; Busceti, M.T.; Proietto, A.; Grembiale, R.D.; Marsico, S.A.; Maselli, R.; Vatrella, A. Omalizumab decreases exacerbation frequency, oral intake of corticosteroids and peripheral blood eosinophils in atopic patients with uncontrolled asthma. *Int. J. Clin. Pharmacol. Ther.* 2011, 49, 713–721.

60. Schumann, C.; Kropf, C.; Wibmer, T.; Rüdiger, S.; Stoiber, K.M.; Thielen, A.; Rottbauer, W.; Kroegel, C. Omalizumab in patients with severe asthma: The XCLUSIVE study. *Clin. Respir. J.* 2012, 6, 215–227.

61. Chen, H.C.; Huang, C.D.; Chang, E.; Kuo, H.P. Efficacy of omalizumab (Xolair) in patients with moderate to severe predominately chronic oral steroid dependent asthma in Taiwan: A retrospective, population-based database cohort study. *BMC Pulm. Med.* 2016, 16, 3.

62. Lafeuille, M.H.; Dean, J.; Zhang, J.; Duh, M.S.; Gorsh, B.; Lefebvre, P. Impact of omalizumab on emergency-department visits, hospitalizations, and corticosteroid use among patients with uncontrolled asthma. *Ann. Allergy Asthma Immunol.* 2012, 109, 59–64.

63. Siergiejko, Z.; Świebocka, E.; Smith, N.; Peckitt, C.; Leo, J.; Peachey, G.; Maykut, R. Oral corticosteroid sparing with omalizumab in severe allergic (IgE-mediated) asthma patients. *Curr. Med. Res. Opin.* 2011, 27, 2223–2228.

64. Walker, S.; Monteil, M.; Phelan, K.; Lasserson, T.J.; Walters, E.H. Anti-IgE for chronic asthma in adults and children. *Cochrane Database Syst. Rev.* 2004, 3, CD003559.

65. Nguyen, V.Q.; Ulrik, C.S. Measures to reduce maintenance therapy with oral corticosteroid in adults with severe asthma. *Allergy Asthma Proc.* 2016, 37, 125–139.

66. Molimard, M.; de Blay, F.; Didier, A.; Le Gros, V. Effectiveness of omalizumab (Xolair) in the first patients treated in real-life practice in France. *Respir. Med.* 2008, 102, 71–76.

67. Sposato, B.; Scalese, M.; Latorre, M.; Scichilone, N.; Matucci, A.; Milanese, M.; Masieri, S.; Rolla, G.; Steinhilber, G.; Rosati, Y.; et al. Effects of omalizumab in severe asthmatics across ages: A real life Italian experience. *Respir. Med.* 2016, 119, 141–149.

68. Molimard, M.; Buhl, R.; Niven, R.; Le Gros, V.; Thielen, A.; Thirlwell, J.; Maykut, R.; Peachey, G. Omalizumab reduces oral corticosteroid use in patients with severe allergic asthma: Real-life data. *Respir. Med.* 2010, 104, 1381–1385.

69. Sousa, A.S.; Pereira, A.M.; Fonseca, J.A.; Azevedo, L.F.; Abreu, C.; Arrobas, A.; Calvo, T.; Silvestre, M.J.; Cunha, L.; Falcão, H.; et al. Asthma control and exacerbations in patients with severe asthma treated with omalizumab in Portugal. *Rev. Port. Pneumol.* 2015, 21, 327–333.

70. Papaioannou, A.I.; Mplizou, M.; Porpodis, K.; Fouka, E.; Zervas, E.; Samitas, K.; Markatos, M.; Bakakos, P.; Papiris, S.; Gaga, M.; et al. Long-term efficacy and safety of omalizumab in patients with allergic asthma: A real-life study. *Allergy Asthma Proc.* 2021, 42, 235–242.

71. Asano, K.; Sumi, K.; Yoshisue, H.; Nakamura, N.; Nagasaki, M.; Sasajima, T.; Matsumoto, H. Real-life safety and efficacy of omalizumab in Japanese patients with severe allergic asthma who were subjected to dosing table revision or expansion: A post-marketing surveillance. *Pulm. Pharmacol. Ther.* 2020, 64, 101950.

72. Verhamme, K.M.C.; Lucet, C.; Van Meerhaeghe, A.; Brusselle, G.G.O.; Lambert, M.L. Real-life effectiveness of omalizumab in difficult-to-treat versus severe asthma: A national cohort study in Belgium. *ERJ Open Res.* 2019, 5, 00253-2018.

73. Pace, E.; Ferraro, M.; Bruno, A.; Chiappara, G.; Bousquet, J.; Gjomarkaj, M. Clinical benefits of 7 years of treatment with omalizumab in severe uncontrolled asthmatics. *J. Asthma* 2011, 48, 387–392.

74. Reddel, H.; Ware, S.; Marks, G.; Salome, C.; Jenkins, C.; Woolcock, A. Differences between asthma exacerbations and poor asthma control. *Lancet* 1999, 353, 364–369.

75. Pauwels, R.A.; Pedersen, S.; Busse, W.W.; Tan, W.C.; Chen, Y.Z.; Ohlsson, S.V.; Ullman, A.; Lamm, C.J.; O’Byrne, P.M.; START Investigators Group. Early intervention with budesonide in mild persistent asthma: A randomised, double-blind trial. *Lancet* 2003, 361, 1071–1076.

76. Sturdi, P.M.; Victor, C.R.; Anderson, H.R.; Bland, J.M.; Butland, B.K.; Harrison, B.D.; Peckitt, C.; Taylor, J.C.; Mortality and Severe Morbidity Working Group of the National Asthma Task Force. Psychological, social and health behaviour risk factors for deaths certified as asthma: A national case-control study. *Thorax* 2002, 57, 1034–1039.

77. Alvarez, G.G.; Schulzer, M.; Jung, D.; Fitzgerald, J.M. A systematic review of risk factors associated with near-fatal and fatal asthma. *Can. Respir. J.* 2005, 12, 265–270.

78. Chang, Y.L.; Ko, H.K.; Lu, M.S.; Chou, C.L.; Su, K.C.; Hsu, C.C.; Chou, K.T.; Chen, T.J.; Perng, D.W.; Chou, Y.C. Independent risk factors for death in patients admitted for asthma exacerbation in Taiwan. *NPJ Prim. Care Respir. Med.* 2020, 30, 7.

79. Suissa, S.; Blais, L.; Ernst, P. Patterns of increasing beta-agonist use and the risk of fatal or near-fatal asthma. *Eur. Respir. J.* 1994, 7, 1602–1609.

80. Roberts, G.; Patel, N.; Levi-Schaffer, F.; Habibi, P.; Lack, G. Food allergy as a risk factor for life-threatening asthma in childhood: A case-controlled study. *J. Allergy Clin. Immunol.* 2003, 112, 168–174.

81. Niven, R.; Chung, K.F.; Panahloo, Z.; Blogg, M.; Ayre, G. Effectiveness of omalizumab in patients with inadequately controlled severe persistent allergic asthma: An open-label study. *Respir. Med.* 2008, 102, 1371–1378.

82. Kulus, M.; Hébert, J.; Garcia, E.; Fowler Taylor, A.; Fernandez Vidaurre, C.; Blogg, M. Omalizumab in children with inadequately controlled severe allergic (IgE-mediated) asthma. *Curr. Med. Res. Opin.* 2010, 26, 1285–1293.

83. Odajima, H.; Ebisawa, M.; Nagakura, T.; Fujisawa, T.; Akasawa, A.; Ito, K.; Doi, S.; Yamaguchi, K.; Katsunuma, T.; Kurihara, K.; et al. Omalizumab in Japanese children with severe allergic asthma uncontrolled with standard therapy. *Allergol. Int.* 2015, 64, 364–370.

84. Ledford, D.; Busse, W.; Trzaskoma, B.; Omachi, T.A.; Rosén, K.; Chipps, B.E.; Luskin, A.T.; Solari, P.G. A randomized multicenter study evaluating Xolair persistence of response after long-term therapy. *J. Allergy Clin. Immunol.* 2017, 140, 162–169.e2.

85. Rubin, A.S.; Souza-Machado, A.; Andrade-Lima, M.; Ferreira, F.; Honda, A.; Matozo, T.M.; QUALITX Study Investigators. Effect of omalizumab as add-on therapy on asthma-related quality of life in severe allergic asthma: A Brazilian study (QUALITX). *J. Asthma* 2012, 49, 288–293.

86. Li, J.; Kang, J.; Wang, C.; Yang, J.; Wang, L.; Kottakis, I.; Humphries, M.; Zhong, N.; China Omalizumab Study Group. Omalizumab improves quality of life and asthma control in chinese patients with moderate to severe asthma: A randomized phase III study. *Allergy Asthma Immunol. Res.* 2016, 8, 319–328.

87. Agache, I.; Rocha, C.; Beltran, J.; Song, Y.; Posso, M.; Solà, I.; Alonso-Coello, P.; Akdis, C.; Akdis, M.; Canonica, G.W.; et al. Efficacy and safety of treatment with biologicals (benralizumab, dupilumab and omalizumab) for severe allergic asthma: A systematic review for the EAACI Guidelines—Recommendations on the use of biologicals in severe asthma. *Allergy*. 2020, 75, 1043–1057.

88. Teach, S.J.; Gill, M.A.; Togias, A.; Sorkness, C.A.; Arbes, S.J., Jr.; Calatroni, A.; Wildfire, J.J.; Gergen, P.J.; Cohen, R.T.; Pongracic, J.A.; et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. *J. Allergy Clin. Immunol.* 2015, 136, 1476–1485.

89. Brusselle, G.; Michils, A.; Louis, R.; Dupont, L.; Van de Maele, B.; Delobbe, A.; Pilette, C.; Lee, C.S.; Gurdain, S.; Vancayzeele, S.; et al. “Real-life” effectiveness of omalizumab in patients with severe persistent allergic asthma: The PERSIST study. *Respir. Med.* 2009, 103, 1633–1642.

90. Bhutani, M.; Yang, W.H.; Hébert, J.; de Takacsy, F.; Stril, J.L. The real world effect of omalizumab add on therapy for patients with moderate to severe allergic asthma: The ASTERIX observational study. *PLoS ONE* 2017, 12, e0183869.

91. Canonica, G.W.; Rottoli, P.; Bucca, C.; Zappa, M.C.; Michetti, G.; Macciocchi, B.; Caruso, C.; Santus, P.; Bartezaghi, M.; Rigoni, L.; et al. Improvement of patient-reported outcomes in severe allergic asthma by omalizumab treatment: The real life observational PROXIMA study. *World Allergy Organ. J.* 2018, 11, 33.

92. Casale, T.B.; Luskin, A.T.; Busse, W.; Zeiger, R.S.; Trzaskoma, B.; Yang, M.; Griffin, N.M.; Chipp, B.E. Omalizumab effectiveness by biomarker status in patients with asthma: Evidence from PROSPERO, a prospective real-world study. *J. Allergy Clin. Immunol. Pract.* 2019, 7, 156–164.e1.

93. Humbert, M.; Taillé, C.; Mala, L.; Le Gros, V.; Just, J.; Molimard, M.; STELLAIR investigators. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: The STELLAIR study. *Eur. Respir. J.* 2018, 51, 1702523.

94. Yorgancıoğlu, A.; Öner Erkekol, F.; Mungan, D.; Erdinç, M.; Gemicioğlu, B.; Özşeker, Z.F.; Bayrak Değirmenci, P.; Nayıcı, S.; Çilli, A.; Erdenen, F.; et al. Long-term omalizumab treatment: A multicenter, real-life, 5-year trial. *Int. Arch. Allergy Immunol.* 2018, 176, 225–233.

95. Vennera Mdel, C.; Pérez De Llano, L.; Bardagí, S.; Ausin, P.; Sanjuas, C.; González, H.; Gullón, J.A.; Martínez-Moragón, E.; Carretero, J.A.; Vera, E.; et al. Omalizumab therapy in severe

asthma: Experience from the Spanish registry—Some new approaches. *J. Asthma* 2012, 49, 416–422.

96. Subramaniam, A.; Al-Alawi, M.; Hamad, S.; O'Callaghan, J.; Lane, S.J. A study into efficacy of omalizumab therapy in patients with severe persistent allergic asthma at a tertiary referral centre for asthma in Ireland. *QJM* 2013, 106, 631–634.

97. Adachi, M.; Kozawa, M.; Yoshisue, H.; Lee Milligan, K.; Nagasaki, M.; Sasajima, T.; Miyamoto, T.; Ohta, K. Real-world safety and efficacy of omalizumab in patients with severe allergic asthma: A long-term post-marketing study in Japan. *Respir. Med.* 2018, 141, 56–63.

98. Kawamatawong, T.; Poachanukoon, O.; Boonsiri, C.; Saengasapaviriya, A.; Sittipunt, C.; Chantaphakul, H.; Maneechotesuwan, K.; Ngamchanyaporn, P.; Piyavechviratana, K.; Yongjaiyut, P.; et al. Long-term effectiveness of omalizumab treatment in Thai severe asthmatic patients: A real-life experience. *Asian Pac. J. Allergy Immunol.* 2018, 36, 238–243.

99. Molimard, M.; Mala, L.; Bourdeix, I.; Le Gros, V. Observational study in severe asthmatic patients after discontinuation of omalizumab for good asthma control. *Respir. Med.* 2014, 108, 571–576.

100. Kupryś-Lipińska, I.; Kuna, P. Loss of asthma control after cessation of omalizumab treatment: Real life data. *Postepy Dermatol Alergol.* 2014, 31, 1–5.

101. Leatherman, J. Mechanical ventilation for severe asthma. *Chest* 2015, 147, 1671–1680.

102. Manser, R.; Reid, D.; Abramson, M. Corticosteroids for acute severe asthma in hospitalised patients. *Cochrane Database Syst. Rev.* 2000, 1, CD001740.

103. Rowe, B.H.; Spooner, C.H.; Ducharme, F.M.; Bretzlaff, J.A.; Bota, G.W. Corticosteroids for preventing relapse following acute exacerbations of asthma. *Cochrane Database Syst. Rev.* 2007, 3, CD000195.

104. Kirkland, S.W.; Cross, E.; Campbell, S.; Villa-Roel, C.; Rowe, B.H. Intramuscular versus oral corticosteroids to reduce relapses following discharge from the emergency department for acute asthma. *Cochrane Database Syst. Rev.* 2018, 6, CD012629.

105. Edmonds, M.L.; Milan, S.J.; Camargo, C.A., Jr.; Pollack, C.V.; Rowe, B.H. Early use of inhaled corticosteroids in the emergency department treatment of acute asthma. *Cochrane Database Syst. Rev.* 2012, 12, CD002308.

106. Kearns, N.; Maijers, I.; Harper, J.; Beasley, R.; Weatherall, M. Inhaled corticosteroids in acute asthma: A systemic review and meta-analysis. *J. Allergy Clin. Immunol. Pract.* 2020, 8, 605–617.e6.

107. Balanag, V.M.; Yunus, F.; Yang, P.C.; Jorup, C. Efficacy and safety of budesonide/formoterol compared with salbutamol in the treatment of acute asthma. *Pulm. Pharmacol. Ther.* 2006, 19, 139–147.

108. Rowe, B.H.; Bretzlaff, J.A.; Bourdon, C.; Bota, G.W.; Camargo, C.A., Jr. Magnesium sulfate for treating exacerbations of acute asthma in the emergency department. *Cochrane Database Syst. Rev.* 2000, 2, CD001490.

109. Goodacre, S.; Cohen, J.; Bradburn, M.; Gray, A.; Benger, J.; Coats, T.; 3Mg Research Team. Intravenous or nebulised magnesium sulphate versus standard therapy for severe acute asthma (3Mg trial): A double-blind, randomised controlled trial. *Lancet Respir Med.* 2013, 1, 293–300.

110. Griffiths, B.; Kew, K.M. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. *Cochrane Database Syst. Rev.* 2016, 4, CD011050.

111. Knightly, R.; Milan, S.J.; Hughes, R.; Knopp-Sihota, J.A.; Rowe, B.H.; Normansell, R.; Powell, C. Inhaled magnesium sulfate in the treatment of acute asthma. *Cochrane Database Syst. Rev.* 2017, 11, CD003898.

112. Normansell, R.; Sayer, B.; Waterson, S.; Dennett, E.J.; Del Forno, M.; Dunleavy, A. Antibiotics for exacerbations of asthma. *Cochrane Database Syst. Rev.* 2018, 6, CD002741.

113. Odajima, H.; Ebisawa, M.; Nagakura, T.; Fujisawa, T.; Akasawa, A.; Ito, K.; Doi, S.; Yamaguchi, K.; Katsunuma, T.; Kurihara, K.; et al. Long-term safety, efficacy, pharmacokinetics and pharmacodynamics of omalizumab in children with severe uncontrolled asthma. *Allergol. Int.* 2017, 66, 106–115.

114. Corren, J.; Casale, T.; Deniz, Y.; Ashby, M. Omalizumab, a recombinant humanized anti-IgE antibody, reduces asthma-related emergency room visits and hospitalizations in patients with allergic asthma. *J. Allergy Clin. Immunol.* 2003, 111, 87–90.

115. Cazzola, M.; Camiciottoli, G.; Bonavia, M.; Gulotta, C.; Ravazzi, A.; Alessandrini, A.; Caiaffa, M.F.; Berra, A.; Schino, P.; Di Napoli, P.L.; et al. Italian real-life experience of omalizumab. *Respir. Med.* 2010, 104, 1410–1416.

116. Ke, X.; Kavati, A.; Wertz, D.; Huang, Q.; Wang, L.; Willey, V.J.; Stephenson, J.J.; Ortiz, B.; Panettieri, R.A., Jr.; Corren, J. Real-world clinical characteristics, treatment patterns, and exacerbations in US patients With asthma newly treated with omalizumab. *Clin. Ther.* 2018, 40, 1140–1158.e4.

117. Al-Ahmad, M.; Arifhodzic, N.; Nurkic, J.; Maher, A.; Rodriguez-Bouza, T.; Al-Ahmed, N.; Sadek, A.; Jusufovic, E. “Real-life” efficacy and safety aspects of 4-year omalizumab treatment for asthma. *Med. Princ. Pract.* 2018, 27, 260–266.

118. Lee, J.H.; Lee, H.Y.; Jung, C.G.; Ban, G.Y.; Shin, Y.S.; Ye, Y.M.; Nahm, D.H.; Park, H.S. Therapeutic effect of omalizumab in severe asthma: A real-world study in Korea. *Allergy Asthma Immunol. Res.* 2018, 10, 121–130.

119. Chiner, E.; Fernández-Fabrellas, E.; Landete, P.; Novella, L.; Ramón, M.; Sancho-Chust, J.N.; Senent, C.; Berraondo, J. Comparison of costs and clinical outcomes between hospital and

outpatient administration of omalizumab in patients with severe uncontrolled asthma. *Arch. Bronconeumol.* 2016, 52, 211–216.

120. Yoshikawa, H.; Iwata, M.; Matsuzaki, H.; Ono, R.; Murakami, Y.; Taba, N.; Honjo, S.; Motomura, C.; Odajima, H. Impact of omalizumab on medical cost of childhood asthma in Japan. *Pediatr. Int.* 2016, 58, 425–428.

Retrieved from <https://encyclopedia.pub/entry/history/show/46589>